linux/drivers/net/ibm_emac/ibm_emac_mal.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

464 lines
12 KiB
C

/*
* ibm_ocp_mal.c
*
* Armin Kuster akuster@mvista.com
* Juen, 2002
*
* Copyright 2002 MontaVista Softare Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/ocp.h>
#include "ibm_emac_mal.h"
// Locking: Should we share a lock with the client ? The client could provide
// a lock pointer (optionally) in the commac structure... I don't think this is
// really necessary though
/* This lock protects the commac list. On today UP implementations, it's
* really only used as IRQ protection in mal_{register,unregister}_commac()
*/
static DEFINE_RWLOCK(mal_list_lock);
int mal_register_commac(struct ibm_ocp_mal *mal, struct mal_commac *commac)
{
unsigned long flags;
write_lock_irqsave(&mal_list_lock, flags);
/* Don't let multiple commacs claim the same channel */
if ((mal->tx_chan_mask & commac->tx_chan_mask) ||
(mal->rx_chan_mask & commac->rx_chan_mask)) {
write_unlock_irqrestore(&mal_list_lock, flags);
return -EBUSY;
}
mal->tx_chan_mask |= commac->tx_chan_mask;
mal->rx_chan_mask |= commac->rx_chan_mask;
list_add(&commac->list, &mal->commac);
write_unlock_irqrestore(&mal_list_lock, flags);
return 0;
}
int mal_unregister_commac(struct ibm_ocp_mal *mal, struct mal_commac *commac)
{
unsigned long flags;
write_lock_irqsave(&mal_list_lock, flags);
mal->tx_chan_mask &= ~commac->tx_chan_mask;
mal->rx_chan_mask &= ~commac->rx_chan_mask;
list_del_init(&commac->list);
write_unlock_irqrestore(&mal_list_lock, flags);
return 0;
}
int mal_set_rcbs(struct ibm_ocp_mal *mal, int channel, unsigned long size)
{
switch (channel) {
case 0:
set_mal_dcrn(mal, DCRN_MALRCBS0, size);
break;
#ifdef DCRN_MALRCBS1
case 1:
set_mal_dcrn(mal, DCRN_MALRCBS1, size);
break;
#endif
#ifdef DCRN_MALRCBS2
case 2:
set_mal_dcrn(mal, DCRN_MALRCBS2, size);
break;
#endif
#ifdef DCRN_MALRCBS3
case 3:
set_mal_dcrn(mal, DCRN_MALRCBS3, size);
break;
#endif
default:
return -EINVAL;
}
return 0;
}
static irqreturn_t mal_serr(int irq, void *dev_instance, struct pt_regs *regs)
{
struct ibm_ocp_mal *mal = dev_instance;
unsigned long mal_error;
/*
* This SERR applies to one of the devices on the MAL, here we charge
* it against the first EMAC registered for the MAL.
*/
mal_error = get_mal_dcrn(mal, DCRN_MALESR);
printk(KERN_ERR "%s: System Error (MALESR=%lx)\n",
"MAL" /* FIXME: get the name right */ , mal_error);
/* FIXME: decipher error */
/* DIXME: distribute to commacs, if possible */
/* Clear the error status register */
set_mal_dcrn(mal, DCRN_MALESR, mal_error);
return IRQ_HANDLED;
}
static irqreturn_t mal_txeob(int irq, void *dev_instance, struct pt_regs *regs)
{
struct ibm_ocp_mal *mal = dev_instance;
struct list_head *l;
unsigned long isr;
isr = get_mal_dcrn(mal, DCRN_MALTXEOBISR);
set_mal_dcrn(mal, DCRN_MALTXEOBISR, isr);
read_lock(&mal_list_lock);
list_for_each(l, &mal->commac) {
struct mal_commac *mc = list_entry(l, struct mal_commac, list);
if (isr & mc->tx_chan_mask) {
mc->ops->txeob(mc->dev, isr & mc->tx_chan_mask);
}
}
read_unlock(&mal_list_lock);
return IRQ_HANDLED;
}
static irqreturn_t mal_rxeob(int irq, void *dev_instance, struct pt_regs *regs)
{
struct ibm_ocp_mal *mal = dev_instance;
struct list_head *l;
unsigned long isr;
isr = get_mal_dcrn(mal, DCRN_MALRXEOBISR);
set_mal_dcrn(mal, DCRN_MALRXEOBISR, isr);
read_lock(&mal_list_lock);
list_for_each(l, &mal->commac) {
struct mal_commac *mc = list_entry(l, struct mal_commac, list);
if (isr & mc->rx_chan_mask) {
mc->ops->rxeob(mc->dev, isr & mc->rx_chan_mask);
}
}
read_unlock(&mal_list_lock);
return IRQ_HANDLED;
}
static irqreturn_t mal_txde(int irq, void *dev_instance, struct pt_regs *regs)
{
struct ibm_ocp_mal *mal = dev_instance;
struct list_head *l;
unsigned long deir;
deir = get_mal_dcrn(mal, DCRN_MALTXDEIR);
/* FIXME: print which MAL correctly */
printk(KERN_WARNING "%s: Tx descriptor error (MALTXDEIR=%lx)\n",
"MAL", deir);
read_lock(&mal_list_lock);
list_for_each(l, &mal->commac) {
struct mal_commac *mc = list_entry(l, struct mal_commac, list);
if (deir & mc->tx_chan_mask) {
mc->ops->txde(mc->dev, deir & mc->tx_chan_mask);
}
}
read_unlock(&mal_list_lock);
return IRQ_HANDLED;
}
/*
* This interrupt should be very rare at best. This occurs when
* the hardware has a problem with the receive descriptors. The manual
* states that it occurs when the hardware cannot the receive descriptor
* empty bit is not set. The recovery mechanism will be to
* traverse through the descriptors, handle any that are marked to be
* handled and reinitialize each along the way. At that point the driver
* will be restarted.
*/
static irqreturn_t mal_rxde(int irq, void *dev_instance, struct pt_regs *regs)
{
struct ibm_ocp_mal *mal = dev_instance;
struct list_head *l;
unsigned long deir;
deir = get_mal_dcrn(mal, DCRN_MALRXDEIR);
/*
* This really is needed. This case encountered in stress testing.
*/
if (deir == 0)
return IRQ_HANDLED;
/* FIXME: print which MAL correctly */
printk(KERN_WARNING "%s: Rx descriptor error (MALRXDEIR=%lx)\n",
"MAL", deir);
read_lock(&mal_list_lock);
list_for_each(l, &mal->commac) {
struct mal_commac *mc = list_entry(l, struct mal_commac, list);
if (deir & mc->rx_chan_mask) {
mc->ops->rxde(mc->dev, deir & mc->rx_chan_mask);
}
}
read_unlock(&mal_list_lock);
return IRQ_HANDLED;
}
static int __init mal_probe(struct ocp_device *ocpdev)
{
struct ibm_ocp_mal *mal = NULL;
struct ocp_func_mal_data *maldata;
int err = 0;
maldata = (struct ocp_func_mal_data *)ocpdev->def->additions;
if (maldata == NULL) {
printk(KERN_ERR "mal%d: Missing additional datas !\n",
ocpdev->def->index);
return -ENODEV;
}
mal = kmalloc(sizeof(struct ibm_ocp_mal), GFP_KERNEL);
if (mal == NULL) {
printk(KERN_ERR
"mal%d: Out of memory allocating MAL structure !\n",
ocpdev->def->index);
return -ENOMEM;
}
memset(mal, 0, sizeof(*mal));
switch (ocpdev->def->index) {
case 0:
mal->dcrbase = DCRN_MAL_BASE;
break;
#ifdef DCRN_MAL1_BASE
case 1:
mal->dcrbase = DCRN_MAL1_BASE;
break;
#endif
default:
BUG();
}
/**************************/
INIT_LIST_HEAD(&mal->commac);
set_mal_dcrn(mal, DCRN_MALRXCARR, 0xFFFFFFFF);
set_mal_dcrn(mal, DCRN_MALTXCARR, 0xFFFFFFFF);
set_mal_dcrn(mal, DCRN_MALCR, MALCR_MMSR); /* 384 */
/* FIXME: Add delay */
/* Set the MAL configuration register */
set_mal_dcrn(mal, DCRN_MALCR,
MALCR_PLBB | MALCR_OPBBL | MALCR_LEA |
MALCR_PLBLT_DEFAULT);
/* It would be nice to allocate buffers separately for each
* channel, but we can't because the channels share the upper
* 13 bits of address lines. Each channels buffer must also
* be 4k aligned, so we allocate 4k for each channel. This is
* inefficient FIXME: do better, if possible */
mal->tx_virt_addr = dma_alloc_coherent(&ocpdev->dev,
MAL_DT_ALIGN *
maldata->num_tx_chans,
&mal->tx_phys_addr, GFP_KERNEL);
if (mal->tx_virt_addr == NULL) {
printk(KERN_ERR
"mal%d: Out of memory allocating MAL descriptors !\n",
ocpdev->def->index);
err = -ENOMEM;
goto fail;
}
/* God, oh, god, I hate DCRs */
set_mal_dcrn(mal, DCRN_MALTXCTP0R, mal->tx_phys_addr);
#ifdef DCRN_MALTXCTP1R
if (maldata->num_tx_chans > 1)
set_mal_dcrn(mal, DCRN_MALTXCTP1R,
mal->tx_phys_addr + MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP1R */
#ifdef DCRN_MALTXCTP2R
if (maldata->num_tx_chans > 2)
set_mal_dcrn(mal, DCRN_MALTXCTP2R,
mal->tx_phys_addr + 2 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP2R */
#ifdef DCRN_MALTXCTP3R
if (maldata->num_tx_chans > 3)
set_mal_dcrn(mal, DCRN_MALTXCTP3R,
mal->tx_phys_addr + 3 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP3R */
#ifdef DCRN_MALTXCTP4R
if (maldata->num_tx_chans > 4)
set_mal_dcrn(mal, DCRN_MALTXCTP4R,
mal->tx_phys_addr + 4 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP4R */
#ifdef DCRN_MALTXCTP5R
if (maldata->num_tx_chans > 5)
set_mal_dcrn(mal, DCRN_MALTXCTP5R,
mal->tx_phys_addr + 5 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP5R */
#ifdef DCRN_MALTXCTP6R
if (maldata->num_tx_chans > 6)
set_mal_dcrn(mal, DCRN_MALTXCTP6R,
mal->tx_phys_addr + 6 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP6R */
#ifdef DCRN_MALTXCTP7R
if (maldata->num_tx_chans > 7)
set_mal_dcrn(mal, DCRN_MALTXCTP7R,
mal->tx_phys_addr + 7 * MAL_DT_ALIGN);
#endif /* DCRN_MALTXCTP7R */
mal->rx_virt_addr = dma_alloc_coherent(&ocpdev->dev,
MAL_DT_ALIGN *
maldata->num_rx_chans,
&mal->rx_phys_addr, GFP_KERNEL);
set_mal_dcrn(mal, DCRN_MALRXCTP0R, mal->rx_phys_addr);
#ifdef DCRN_MALRXCTP1R
if (maldata->num_rx_chans > 1)
set_mal_dcrn(mal, DCRN_MALRXCTP1R,
mal->rx_phys_addr + MAL_DT_ALIGN);
#endif /* DCRN_MALRXCTP1R */
#ifdef DCRN_MALRXCTP2R
if (maldata->num_rx_chans > 2)
set_mal_dcrn(mal, DCRN_MALRXCTP2R,
mal->rx_phys_addr + 2 * MAL_DT_ALIGN);
#endif /* DCRN_MALRXCTP2R */
#ifdef DCRN_MALRXCTP3R
if (maldata->num_rx_chans > 3)
set_mal_dcrn(mal, DCRN_MALRXCTP3R,
mal->rx_phys_addr + 3 * MAL_DT_ALIGN);
#endif /* DCRN_MALRXCTP3R */
err = request_irq(maldata->serr_irq, mal_serr, 0, "MAL SERR", mal);
if (err)
goto fail;
err = request_irq(maldata->txde_irq, mal_txde, 0, "MAL TX DE ", mal);
if (err)
goto fail;
err = request_irq(maldata->txeob_irq, mal_txeob, 0, "MAL TX EOB", mal);
if (err)
goto fail;
err = request_irq(maldata->rxde_irq, mal_rxde, 0, "MAL RX DE", mal);
if (err)
goto fail;
err = request_irq(maldata->rxeob_irq, mal_rxeob, 0, "MAL RX EOB", mal);
if (err)
goto fail;
set_mal_dcrn(mal, DCRN_MALIER,
MALIER_DE | MALIER_NE | MALIER_TE |
MALIER_OPBE | MALIER_PLBE);
/* Advertise me to the rest of the world */
ocp_set_drvdata(ocpdev, mal);
printk(KERN_INFO "mal%d: Initialized, %d tx channels, %d rx channels\n",
ocpdev->def->index, maldata->num_tx_chans,
maldata->num_rx_chans);
return 0;
fail:
/* FIXME: dispose requested IRQs ! */
if (err && mal)
kfree(mal);
return err;
}
static void __exit mal_remove(struct ocp_device *ocpdev)
{
struct ibm_ocp_mal *mal = ocp_get_drvdata(ocpdev);
struct ocp_func_mal_data *maldata = ocpdev->def->additions;
BUG_ON(!maldata);
ocp_set_drvdata(ocpdev, NULL);
/* FIXME: shut down the MAL, deal with dependency with emac */
free_irq(maldata->serr_irq, mal);
free_irq(maldata->txde_irq, mal);
free_irq(maldata->txeob_irq, mal);
free_irq(maldata->rxde_irq, mal);
free_irq(maldata->rxeob_irq, mal);
if (mal->tx_virt_addr)
dma_free_coherent(&ocpdev->dev,
MAL_DT_ALIGN * maldata->num_tx_chans,
mal->tx_virt_addr, mal->tx_phys_addr);
if (mal->rx_virt_addr)
dma_free_coherent(&ocpdev->dev,
MAL_DT_ALIGN * maldata->num_rx_chans,
mal->rx_virt_addr, mal->rx_phys_addr);
kfree(mal);
}
/* Structure for a device driver */
static struct ocp_device_id mal_ids[] = {
{.vendor = OCP_ANY_ID,.function = OCP_FUNC_MAL},
{.vendor = OCP_VENDOR_INVALID}
};
static struct ocp_driver mal_driver = {
.name = "mal",
.id_table = mal_ids,
.probe = mal_probe,
.remove = mal_remove,
};
static int __init init_mals(void)
{
int rc;
rc = ocp_register_driver(&mal_driver);
if (rc < 0) {
ocp_unregister_driver(&mal_driver);
return -ENODEV;
}
return 0;
}
static void __exit exit_mals(void)
{
ocp_unregister_driver(&mal_driver);
}
module_init(init_mals);
module_exit(exit_mals);