Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
419 lines
11 KiB
C
419 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* misc.c
|
|
*
|
|
* This is a collection of several routines used to extract the kernel
|
|
* which includes KASLR relocation, decompression, ELF parsing, and
|
|
* relocation processing. Additionally included are the screen and serial
|
|
* output functions and related debugging support functions.
|
|
*
|
|
* malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994
|
|
* puts by Nick Holloway 1993, better puts by Martin Mares 1995
|
|
* High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
|
|
*/
|
|
|
|
#include "misc.h"
|
|
#include "error.h"
|
|
#include "../string.h"
|
|
#include "../voffset.h"
|
|
|
|
/*
|
|
* WARNING!!
|
|
* This code is compiled with -fPIC and it is relocated dynamically at
|
|
* run time, but no relocation processing is performed. This means that
|
|
* it is not safe to place pointers in static structures.
|
|
*/
|
|
|
|
/* Macros used by the included decompressor code below. */
|
|
#define STATIC static
|
|
|
|
/*
|
|
* Use normal definitions of mem*() from string.c. There are already
|
|
* included header files which expect a definition of memset() and by
|
|
* the time we define memset macro, it is too late.
|
|
*/
|
|
#undef memcpy
|
|
#undef memset
|
|
#define memzero(s, n) memset((s), 0, (n))
|
|
#define memmove memmove
|
|
|
|
/* Functions used by the included decompressor code below. */
|
|
void *memmove(void *dest, const void *src, size_t n);
|
|
|
|
/*
|
|
* This is set up by the setup-routine at boot-time
|
|
*/
|
|
struct boot_params *boot_params;
|
|
|
|
memptr free_mem_ptr;
|
|
memptr free_mem_end_ptr;
|
|
|
|
static char *vidmem;
|
|
static int vidport;
|
|
static int lines, cols;
|
|
|
|
#ifdef CONFIG_KERNEL_GZIP
|
|
#include "../../../../lib/decompress_inflate.c"
|
|
#endif
|
|
|
|
#ifdef CONFIG_KERNEL_BZIP2
|
|
#include "../../../../lib/decompress_bunzip2.c"
|
|
#endif
|
|
|
|
#ifdef CONFIG_KERNEL_LZMA
|
|
#include "../../../../lib/decompress_unlzma.c"
|
|
#endif
|
|
|
|
#ifdef CONFIG_KERNEL_XZ
|
|
#include "../../../../lib/decompress_unxz.c"
|
|
#endif
|
|
|
|
#ifdef CONFIG_KERNEL_LZO
|
|
#include "../../../../lib/decompress_unlzo.c"
|
|
#endif
|
|
|
|
#ifdef CONFIG_KERNEL_LZ4
|
|
#include "../../../../lib/decompress_unlz4.c"
|
|
#endif
|
|
/*
|
|
* NOTE: When adding a new decompressor, please update the analysis in
|
|
* ../header.S.
|
|
*/
|
|
|
|
static void scroll(void)
|
|
{
|
|
int i;
|
|
|
|
memmove(vidmem, vidmem + cols * 2, (lines - 1) * cols * 2);
|
|
for (i = (lines - 1) * cols * 2; i < lines * cols * 2; i += 2)
|
|
vidmem[i] = ' ';
|
|
}
|
|
|
|
#define XMTRDY 0x20
|
|
|
|
#define TXR 0 /* Transmit register (WRITE) */
|
|
#define LSR 5 /* Line Status */
|
|
static void serial_putchar(int ch)
|
|
{
|
|
unsigned timeout = 0xffff;
|
|
|
|
while ((inb(early_serial_base + LSR) & XMTRDY) == 0 && --timeout)
|
|
cpu_relax();
|
|
|
|
outb(ch, early_serial_base + TXR);
|
|
}
|
|
|
|
void __putstr(const char *s)
|
|
{
|
|
int x, y, pos;
|
|
char c;
|
|
|
|
if (early_serial_base) {
|
|
const char *str = s;
|
|
while (*str) {
|
|
if (*str == '\n')
|
|
serial_putchar('\r');
|
|
serial_putchar(*str++);
|
|
}
|
|
}
|
|
|
|
if (lines == 0 || cols == 0)
|
|
return;
|
|
|
|
x = boot_params->screen_info.orig_x;
|
|
y = boot_params->screen_info.orig_y;
|
|
|
|
while ((c = *s++) != '\0') {
|
|
if (c == '\n') {
|
|
x = 0;
|
|
if (++y >= lines) {
|
|
scroll();
|
|
y--;
|
|
}
|
|
} else {
|
|
vidmem[(x + cols * y) * 2] = c;
|
|
if (++x >= cols) {
|
|
x = 0;
|
|
if (++y >= lines) {
|
|
scroll();
|
|
y--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
boot_params->screen_info.orig_x = x;
|
|
boot_params->screen_info.orig_y = y;
|
|
|
|
pos = (x + cols * y) * 2; /* Update cursor position */
|
|
outb(14, vidport);
|
|
outb(0xff & (pos >> 9), vidport+1);
|
|
outb(15, vidport);
|
|
outb(0xff & (pos >> 1), vidport+1);
|
|
}
|
|
|
|
void __puthex(unsigned long value)
|
|
{
|
|
char alpha[2] = "0";
|
|
int bits;
|
|
|
|
for (bits = sizeof(value) * 8 - 4; bits >= 0; bits -= 4) {
|
|
unsigned long digit = (value >> bits) & 0xf;
|
|
|
|
if (digit < 0xA)
|
|
alpha[0] = '0' + digit;
|
|
else
|
|
alpha[0] = 'a' + (digit - 0xA);
|
|
|
|
__putstr(alpha);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_X86_NEED_RELOCS
|
|
static void handle_relocations(void *output, unsigned long output_len,
|
|
unsigned long virt_addr)
|
|
{
|
|
int *reloc;
|
|
unsigned long delta, map, ptr;
|
|
unsigned long min_addr = (unsigned long)output;
|
|
unsigned long max_addr = min_addr + (VO___bss_start - VO__text);
|
|
|
|
/*
|
|
* Calculate the delta between where vmlinux was linked to load
|
|
* and where it was actually loaded.
|
|
*/
|
|
delta = min_addr - LOAD_PHYSICAL_ADDR;
|
|
|
|
/*
|
|
* The kernel contains a table of relocation addresses. Those
|
|
* addresses have the final load address of the kernel in virtual
|
|
* memory. We are currently working in the self map. So we need to
|
|
* create an adjustment for kernel memory addresses to the self map.
|
|
* This will involve subtracting out the base address of the kernel.
|
|
*/
|
|
map = delta - __START_KERNEL_map;
|
|
|
|
/*
|
|
* 32-bit always performs relocations. 64-bit relocations are only
|
|
* needed if KASLR has chosen a different starting address offset
|
|
* from __START_KERNEL_map.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_X86_64))
|
|
delta = virt_addr - LOAD_PHYSICAL_ADDR;
|
|
|
|
if (!delta) {
|
|
debug_putstr("No relocation needed... ");
|
|
return;
|
|
}
|
|
debug_putstr("Performing relocations... ");
|
|
|
|
/*
|
|
* Process relocations: 32 bit relocations first then 64 bit after.
|
|
* Three sets of binary relocations are added to the end of the kernel
|
|
* before compression. Each relocation table entry is the kernel
|
|
* address of the location which needs to be updated stored as a
|
|
* 32-bit value which is sign extended to 64 bits.
|
|
*
|
|
* Format is:
|
|
*
|
|
* kernel bits...
|
|
* 0 - zero terminator for 64 bit relocations
|
|
* 64 bit relocation repeated
|
|
* 0 - zero terminator for inverse 32 bit relocations
|
|
* 32 bit inverse relocation repeated
|
|
* 0 - zero terminator for 32 bit relocations
|
|
* 32 bit relocation repeated
|
|
*
|
|
* So we work backwards from the end of the decompressed image.
|
|
*/
|
|
for (reloc = output + output_len - sizeof(*reloc); *reloc; reloc--) {
|
|
long extended = *reloc;
|
|
extended += map;
|
|
|
|
ptr = (unsigned long)extended;
|
|
if (ptr < min_addr || ptr > max_addr)
|
|
error("32-bit relocation outside of kernel!\n");
|
|
|
|
*(uint32_t *)ptr += delta;
|
|
}
|
|
#ifdef CONFIG_X86_64
|
|
while (*--reloc) {
|
|
long extended = *reloc;
|
|
extended += map;
|
|
|
|
ptr = (unsigned long)extended;
|
|
if (ptr < min_addr || ptr > max_addr)
|
|
error("inverse 32-bit relocation outside of kernel!\n");
|
|
|
|
*(int32_t *)ptr -= delta;
|
|
}
|
|
for (reloc--; *reloc; reloc--) {
|
|
long extended = *reloc;
|
|
extended += map;
|
|
|
|
ptr = (unsigned long)extended;
|
|
if (ptr < min_addr || ptr > max_addr)
|
|
error("64-bit relocation outside of kernel!\n");
|
|
|
|
*(uint64_t *)ptr += delta;
|
|
}
|
|
#endif
|
|
}
|
|
#else
|
|
static inline void handle_relocations(void *output, unsigned long output_len,
|
|
unsigned long virt_addr)
|
|
{ }
|
|
#endif
|
|
|
|
static void parse_elf(void *output)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
Elf64_Ehdr ehdr;
|
|
Elf64_Phdr *phdrs, *phdr;
|
|
#else
|
|
Elf32_Ehdr ehdr;
|
|
Elf32_Phdr *phdrs, *phdr;
|
|
#endif
|
|
void *dest;
|
|
int i;
|
|
|
|
memcpy(&ehdr, output, sizeof(ehdr));
|
|
if (ehdr.e_ident[EI_MAG0] != ELFMAG0 ||
|
|
ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
|
|
ehdr.e_ident[EI_MAG2] != ELFMAG2 ||
|
|
ehdr.e_ident[EI_MAG3] != ELFMAG3) {
|
|
error("Kernel is not a valid ELF file");
|
|
return;
|
|
}
|
|
|
|
debug_putstr("Parsing ELF... ");
|
|
|
|
phdrs = malloc(sizeof(*phdrs) * ehdr.e_phnum);
|
|
if (!phdrs)
|
|
error("Failed to allocate space for phdrs");
|
|
|
|
memcpy(phdrs, output + ehdr.e_phoff, sizeof(*phdrs) * ehdr.e_phnum);
|
|
|
|
for (i = 0; i < ehdr.e_phnum; i++) {
|
|
phdr = &phdrs[i];
|
|
|
|
switch (phdr->p_type) {
|
|
case PT_LOAD:
|
|
#ifdef CONFIG_RELOCATABLE
|
|
dest = output;
|
|
dest += (phdr->p_paddr - LOAD_PHYSICAL_ADDR);
|
|
#else
|
|
dest = (void *)(phdr->p_paddr);
|
|
#endif
|
|
memmove(dest, output + phdr->p_offset, phdr->p_filesz);
|
|
break;
|
|
default: /* Ignore other PT_* */ break;
|
|
}
|
|
}
|
|
|
|
free(phdrs);
|
|
}
|
|
|
|
/*
|
|
* The compressed kernel image (ZO), has been moved so that its position
|
|
* is against the end of the buffer used to hold the uncompressed kernel
|
|
* image (VO) and the execution environment (.bss, .brk), which makes sure
|
|
* there is room to do the in-place decompression. (See header.S for the
|
|
* calculations.)
|
|
*
|
|
* |-----compressed kernel image------|
|
|
* V V
|
|
* 0 extract_offset +INIT_SIZE
|
|
* |-----------|---------------|-------------------------|--------|
|
|
* | | | |
|
|
* VO__text startup_32 of ZO VO__end ZO__end
|
|
* ^ ^
|
|
* |-------uncompressed kernel image---------|
|
|
*
|
|
*/
|
|
asmlinkage __visible void *extract_kernel(void *rmode, memptr heap,
|
|
unsigned char *input_data,
|
|
unsigned long input_len,
|
|
unsigned char *output,
|
|
unsigned long output_len)
|
|
{
|
|
const unsigned long kernel_total_size = VO__end - VO__text;
|
|
unsigned long virt_addr = LOAD_PHYSICAL_ADDR;
|
|
|
|
/* Retain x86 boot parameters pointer passed from startup_32/64. */
|
|
boot_params = rmode;
|
|
|
|
/* Clear flags intended for solely in-kernel use. */
|
|
boot_params->hdr.loadflags &= ~KASLR_FLAG;
|
|
|
|
sanitize_boot_params(boot_params);
|
|
|
|
if (boot_params->screen_info.orig_video_mode == 7) {
|
|
vidmem = (char *) 0xb0000;
|
|
vidport = 0x3b4;
|
|
} else {
|
|
vidmem = (char *) 0xb8000;
|
|
vidport = 0x3d4;
|
|
}
|
|
|
|
lines = boot_params->screen_info.orig_video_lines;
|
|
cols = boot_params->screen_info.orig_video_cols;
|
|
|
|
console_init();
|
|
debug_putstr("early console in extract_kernel\n");
|
|
|
|
free_mem_ptr = heap; /* Heap */
|
|
free_mem_end_ptr = heap + BOOT_HEAP_SIZE;
|
|
|
|
/* Report initial kernel position details. */
|
|
debug_putaddr(input_data);
|
|
debug_putaddr(input_len);
|
|
debug_putaddr(output);
|
|
debug_putaddr(output_len);
|
|
debug_putaddr(kernel_total_size);
|
|
|
|
/*
|
|
* The memory hole needed for the kernel is the larger of either
|
|
* the entire decompressed kernel plus relocation table, or the
|
|
* entire decompressed kernel plus .bss and .brk sections.
|
|
*/
|
|
choose_random_location((unsigned long)input_data, input_len,
|
|
(unsigned long *)&output,
|
|
max(output_len, kernel_total_size),
|
|
&virt_addr);
|
|
|
|
/* Validate memory location choices. */
|
|
if ((unsigned long)output & (MIN_KERNEL_ALIGN - 1))
|
|
error("Destination physical address inappropriately aligned");
|
|
if (virt_addr & (MIN_KERNEL_ALIGN - 1))
|
|
error("Destination virtual address inappropriately aligned");
|
|
#ifdef CONFIG_X86_64
|
|
if (heap > 0x3fffffffffffUL)
|
|
error("Destination address too large");
|
|
if (virt_addr + max(output_len, kernel_total_size) > KERNEL_IMAGE_SIZE)
|
|
error("Destination virtual address is beyond the kernel mapping area");
|
|
#else
|
|
if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & 0x7fffffff))
|
|
error("Destination address too large");
|
|
#endif
|
|
#ifndef CONFIG_RELOCATABLE
|
|
if ((unsigned long)output != LOAD_PHYSICAL_ADDR)
|
|
error("Destination address does not match LOAD_PHYSICAL_ADDR");
|
|
if (virt_addr != LOAD_PHYSICAL_ADDR)
|
|
error("Destination virtual address changed when not relocatable");
|
|
#endif
|
|
|
|
debug_putstr("\nDecompressing Linux... ");
|
|
__decompress(input_data, input_len, NULL, NULL, output, output_len,
|
|
NULL, error);
|
|
parse_elf(output);
|
|
handle_relocations(output, output_len, virt_addr);
|
|
debug_putstr("done.\nBooting the kernel.\n");
|
|
return output;
|
|
}
|
|
|
|
void fortify_panic(const char *name)
|
|
{
|
|
error("detected buffer overflow");
|
|
}
|