forked from Minki/linux
528a953934
If the pmd is soft dirty we must mark the pte as soft dirty (and not dirty).
This fixes some cases for guest migration with huge page backings.
Cc: <stable@vger.kernel.org> # 4.8
Fixes: bc29b7ac1d
("s390/mm: clean up pte/pmd encoding")
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
354 lines
9.7 KiB
C
354 lines
9.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* IBM System z Huge TLB Page Support for Kernel.
|
|
*
|
|
* Copyright IBM Corp. 2007,2020
|
|
* Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
|
|
*/
|
|
|
|
#define KMSG_COMPONENT "hugetlb"
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/security.h>
|
|
|
|
/*
|
|
* If the bit selected by single-bit bitmask "a" is set within "x", move
|
|
* it to the position indicated by single-bit bitmask "b".
|
|
*/
|
|
#define move_set_bit(x, a, b) (((x) & (a)) >> ilog2(a) << ilog2(b))
|
|
|
|
static inline unsigned long __pte_to_rste(pte_t pte)
|
|
{
|
|
unsigned long rste;
|
|
|
|
/*
|
|
* Convert encoding pte bits pmd / pud bits
|
|
* lIR.uswrdy.p dy..R...I...wr
|
|
* empty 010.000000.0 -> 00..0...1...00
|
|
* prot-none, clean, old 111.000000.1 -> 00..1...1...00
|
|
* prot-none, clean, young 111.000001.1 -> 01..1...1...00
|
|
* prot-none, dirty, old 111.000010.1 -> 10..1...1...00
|
|
* prot-none, dirty, young 111.000011.1 -> 11..1...1...00
|
|
* read-only, clean, old 111.000100.1 -> 00..1...1...01
|
|
* read-only, clean, young 101.000101.1 -> 01..1...0...01
|
|
* read-only, dirty, old 111.000110.1 -> 10..1...1...01
|
|
* read-only, dirty, young 101.000111.1 -> 11..1...0...01
|
|
* read-write, clean, old 111.001100.1 -> 00..1...1...11
|
|
* read-write, clean, young 101.001101.1 -> 01..1...0...11
|
|
* read-write, dirty, old 110.001110.1 -> 10..0...1...11
|
|
* read-write, dirty, young 100.001111.1 -> 11..0...0...11
|
|
* HW-bits: R read-only, I invalid
|
|
* SW-bits: p present, y young, d dirty, r read, w write, s special,
|
|
* u unused, l large
|
|
*/
|
|
if (pte_present(pte)) {
|
|
rste = pte_val(pte) & PAGE_MASK;
|
|
rste |= move_set_bit(pte_val(pte), _PAGE_READ,
|
|
_SEGMENT_ENTRY_READ);
|
|
rste |= move_set_bit(pte_val(pte), _PAGE_WRITE,
|
|
_SEGMENT_ENTRY_WRITE);
|
|
rste |= move_set_bit(pte_val(pte), _PAGE_INVALID,
|
|
_SEGMENT_ENTRY_INVALID);
|
|
rste |= move_set_bit(pte_val(pte), _PAGE_PROTECT,
|
|
_SEGMENT_ENTRY_PROTECT);
|
|
rste |= move_set_bit(pte_val(pte), _PAGE_DIRTY,
|
|
_SEGMENT_ENTRY_DIRTY);
|
|
rste |= move_set_bit(pte_val(pte), _PAGE_YOUNG,
|
|
_SEGMENT_ENTRY_YOUNG);
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
rste |= move_set_bit(pte_val(pte), _PAGE_SOFT_DIRTY,
|
|
_SEGMENT_ENTRY_SOFT_DIRTY);
|
|
#endif
|
|
rste |= move_set_bit(pte_val(pte), _PAGE_NOEXEC,
|
|
_SEGMENT_ENTRY_NOEXEC);
|
|
} else
|
|
rste = _SEGMENT_ENTRY_EMPTY;
|
|
return rste;
|
|
}
|
|
|
|
static inline pte_t __rste_to_pte(unsigned long rste)
|
|
{
|
|
int present;
|
|
pte_t pte;
|
|
|
|
if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
|
|
present = pud_present(__pud(rste));
|
|
else
|
|
present = pmd_present(__pmd(rste));
|
|
|
|
/*
|
|
* Convert encoding pmd / pud bits pte bits
|
|
* dy..R...I...wr lIR.uswrdy.p
|
|
* empty 00..0...1...00 -> 010.000000.0
|
|
* prot-none, clean, old 00..1...1...00 -> 111.000000.1
|
|
* prot-none, clean, young 01..1...1...00 -> 111.000001.1
|
|
* prot-none, dirty, old 10..1...1...00 -> 111.000010.1
|
|
* prot-none, dirty, young 11..1...1...00 -> 111.000011.1
|
|
* read-only, clean, old 00..1...1...01 -> 111.000100.1
|
|
* read-only, clean, young 01..1...0...01 -> 101.000101.1
|
|
* read-only, dirty, old 10..1...1...01 -> 111.000110.1
|
|
* read-only, dirty, young 11..1...0...01 -> 101.000111.1
|
|
* read-write, clean, old 00..1...1...11 -> 111.001100.1
|
|
* read-write, clean, young 01..1...0...11 -> 101.001101.1
|
|
* read-write, dirty, old 10..0...1...11 -> 110.001110.1
|
|
* read-write, dirty, young 11..0...0...11 -> 100.001111.1
|
|
* HW-bits: R read-only, I invalid
|
|
* SW-bits: p present, y young, d dirty, r read, w write, s special,
|
|
* u unused, l large
|
|
*/
|
|
if (present) {
|
|
pte_val(pte) = rste & _SEGMENT_ENTRY_ORIGIN_LARGE;
|
|
pte_val(pte) |= _PAGE_LARGE | _PAGE_PRESENT;
|
|
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_READ,
|
|
_PAGE_READ);
|
|
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_WRITE,
|
|
_PAGE_WRITE);
|
|
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_INVALID,
|
|
_PAGE_INVALID);
|
|
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_PROTECT,
|
|
_PAGE_PROTECT);
|
|
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_DIRTY,
|
|
_PAGE_DIRTY);
|
|
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_YOUNG,
|
|
_PAGE_YOUNG);
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_SOFT_DIRTY,
|
|
_PAGE_SOFT_DIRTY);
|
|
#endif
|
|
pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_NOEXEC,
|
|
_PAGE_NOEXEC);
|
|
} else
|
|
pte_val(pte) = _PAGE_INVALID;
|
|
return pte;
|
|
}
|
|
|
|
static void clear_huge_pte_skeys(struct mm_struct *mm, unsigned long rste)
|
|
{
|
|
struct page *page;
|
|
unsigned long size, paddr;
|
|
|
|
if (!mm_uses_skeys(mm) ||
|
|
rste & _SEGMENT_ENTRY_INVALID)
|
|
return;
|
|
|
|
if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) {
|
|
page = pud_page(__pud(rste));
|
|
size = PUD_SIZE;
|
|
paddr = rste & PUD_MASK;
|
|
} else {
|
|
page = pmd_page(__pmd(rste));
|
|
size = PMD_SIZE;
|
|
paddr = rste & PMD_MASK;
|
|
}
|
|
|
|
if (!test_and_set_bit(PG_arch_1, &page->flags))
|
|
__storage_key_init_range(paddr, paddr + size - 1);
|
|
}
|
|
|
|
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
unsigned long rste;
|
|
|
|
rste = __pte_to_rste(pte);
|
|
if (!MACHINE_HAS_NX)
|
|
rste &= ~_SEGMENT_ENTRY_NOEXEC;
|
|
|
|
/* Set correct table type for 2G hugepages */
|
|
if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) {
|
|
if (likely(pte_present(pte)))
|
|
rste |= _REGION3_ENTRY_LARGE;
|
|
rste |= _REGION_ENTRY_TYPE_R3;
|
|
} else if (likely(pte_present(pte)))
|
|
rste |= _SEGMENT_ENTRY_LARGE;
|
|
|
|
clear_huge_pte_skeys(mm, rste);
|
|
pte_val(*ptep) = rste;
|
|
}
|
|
|
|
pte_t huge_ptep_get(pte_t *ptep)
|
|
{
|
|
return __rste_to_pte(pte_val(*ptep));
|
|
}
|
|
|
|
pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
pte_t pte = huge_ptep_get(ptep);
|
|
pmd_t *pmdp = (pmd_t *) ptep;
|
|
pud_t *pudp = (pud_t *) ptep;
|
|
|
|
if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
|
|
pudp_xchg_direct(mm, addr, pudp, __pud(_REGION3_ENTRY_EMPTY));
|
|
else
|
|
pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
|
|
return pte;
|
|
}
|
|
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp = NULL;
|
|
|
|
pgdp = pgd_offset(mm, addr);
|
|
p4dp = p4d_alloc(mm, pgdp, addr);
|
|
if (p4dp) {
|
|
pudp = pud_alloc(mm, p4dp, addr);
|
|
if (pudp) {
|
|
if (sz == PUD_SIZE)
|
|
return (pte_t *) pudp;
|
|
else if (sz == PMD_SIZE)
|
|
pmdp = pmd_alloc(mm, pudp, addr);
|
|
}
|
|
}
|
|
return (pte_t *) pmdp;
|
|
}
|
|
|
|
pte_t *huge_pte_offset(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp = NULL;
|
|
|
|
pgdp = pgd_offset(mm, addr);
|
|
if (pgd_present(*pgdp)) {
|
|
p4dp = p4d_offset(pgdp, addr);
|
|
if (p4d_present(*p4dp)) {
|
|
pudp = pud_offset(p4dp, addr);
|
|
if (pud_present(*pudp)) {
|
|
if (pud_large(*pudp))
|
|
return (pte_t *) pudp;
|
|
pmdp = pmd_offset(pudp, addr);
|
|
}
|
|
}
|
|
}
|
|
return (pte_t *) pmdp;
|
|
}
|
|
|
|
int pmd_huge(pmd_t pmd)
|
|
{
|
|
return pmd_large(pmd);
|
|
}
|
|
|
|
int pud_huge(pud_t pud)
|
|
{
|
|
return pud_large(pud);
|
|
}
|
|
|
|
struct page *
|
|
follow_huge_pud(struct mm_struct *mm, unsigned long address,
|
|
pud_t *pud, int flags)
|
|
{
|
|
if (flags & FOLL_GET)
|
|
return NULL;
|
|
|
|
return pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
|
|
}
|
|
|
|
bool __init arch_hugetlb_valid_size(unsigned long size)
|
|
{
|
|
if (MACHINE_HAS_EDAT1 && size == PMD_SIZE)
|
|
return true;
|
|
else if (MACHINE_HAS_EDAT2 && size == PUD_SIZE)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
|
|
unsigned long addr, unsigned long len,
|
|
unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct hstate *h = hstate_file(file);
|
|
struct vm_unmapped_area_info info;
|
|
|
|
info.flags = 0;
|
|
info.length = len;
|
|
info.low_limit = current->mm->mmap_base;
|
|
info.high_limit = TASK_SIZE;
|
|
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
|
|
info.align_offset = 0;
|
|
return vm_unmapped_area(&info);
|
|
}
|
|
|
|
static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
|
|
unsigned long addr0, unsigned long len,
|
|
unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct hstate *h = hstate_file(file);
|
|
struct vm_unmapped_area_info info;
|
|
unsigned long addr;
|
|
|
|
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
|
|
info.length = len;
|
|
info.low_limit = max(PAGE_SIZE, mmap_min_addr);
|
|
info.high_limit = current->mm->mmap_base;
|
|
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
|
|
info.align_offset = 0;
|
|
addr = vm_unmapped_area(&info);
|
|
|
|
/*
|
|
* A failed mmap() very likely causes application failure,
|
|
* so fall back to the bottom-up function here. This scenario
|
|
* can happen with large stack limits and large mmap()
|
|
* allocations.
|
|
*/
|
|
if (addr & ~PAGE_MASK) {
|
|
VM_BUG_ON(addr != -ENOMEM);
|
|
info.flags = 0;
|
|
info.low_limit = TASK_UNMAPPED_BASE;
|
|
info.high_limit = TASK_SIZE;
|
|
addr = vm_unmapped_area(&info);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags)
|
|
{
|
|
struct hstate *h = hstate_file(file);
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
|
|
if (len & ~huge_page_mask(h))
|
|
return -EINVAL;
|
|
if (len > TASK_SIZE - mmap_min_addr)
|
|
return -ENOMEM;
|
|
|
|
if (flags & MAP_FIXED) {
|
|
if (prepare_hugepage_range(file, addr, len))
|
|
return -EINVAL;
|
|
goto check_asce_limit;
|
|
}
|
|
|
|
if (addr) {
|
|
addr = ALIGN(addr, huge_page_size(h));
|
|
vma = find_vma(mm, addr);
|
|
if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
|
|
(!vma || addr + len <= vm_start_gap(vma)))
|
|
goto check_asce_limit;
|
|
}
|
|
|
|
if (mm->get_unmapped_area == arch_get_unmapped_area)
|
|
addr = hugetlb_get_unmapped_area_bottomup(file, addr, len,
|
|
pgoff, flags);
|
|
else
|
|
addr = hugetlb_get_unmapped_area_topdown(file, addr, len,
|
|
pgoff, flags);
|
|
if (offset_in_page(addr))
|
|
return addr;
|
|
|
|
check_asce_limit:
|
|
return check_asce_limit(mm, addr, len);
|
|
}
|