forked from Minki/linux
916f562fb2
side. The two main highlights in the core framework are the addition of an bulk clk_get API that handles optional clks and an extra debugfs file that tells the developer about the current parent of a clk. The driver updates are dominated by i.MX in the diffstat, but that is mostly because that SoC has started converting to the clk_hw style of clk registration. The next big update is in the Amlogic meson clk driver that gained some support for audio, cpu, and temperature clks while fixing some PLL issues. Finally, the biggest thing that stands out is the conversion of a large part of the Allwinner sunxi-ng driver to the new clk parent scheme that uses less strings and more pointer comparisons to match clk parents and children up. In general, it looks like we have a lot of little fixes and tweaks here and there to clk data along with the normal addition of a handful of new drivers and a couple new core framework features. Core: - Add a 'clk_parent' file in clk debugfs - Add a clk_bulk_get_optional() API (with devm too) New Drivers: - Support gated clk controller on MIPS based BCM63XX SoCs - Support SiLabs Si5341 and Si5340 chips - Support for CPU clks on Raspberry Pi devices - Audsys clock driver for MediaTek MT8516 SoCs Updates: - Convert a large portion of the Allwinner sunxi-ng driver to new clk parent scheme - Small frequency support for SiLabs Si544 chips - Slow clk support for AT91 SAM9X60 SoCs - Remove dead code in various clk drivers (-Wunused) - Support for Marvell 98DX1135 SoCs - Get duty cycle of generic pwm clks - Improvement in mmc phase calculation and cleanup of some rate defintions - Switch i.MX6 and i.MX7 clock drivers to clk_hw based APIs - Add GPIO, SNVS and GIC clocks for i.MX8 drivers - Mark imx6sx/ul/ull/sll MMDC_P1_IPG and imx8mm DRAM_APB as critical clock - Correct imx7ulp nic1_bus_clk and imx8mm audio_pll2_clk clock setting - Add clks for new Exynos5422 Dynamic Memory Controller driver - Clock definition for Exynos4412 Mali - Add CMM (Color Management Module) clocks on Renesas R-Car H3, M3-N, E3, and D3 - Add TPU (Timer Pulse Unit / PWM) clocks on Renesas RZ/G2M - Support for 32 bit clock IDs in TI's sci-clks for J721e SoCs - TI clock probing done from DT by default instead of firmware - Fix Amlogic Meson mpll fractional part and spread sprectrum issues - Add Amlogic meson8 audio clocks - Add Amlogic g12a temperature sensors clocks - Add Amlogic g12a and g12b cpu clocks - Add TPU (Timer Pulse Unit / PWM) clocks on Renesas R-Car H3, M3-W, and M3-N - Add CMM (Color Management Module) clocks on Renesas R-Car M3-W - Add Clock Domain support on Renesas RZ/N1 -----BEGIN PGP SIGNATURE----- iQJFBAABCAAvFiEE9L57QeeUxqYDyoaDrQKIl8bklSUFAl0uBEERHHNib3lkQGtl cm5lbC5vcmcACgkQrQKIl8bklSWucw/9ELKlfvdxrc8mdIuzt+CpKdNiSG88shXY hF+vnuE6Jhv5hmlbA/DbplPTAnHT/FQF65/GPQMAYy2wYO6CjleNxQyepiVv4h8/ tWoXu5vYZXubtQyMnYTffREzjYFPBNAscLUhXNwJKRno7nT0qKCk62WgOMfaW/KN lP5dKmrL7rdJDUvxHEStrwP515Lg5Wkhj3+XzgbgFUKGuGlvHfwUOEZucT++kqhu Z1vMjPv2ksHQf3r15BsbX/6jMIONEt2Xd6jA3Lm7ebDXJl2hjX4Gq0Kkl5pmkj2w F0V7Tw4XYk6DkSl7HQaOBgQ8KV0Mw2L8Vj6eEDhUwx6wPGlQ5YTKkUCJkjs0mUyb UpO3TuPFN2W0hsTNDzwYpjqcfodDn159XJcduv1/ZpIanUvHgx0uVzQ7iwwYwW+l VR4SipY5AEn9hpief30X7TAUSKsE4do58imYeoGBrq78zdsJaEcDAMX7AcYdXVQ9 ahBS8ME/d1JEBNdRsSW7eTAfu8dZdI08uR8/T37GRG59XyZSjsyVmZ6kHCYrBygF AyLNMsXMCbW1rOoIpWkuGMD86XZy40laLg8T7WWTaq28t1VQ0BaBTGM4/eEexs3p FhZ1M7aH+PsDLrI2IGTBt/4xAMv+dhDS7HnxRlOONbWnLWVqmR+tYzF0aCkqJCmd O2zWCGffeYs= =mK0C -----END PGP SIGNATURE----- Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux Pull clk updates from Stephen Boyd: "This round of clk driver and framework updates is heavy on the driver update side. The two main highlights in the core framework are the addition of an bulk clk_get API that handles optional clks and an extra debugfs file that tells the developer about the current parent of a clk. The driver updates are dominated by i.MX in the diffstat, but that is mostly because that SoC has started converting to the clk_hw style of clk registration. The next big update is in the Amlogic meson clk driver that gained some support for audio, cpu, and temperature clks while fixing some PLL issues. Finally, the biggest thing that stands out is the conversion of a large part of the Allwinner sunxi-ng driver to the new clk parent scheme that uses less strings and more pointer comparisons to match clk parents and children up. In general, it looks like we have a lot of little fixes and tweaks here and there to clk data along with the normal addition of a handful of new drivers and a couple new core framework features. Core: - Add a 'clk_parent' file in clk debugfs - Add a clk_bulk_get_optional() API (with devm too) New Drivers: - Support gated clk controller on MIPS based BCM63XX SoCs - Support SiLabs Si5341 and Si5340 chips - Support for CPU clks on Raspberry Pi devices - Audsys clock driver for MediaTek MT8516 SoCs Updates: - Convert a large portion of the Allwinner sunxi-ng driver to new clk parent scheme - Small frequency support for SiLabs Si544 chips - Slow clk support for AT91 SAM9X60 SoCs - Remove dead code in various clk drivers (-Wunused) - Support for Marvell 98DX1135 SoCs - Get duty cycle of generic pwm clks - Improvement in mmc phase calculation and cleanup of some rate defintions - Switch i.MX6 and i.MX7 clock drivers to clk_hw based APIs - Add GPIO, SNVS and GIC clocks for i.MX8 drivers - Mark imx6sx/ul/ull/sll MMDC_P1_IPG and imx8mm DRAM_APB as critical clock - Correct imx7ulp nic1_bus_clk and imx8mm audio_pll2_clk clock setting - Add clks for new Exynos5422 Dynamic Memory Controller driver - Clock definition for Exynos4412 Mali - Add CMM (Color Management Module) clocks on Renesas R-Car H3, M3-N, E3, and D3 - Add TPU (Timer Pulse Unit / PWM) clocks on Renesas RZ/G2M - Support for 32 bit clock IDs in TI's sci-clks for J721e SoCs - TI clock probing done from DT by default instead of firmware - Fix Amlogic Meson mpll fractional part and spread sprectrum issues - Add Amlogic meson8 audio clocks - Add Amlogic g12a temperature sensors clocks - Add Amlogic g12a and g12b cpu clocks - Add TPU (Timer Pulse Unit / PWM) clocks on Renesas R-Car H3, M3-W, and M3-N - Add CMM (Color Management Module) clocks on Renesas R-Car M3-W - Add Clock Domain support on Renesas RZ/N1" * tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux: (190 commits) clk: consoldiate the __clk_get_hw() declarations clk: sprd: Add check for return value of sprd_clk_regmap_init() clk: lochnagar: Update DT binding doc to include the primary SPDIF MCLK clk: Add Si5341/Si5340 driver dt-bindings: clock: Add silabs,si5341 clk: clk-si544: Implement small frequency change support clk: add BCM63XX gated clock controller driver devicetree: document the BCM63XX gated clock bindings clk: at91: sckc: use dedicated functions to unregister clock clk: at91: sckc: improve error path for sama5d4 sck registration clk: at91: sckc: remove unnecessary line clk: at91: sckc: improve error path for sam9x5 sck register clk: at91: sckc: add support to free slow clock osclillator clk: at91: sckc: add support to free slow rc oscillator clk: at91: sckc: add support to free slow oscillator clk: rockchip: export HDMIPHY clock on rk3228 clk: rockchip: add watchdog pclk on rk3328 clk: rockchip: add clock id for hdmi_phy special clock on rk3228 clk: rockchip: add clock id for watchdog pclk on rk3328 clk: at91: sckc: add support for SAM9X60 ...
233 lines
6.7 KiB
C
233 lines
6.7 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright 2014 Google, Inc
|
|
* Author: Alexandru M Stan <amstan@chromium.org>
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include "clk.h"
|
|
|
|
struct rockchip_mmc_clock {
|
|
struct clk_hw hw;
|
|
void __iomem *reg;
|
|
int id;
|
|
int shift;
|
|
int cached_phase;
|
|
struct notifier_block clk_rate_change_nb;
|
|
};
|
|
|
|
#define to_mmc_clock(_hw) container_of(_hw, struct rockchip_mmc_clock, hw)
|
|
|
|
#define RK3288_MMC_CLKGEN_DIV 2
|
|
|
|
static unsigned long rockchip_mmc_recalc(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
return parent_rate / RK3288_MMC_CLKGEN_DIV;
|
|
}
|
|
|
|
#define ROCKCHIP_MMC_DELAY_SEL BIT(10)
|
|
#define ROCKCHIP_MMC_DEGREE_MASK 0x3
|
|
#define ROCKCHIP_MMC_DELAYNUM_OFFSET 2
|
|
#define ROCKCHIP_MMC_DELAYNUM_MASK (0xff << ROCKCHIP_MMC_DELAYNUM_OFFSET)
|
|
|
|
#define PSECS_PER_SEC 1000000000000LL
|
|
|
|
/*
|
|
* Each fine delay is between 44ps-77ps. Assume each fine delay is 60ps to
|
|
* simplify calculations. So 45degs could be anywhere between 33deg and 57.8deg.
|
|
*/
|
|
#define ROCKCHIP_MMC_DELAY_ELEMENT_PSEC 60
|
|
|
|
static int rockchip_mmc_get_phase(struct clk_hw *hw)
|
|
{
|
|
struct rockchip_mmc_clock *mmc_clock = to_mmc_clock(hw);
|
|
unsigned long rate = clk_hw_get_rate(hw);
|
|
u32 raw_value;
|
|
u16 degrees;
|
|
u32 delay_num = 0;
|
|
|
|
/* See the comment for rockchip_mmc_set_phase below */
|
|
if (!rate)
|
|
return -EINVAL;
|
|
|
|
raw_value = readl(mmc_clock->reg) >> (mmc_clock->shift);
|
|
|
|
degrees = (raw_value & ROCKCHIP_MMC_DEGREE_MASK) * 90;
|
|
|
|
if (raw_value & ROCKCHIP_MMC_DELAY_SEL) {
|
|
/* degrees/delaynum * 1000000 */
|
|
unsigned long factor = (ROCKCHIP_MMC_DELAY_ELEMENT_PSEC / 10) *
|
|
36 * (rate / 10000);
|
|
|
|
delay_num = (raw_value & ROCKCHIP_MMC_DELAYNUM_MASK);
|
|
delay_num >>= ROCKCHIP_MMC_DELAYNUM_OFFSET;
|
|
degrees += DIV_ROUND_CLOSEST(delay_num * factor, 1000000);
|
|
}
|
|
|
|
return degrees % 360;
|
|
}
|
|
|
|
static int rockchip_mmc_set_phase(struct clk_hw *hw, int degrees)
|
|
{
|
|
struct rockchip_mmc_clock *mmc_clock = to_mmc_clock(hw);
|
|
unsigned long rate = clk_hw_get_rate(hw);
|
|
u8 nineties, remainder;
|
|
u8 delay_num;
|
|
u32 raw_value;
|
|
u32 delay;
|
|
|
|
/*
|
|
* The below calculation is based on the output clock from
|
|
* MMC host to the card, which expects the phase clock inherits
|
|
* the clock rate from its parent, namely the output clock
|
|
* provider of MMC host. However, things may go wrong if
|
|
* (1) It is orphan.
|
|
* (2) It is assigned to the wrong parent.
|
|
*
|
|
* This check help debug the case (1), which seems to be the
|
|
* most likely problem we often face and which makes it difficult
|
|
* for people to debug unstable mmc tuning results.
|
|
*/
|
|
if (!rate) {
|
|
pr_err("%s: invalid clk rate\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nineties = degrees / 90;
|
|
remainder = (degrees % 90);
|
|
|
|
/*
|
|
* Due to the inexact nature of the "fine" delay, we might
|
|
* actually go non-monotonic. We don't go _too_ monotonic
|
|
* though, so we should be OK. Here are options of how we may
|
|
* work:
|
|
*
|
|
* Ideally we end up with:
|
|
* 1.0, 2.0, ..., 69.0, 70.0, ..., 89.0, 90.0
|
|
*
|
|
* On one extreme (if delay is actually 44ps):
|
|
* .73, 1.5, ..., 50.6, 51.3, ..., 65.3, 90.0
|
|
* The other (if delay is actually 77ps):
|
|
* 1.3, 2.6, ..., 88.6. 89.8, ..., 114.0, 90
|
|
*
|
|
* It's possible we might make a delay that is up to 25
|
|
* degrees off from what we think we're making. That's OK
|
|
* though because we should be REALLY far from any bad range.
|
|
*/
|
|
|
|
/*
|
|
* Convert to delay; do a little extra work to make sure we
|
|
* don't overflow 32-bit / 64-bit numbers.
|
|
*/
|
|
delay = 10000000; /* PSECS_PER_SEC / 10000 / 10 */
|
|
delay *= remainder;
|
|
delay = DIV_ROUND_CLOSEST(delay,
|
|
(rate / 1000) * 36 *
|
|
(ROCKCHIP_MMC_DELAY_ELEMENT_PSEC / 10));
|
|
|
|
delay_num = (u8) min_t(u32, delay, 255);
|
|
|
|
raw_value = delay_num ? ROCKCHIP_MMC_DELAY_SEL : 0;
|
|
raw_value |= delay_num << ROCKCHIP_MMC_DELAYNUM_OFFSET;
|
|
raw_value |= nineties;
|
|
writel(HIWORD_UPDATE(raw_value, 0x07ff, mmc_clock->shift),
|
|
mmc_clock->reg);
|
|
|
|
pr_debug("%s->set_phase(%d) delay_nums=%u reg[0x%p]=0x%03x actual_degrees=%d\n",
|
|
clk_hw_get_name(hw), degrees, delay_num,
|
|
mmc_clock->reg, raw_value>>(mmc_clock->shift),
|
|
rockchip_mmc_get_phase(hw)
|
|
);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct clk_ops rockchip_mmc_clk_ops = {
|
|
.recalc_rate = rockchip_mmc_recalc,
|
|
.get_phase = rockchip_mmc_get_phase,
|
|
.set_phase = rockchip_mmc_set_phase,
|
|
};
|
|
|
|
#define to_rockchip_mmc_clock(x) \
|
|
container_of(x, struct rockchip_mmc_clock, clk_rate_change_nb)
|
|
static int rockchip_mmc_clk_rate_notify(struct notifier_block *nb,
|
|
unsigned long event, void *data)
|
|
{
|
|
struct rockchip_mmc_clock *mmc_clock = to_rockchip_mmc_clock(nb);
|
|
struct clk_notifier_data *ndata = data;
|
|
|
|
/*
|
|
* rockchip_mmc_clk is mostly used by mmc controllers to sample
|
|
* the intput data, which expects the fixed phase after the tuning
|
|
* process. However if the clock rate is changed, the phase is stale
|
|
* and may break the data sampling. So here we try to restore the phase
|
|
* for that case, except that
|
|
* (1) cached_phase is invaild since we inevitably cached it when the
|
|
* clock provider be reparented from orphan to its real parent in the
|
|
* first place. Otherwise we may mess up the initialization of MMC cards
|
|
* since we only set the default sample phase and drive phase later on.
|
|
* (2) the new coming rate is higher than the older one since mmc driver
|
|
* set the max-frequency to match the boards' ability but we can't go
|
|
* over the heads of that, otherwise the tests smoke out the issue.
|
|
*/
|
|
if (ndata->old_rate <= ndata->new_rate)
|
|
return NOTIFY_DONE;
|
|
|
|
if (event == PRE_RATE_CHANGE)
|
|
mmc_clock->cached_phase =
|
|
rockchip_mmc_get_phase(&mmc_clock->hw);
|
|
else if (mmc_clock->cached_phase != -EINVAL &&
|
|
event == POST_RATE_CHANGE)
|
|
rockchip_mmc_set_phase(&mmc_clock->hw, mmc_clock->cached_phase);
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
struct clk *rockchip_clk_register_mmc(const char *name,
|
|
const char *const *parent_names, u8 num_parents,
|
|
void __iomem *reg, int shift)
|
|
{
|
|
struct clk_init_data init;
|
|
struct rockchip_mmc_clock *mmc_clock;
|
|
struct clk *clk;
|
|
int ret;
|
|
|
|
mmc_clock = kmalloc(sizeof(*mmc_clock), GFP_KERNEL);
|
|
if (!mmc_clock)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
init.name = name;
|
|
init.flags = 0;
|
|
init.num_parents = num_parents;
|
|
init.parent_names = parent_names;
|
|
init.ops = &rockchip_mmc_clk_ops;
|
|
|
|
mmc_clock->hw.init = &init;
|
|
mmc_clock->reg = reg;
|
|
mmc_clock->shift = shift;
|
|
|
|
clk = clk_register(NULL, &mmc_clock->hw);
|
|
if (IS_ERR(clk)) {
|
|
ret = PTR_ERR(clk);
|
|
goto err_register;
|
|
}
|
|
|
|
mmc_clock->clk_rate_change_nb.notifier_call =
|
|
&rockchip_mmc_clk_rate_notify;
|
|
ret = clk_notifier_register(clk, &mmc_clock->clk_rate_change_nb);
|
|
if (ret)
|
|
goto err_notifier;
|
|
|
|
return clk;
|
|
err_notifier:
|
|
clk_unregister(clk);
|
|
err_register:
|
|
kfree(mmc_clock);
|
|
return ERR_PTR(ret);
|
|
}
|