linux/drivers/media/platform/marvell-ccic/mcam-core.c
Hans Verkuil 5f3cc487e0 [media] mcam-core: use v4l2_s_ctrl instead of the s_ctrl op
This op is deprecated and should not be used anymore.

Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2016-07-12 11:13:30 -03:00

1912 lines
49 KiB
C

/*
* The Marvell camera core. This device appears in a number of settings,
* so it needs platform-specific support outside of the core.
*
* Copyright 2011 Jonathan Corbet corbet@lwn.net
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/list.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/vmalloc.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/videodev2.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-event.h>
#include <media/i2c/ov7670.h>
#include <media/videobuf2-vmalloc.h>
#include <media/videobuf2-dma-contig.h>
#include <media/videobuf2-dma-sg.h>
#include "mcam-core.h"
#ifdef MCAM_MODE_VMALLOC
/*
* Internal DMA buffer management. Since the controller cannot do S/G I/O,
* we must have physically contiguous buffers to bring frames into.
* These parameters control how many buffers we use, whether we
* allocate them at load time (better chance of success, but nails down
* memory) or when somebody tries to use the camera (riskier), and,
* for load-time allocation, how big they should be.
*
* The controller can cycle through three buffers. We could use
* more by flipping pointers around, but it probably makes little
* sense.
*/
static bool alloc_bufs_at_read;
module_param(alloc_bufs_at_read, bool, 0444);
MODULE_PARM_DESC(alloc_bufs_at_read,
"Non-zero value causes DMA buffers to be allocated when the "
"video capture device is read, rather than at module load "
"time. This saves memory, but decreases the chances of "
"successfully getting those buffers. This parameter is "
"only used in the vmalloc buffer mode");
static int n_dma_bufs = 3;
module_param(n_dma_bufs, uint, 0644);
MODULE_PARM_DESC(n_dma_bufs,
"The number of DMA buffers to allocate. Can be either two "
"(saves memory, makes timing tighter) or three.");
static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
module_param(dma_buf_size, uint, 0444);
MODULE_PARM_DESC(dma_buf_size,
"The size of the allocated DMA buffers. If actual operating "
"parameters require larger buffers, an attempt to reallocate "
"will be made.");
#else /* MCAM_MODE_VMALLOC */
static const bool alloc_bufs_at_read;
static const int n_dma_bufs = 3; /* Used by S/G_PARM */
#endif /* MCAM_MODE_VMALLOC */
static bool flip;
module_param(flip, bool, 0444);
MODULE_PARM_DESC(flip,
"If set, the sensor will be instructed to flip the image "
"vertically.");
static int buffer_mode = -1;
module_param(buffer_mode, int, 0444);
MODULE_PARM_DESC(buffer_mode,
"Set the buffer mode to be used; default is to go with what "
"the platform driver asks for. Set to 0 for vmalloc, 1 for "
"DMA contiguous.");
/*
* Status flags. Always manipulated with bit operations.
*/
#define CF_BUF0_VALID 0 /* Buffers valid - first three */
#define CF_BUF1_VALID 1
#define CF_BUF2_VALID 2
#define CF_DMA_ACTIVE 3 /* A frame is incoming */
#define CF_CONFIG_NEEDED 4 /* Must configure hardware */
#define CF_SINGLE_BUFFER 5 /* Running with a single buffer */
#define CF_SG_RESTART 6 /* SG restart needed */
#define CF_FRAME_SOF0 7 /* Frame 0 started */
#define CF_FRAME_SOF1 8
#define CF_FRAME_SOF2 9
#define sensor_call(cam, o, f, args...) \
v4l2_subdev_call(cam->sensor, o, f, ##args)
static struct mcam_format_struct {
__u8 *desc;
__u32 pixelformat;
int bpp; /* Bytes per pixel */
bool planar;
u32 mbus_code;
} mcam_formats[] = {
{
.desc = "YUYV 4:2:2",
.pixelformat = V4L2_PIX_FMT_YUYV,
.mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
.bpp = 2,
.planar = false,
},
{
.desc = "YVYU 4:2:2",
.pixelformat = V4L2_PIX_FMT_YVYU,
.mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
.bpp = 2,
.planar = false,
},
{
.desc = "YUV 4:2:0 PLANAR",
.pixelformat = V4L2_PIX_FMT_YUV420,
.mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
.bpp = 1,
.planar = true,
},
{
.desc = "YVU 4:2:0 PLANAR",
.pixelformat = V4L2_PIX_FMT_YVU420,
.mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
.bpp = 1,
.planar = true,
},
{
.desc = "XRGB 444",
.pixelformat = V4L2_PIX_FMT_XRGB444,
.mbus_code = MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE,
.bpp = 2,
.planar = false,
},
{
.desc = "RGB 565",
.pixelformat = V4L2_PIX_FMT_RGB565,
.mbus_code = MEDIA_BUS_FMT_RGB565_2X8_LE,
.bpp = 2,
.planar = false,
},
{
.desc = "Raw RGB Bayer",
.pixelformat = V4L2_PIX_FMT_SBGGR8,
.mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8,
.bpp = 1,
.planar = false,
},
};
#define N_MCAM_FMTS ARRAY_SIZE(mcam_formats)
static struct mcam_format_struct *mcam_find_format(u32 pixelformat)
{
unsigned i;
for (i = 0; i < N_MCAM_FMTS; i++)
if (mcam_formats[i].pixelformat == pixelformat)
return mcam_formats + i;
/* Not found? Then return the first format. */
return mcam_formats;
}
/*
* The default format we use until somebody says otherwise.
*/
static const struct v4l2_pix_format mcam_def_pix_format = {
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.pixelformat = V4L2_PIX_FMT_YUYV,
.field = V4L2_FIELD_NONE,
.bytesperline = VGA_WIDTH*2,
.sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
.colorspace = V4L2_COLORSPACE_SRGB,
};
static const u32 mcam_def_mbus_code = MEDIA_BUS_FMT_YUYV8_2X8;
/*
* The two-word DMA descriptor format used by the Armada 610 and like. There
* Is a three-word format as well (set C1_DESC_3WORD) where the third
* word is a pointer to the next descriptor, but we don't use it. Two-word
* descriptors have to be contiguous in memory.
*/
struct mcam_dma_desc {
u32 dma_addr;
u32 segment_len;
};
/*
* Our buffer type for working with videobuf2. Note that the vb2
* developers have decreed that struct vb2_v4l2_buffer must be at the
* beginning of this structure.
*/
struct mcam_vb_buffer {
struct vb2_v4l2_buffer vb_buf;
struct list_head queue;
struct mcam_dma_desc *dma_desc; /* Descriptor virtual address */
dma_addr_t dma_desc_pa; /* Descriptor physical address */
int dma_desc_nent; /* Number of mapped descriptors */
};
static inline struct mcam_vb_buffer *vb_to_mvb(struct vb2_v4l2_buffer *vb)
{
return container_of(vb, struct mcam_vb_buffer, vb_buf);
}
/*
* Hand a completed buffer back to user space.
*/
static void mcam_buffer_done(struct mcam_camera *cam, int frame,
struct vb2_v4l2_buffer *vbuf)
{
vbuf->vb2_buf.planes[0].bytesused = cam->pix_format.sizeimage;
vbuf->sequence = cam->buf_seq[frame];
vbuf->field = V4L2_FIELD_NONE;
vbuf->vb2_buf.timestamp = ktime_get_ns();
vb2_set_plane_payload(&vbuf->vb2_buf, 0, cam->pix_format.sizeimage);
vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
}
/*
* Debugging and related.
*/
#define cam_err(cam, fmt, arg...) \
dev_err((cam)->dev, fmt, ##arg);
#define cam_warn(cam, fmt, arg...) \
dev_warn((cam)->dev, fmt, ##arg);
#define cam_dbg(cam, fmt, arg...) \
dev_dbg((cam)->dev, fmt, ##arg);
/*
* Flag manipulation helpers
*/
static void mcam_reset_buffers(struct mcam_camera *cam)
{
int i;
cam->next_buf = -1;
for (i = 0; i < cam->nbufs; i++) {
clear_bit(i, &cam->flags);
clear_bit(CF_FRAME_SOF0 + i, &cam->flags);
}
}
static inline int mcam_needs_config(struct mcam_camera *cam)
{
return test_bit(CF_CONFIG_NEEDED, &cam->flags);
}
static void mcam_set_config_needed(struct mcam_camera *cam, int needed)
{
if (needed)
set_bit(CF_CONFIG_NEEDED, &cam->flags);
else
clear_bit(CF_CONFIG_NEEDED, &cam->flags);
}
/* ------------------------------------------------------------------- */
/*
* Make the controller start grabbing images. Everything must
* be set up before doing this.
*/
static void mcam_ctlr_start(struct mcam_camera *cam)
{
/* set_bit performs a read, so no other barrier should be
needed here */
mcam_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
}
static void mcam_ctlr_stop(struct mcam_camera *cam)
{
mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
}
static void mcam_enable_mipi(struct mcam_camera *mcam)
{
/* Using MIPI mode and enable MIPI */
cam_dbg(mcam, "camera: DPHY3=0x%x, DPHY5=0x%x, DPHY6=0x%x\n",
mcam->dphy[0], mcam->dphy[1], mcam->dphy[2]);
mcam_reg_write(mcam, REG_CSI2_DPHY3, mcam->dphy[0]);
mcam_reg_write(mcam, REG_CSI2_DPHY5, mcam->dphy[1]);
mcam_reg_write(mcam, REG_CSI2_DPHY6, mcam->dphy[2]);
if (!mcam->mipi_enabled) {
if (mcam->lane > 4 || mcam->lane <= 0) {
cam_warn(mcam, "lane number error\n");
mcam->lane = 1; /* set the default value */
}
/*
* 0x41 actives 1 lane
* 0x43 actives 2 lanes
* 0x45 actives 3 lanes (never happen)
* 0x47 actives 4 lanes
*/
mcam_reg_write(mcam, REG_CSI2_CTRL0,
CSI2_C0_MIPI_EN | CSI2_C0_ACT_LANE(mcam->lane));
mcam_reg_write(mcam, REG_CLKCTRL,
(mcam->mclk_src << 29) | mcam->mclk_div);
mcam->mipi_enabled = true;
}
}
static void mcam_disable_mipi(struct mcam_camera *mcam)
{
/* Using Parallel mode or disable MIPI */
mcam_reg_write(mcam, REG_CSI2_CTRL0, 0x0);
mcam_reg_write(mcam, REG_CSI2_DPHY3, 0x0);
mcam_reg_write(mcam, REG_CSI2_DPHY5, 0x0);
mcam_reg_write(mcam, REG_CSI2_DPHY6, 0x0);
mcam->mipi_enabled = false;
}
static bool mcam_fmt_is_planar(__u32 pfmt)
{
struct mcam_format_struct *f;
f = mcam_find_format(pfmt);
return f->planar;
}
static void mcam_write_yuv_bases(struct mcam_camera *cam,
unsigned frame, dma_addr_t base)
{
struct v4l2_pix_format *fmt = &cam->pix_format;
u32 pixel_count = fmt->width * fmt->height;
dma_addr_t y, u = 0, v = 0;
y = base;
switch (fmt->pixelformat) {
case V4L2_PIX_FMT_YUV420:
u = y + pixel_count;
v = u + pixel_count / 4;
break;
case V4L2_PIX_FMT_YVU420:
v = y + pixel_count;
u = v + pixel_count / 4;
break;
default:
break;
}
mcam_reg_write(cam, REG_Y0BAR + frame * 4, y);
if (mcam_fmt_is_planar(fmt->pixelformat)) {
mcam_reg_write(cam, REG_U0BAR + frame * 4, u);
mcam_reg_write(cam, REG_V0BAR + frame * 4, v);
}
}
/* ------------------------------------------------------------------- */
#ifdef MCAM_MODE_VMALLOC
/*
* Code specific to the vmalloc buffer mode.
*/
/*
* Allocate in-kernel DMA buffers for vmalloc mode.
*/
static int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
{
int i;
mcam_set_config_needed(cam, 1);
if (loadtime)
cam->dma_buf_size = dma_buf_size;
else
cam->dma_buf_size = cam->pix_format.sizeimage;
if (n_dma_bufs > 3)
n_dma_bufs = 3;
cam->nbufs = 0;
for (i = 0; i < n_dma_bufs; i++) {
cam->dma_bufs[i] = dma_alloc_coherent(cam->dev,
cam->dma_buf_size, cam->dma_handles + i,
GFP_KERNEL);
if (cam->dma_bufs[i] == NULL) {
cam_warn(cam, "Failed to allocate DMA buffer\n");
break;
}
(cam->nbufs)++;
}
switch (cam->nbufs) {
case 1:
dma_free_coherent(cam->dev, cam->dma_buf_size,
cam->dma_bufs[0], cam->dma_handles[0]);
cam->nbufs = 0;
case 0:
cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
return -ENOMEM;
case 2:
if (n_dma_bufs > 2)
cam_warn(cam, "Will limp along with only 2 buffers\n");
break;
}
return 0;
}
static void mcam_free_dma_bufs(struct mcam_camera *cam)
{
int i;
for (i = 0; i < cam->nbufs; i++) {
dma_free_coherent(cam->dev, cam->dma_buf_size,
cam->dma_bufs[i], cam->dma_handles[i]);
cam->dma_bufs[i] = NULL;
}
cam->nbufs = 0;
}
/*
* Set up DMA buffers when operating in vmalloc mode
*/
static void mcam_ctlr_dma_vmalloc(struct mcam_camera *cam)
{
/*
* Store the first two YUV buffers. Then either
* set the third if it exists, or tell the controller
* to just use two.
*/
mcam_write_yuv_bases(cam, 0, cam->dma_handles[0]);
mcam_write_yuv_bases(cam, 1, cam->dma_handles[1]);
if (cam->nbufs > 2) {
mcam_write_yuv_bases(cam, 2, cam->dma_handles[2]);
mcam_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
} else
mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
if (cam->chip_id == MCAM_CAFE)
mcam_reg_write(cam, REG_UBAR, 0); /* 32 bits only */
}
/*
* Copy data out to user space in the vmalloc case
*/
static void mcam_frame_tasklet(unsigned long data)
{
struct mcam_camera *cam = (struct mcam_camera *) data;
int i;
unsigned long flags;
struct mcam_vb_buffer *buf;
spin_lock_irqsave(&cam->dev_lock, flags);
for (i = 0; i < cam->nbufs; i++) {
int bufno = cam->next_buf;
if (cam->state != S_STREAMING || bufno < 0)
break; /* I/O got stopped */
if (++(cam->next_buf) >= cam->nbufs)
cam->next_buf = 0;
if (!test_bit(bufno, &cam->flags))
continue;
if (list_empty(&cam->buffers)) {
cam->frame_state.singles++;
break; /* Leave it valid, hope for better later */
}
cam->frame_state.delivered++;
clear_bit(bufno, &cam->flags);
buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
queue);
list_del_init(&buf->queue);
/*
* Drop the lock during the big copy. This *should* be safe...
*/
spin_unlock_irqrestore(&cam->dev_lock, flags);
memcpy(vb2_plane_vaddr(&buf->vb_buf.vb2_buf, 0),
cam->dma_bufs[bufno],
cam->pix_format.sizeimage);
mcam_buffer_done(cam, bufno, &buf->vb_buf);
spin_lock_irqsave(&cam->dev_lock, flags);
}
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
/*
* Make sure our allocated buffers are up to the task.
*/
static int mcam_check_dma_buffers(struct mcam_camera *cam)
{
if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
mcam_free_dma_bufs(cam);
if (cam->nbufs == 0)
return mcam_alloc_dma_bufs(cam, 0);
return 0;
}
static void mcam_vmalloc_done(struct mcam_camera *cam, int frame)
{
tasklet_schedule(&cam->s_tasklet);
}
#else /* MCAM_MODE_VMALLOC */
static inline int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
{
return 0;
}
static inline void mcam_free_dma_bufs(struct mcam_camera *cam)
{
return;
}
static inline int mcam_check_dma_buffers(struct mcam_camera *cam)
{
return 0;
}
#endif /* MCAM_MODE_VMALLOC */
#ifdef MCAM_MODE_DMA_CONTIG
/* ---------------------------------------------------------------------- */
/*
* DMA-contiguous code.
*/
/*
* Set up a contiguous buffer for the given frame. Here also is where
* the underrun strategy is set: if there is no buffer available, reuse
* the buffer from the other BAR and set the CF_SINGLE_BUFFER flag to
* keep the interrupt handler from giving that buffer back to user
* space. In this way, we always have a buffer to DMA to and don't
* have to try to play games stopping and restarting the controller.
*/
static void mcam_set_contig_buffer(struct mcam_camera *cam, int frame)
{
struct mcam_vb_buffer *buf;
dma_addr_t dma_handle;
struct vb2_v4l2_buffer *vb;
/*
* If there are no available buffers, go into single mode
*/
if (list_empty(&cam->buffers)) {
buf = cam->vb_bufs[frame ^ 0x1];
set_bit(CF_SINGLE_BUFFER, &cam->flags);
cam->frame_state.singles++;
} else {
/*
* OK, we have a buffer we can use.
*/
buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
queue);
list_del_init(&buf->queue);
clear_bit(CF_SINGLE_BUFFER, &cam->flags);
}
cam->vb_bufs[frame] = buf;
vb = &buf->vb_buf;
dma_handle = vb2_dma_contig_plane_dma_addr(&vb->vb2_buf, 0);
mcam_write_yuv_bases(cam, frame, dma_handle);
}
/*
* Initial B_DMA_contig setup.
*/
static void mcam_ctlr_dma_contig(struct mcam_camera *cam)
{
mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
cam->nbufs = 2;
mcam_set_contig_buffer(cam, 0);
mcam_set_contig_buffer(cam, 1);
}
/*
* Frame completion handling.
*/
static void mcam_dma_contig_done(struct mcam_camera *cam, int frame)
{
struct mcam_vb_buffer *buf = cam->vb_bufs[frame];
if (!test_bit(CF_SINGLE_BUFFER, &cam->flags)) {
cam->frame_state.delivered++;
cam->vb_bufs[frame] = NULL;
mcam_buffer_done(cam, frame, &buf->vb_buf);
}
mcam_set_contig_buffer(cam, frame);
}
#endif /* MCAM_MODE_DMA_CONTIG */
#ifdef MCAM_MODE_DMA_SG
/* ---------------------------------------------------------------------- */
/*
* Scatter/gather-specific code.
*/
/*
* Set up the next buffer for S/G I/O; caller should be sure that
* the controller is stopped and a buffer is available.
*/
static void mcam_sg_next_buffer(struct mcam_camera *cam)
{
struct mcam_vb_buffer *buf;
buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer, queue);
list_del_init(&buf->queue);
/*
* Very Bad Not Good Things happen if you don't clear
* C1_DESC_ENA before making any descriptor changes.
*/
mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_ENA);
mcam_reg_write(cam, REG_DMA_DESC_Y, buf->dma_desc_pa);
mcam_reg_write(cam, REG_DESC_LEN_Y,
buf->dma_desc_nent*sizeof(struct mcam_dma_desc));
mcam_reg_write(cam, REG_DESC_LEN_U, 0);
mcam_reg_write(cam, REG_DESC_LEN_V, 0);
mcam_reg_set_bit(cam, REG_CTRL1, C1_DESC_ENA);
cam->vb_bufs[0] = buf;
}
/*
* Initial B_DMA_sg setup
*/
static void mcam_ctlr_dma_sg(struct mcam_camera *cam)
{
/*
* The list-empty condition can hit us at resume time
* if the buffer list was empty when the system was suspended.
*/
if (list_empty(&cam->buffers)) {
set_bit(CF_SG_RESTART, &cam->flags);
return;
}
mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_3WORD);
mcam_sg_next_buffer(cam);
cam->nbufs = 3;
}
/*
* Frame completion with S/G is trickier. We can't muck with
* a descriptor chain on the fly, since the controller buffers it
* internally. So we have to actually stop and restart; Marvell
* says this is the way to do it.
*
* Of course, stopping is easier said than done; experience shows
* that the controller can start a frame *after* C0_ENABLE has been
* cleared. So when running in S/G mode, the controller is "stopped"
* on receipt of the start-of-frame interrupt. That means we can
* safely change the DMA descriptor array here and restart things
* (assuming there's another buffer waiting to go).
*/
static void mcam_dma_sg_done(struct mcam_camera *cam, int frame)
{
struct mcam_vb_buffer *buf = cam->vb_bufs[0];
/*
* If we're no longer supposed to be streaming, don't do anything.
*/
if (cam->state != S_STREAMING)
return;
/*
* If we have another buffer available, put it in and
* restart the engine.
*/
if (!list_empty(&cam->buffers)) {
mcam_sg_next_buffer(cam);
mcam_ctlr_start(cam);
/*
* Otherwise set CF_SG_RESTART and the controller will
* be restarted once another buffer shows up.
*/
} else {
set_bit(CF_SG_RESTART, &cam->flags);
cam->frame_state.singles++;
cam->vb_bufs[0] = NULL;
}
/*
* Now we can give the completed frame back to user space.
*/
cam->frame_state.delivered++;
mcam_buffer_done(cam, frame, &buf->vb_buf);
}
/*
* Scatter/gather mode requires stopping the controller between
* frames so we can put in a new DMA descriptor array. If no new
* buffer exists at frame completion, the controller is left stopped;
* this function is charged with gettig things going again.
*/
static void mcam_sg_restart(struct mcam_camera *cam)
{
mcam_ctlr_dma_sg(cam);
mcam_ctlr_start(cam);
clear_bit(CF_SG_RESTART, &cam->flags);
}
#else /* MCAM_MODE_DMA_SG */
static inline void mcam_sg_restart(struct mcam_camera *cam)
{
return;
}
#endif /* MCAM_MODE_DMA_SG */
/* ---------------------------------------------------------------------- */
/*
* Buffer-mode-independent controller code.
*/
/*
* Image format setup
*/
static void mcam_ctlr_image(struct mcam_camera *cam)
{
struct v4l2_pix_format *fmt = &cam->pix_format;
u32 widthy = 0, widthuv = 0, imgsz_h, imgsz_w;
cam_dbg(cam, "camera: bytesperline = %d; height = %d\n",
fmt->bytesperline, fmt->sizeimage / fmt->bytesperline);
imgsz_h = (fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK;
imgsz_w = (fmt->width * 2) & IMGSZ_H_MASK;
switch (fmt->pixelformat) {
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_YVYU:
widthy = fmt->width * 2;
widthuv = 0;
break;
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
widthy = fmt->width;
widthuv = fmt->width / 2;
break;
default:
widthy = fmt->bytesperline;
widthuv = 0;
break;
}
mcam_reg_write_mask(cam, REG_IMGPITCH, widthuv << 16 | widthy,
IMGP_YP_MASK | IMGP_UVP_MASK);
mcam_reg_write(cam, REG_IMGSIZE, imgsz_h | imgsz_w);
mcam_reg_write(cam, REG_IMGOFFSET, 0x0);
/*
* Tell the controller about the image format we are using.
*/
switch (fmt->pixelformat) {
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
mcam_reg_write_mask(cam, REG_CTRL0,
C0_DF_YUV | C0_YUV_420PL | C0_YUVE_VYUY, C0_DF_MASK);
break;
case V4L2_PIX_FMT_YUYV:
mcam_reg_write_mask(cam, REG_CTRL0,
C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_NOSWAP, C0_DF_MASK);
break;
case V4L2_PIX_FMT_YVYU:
mcam_reg_write_mask(cam, REG_CTRL0,
C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_SWAP24, C0_DF_MASK);
break;
case V4L2_PIX_FMT_XRGB444:
mcam_reg_write_mask(cam, REG_CTRL0,
C0_DF_RGB | C0_RGBF_444 | C0_RGB4_XBGR, C0_DF_MASK);
break;
case V4L2_PIX_FMT_RGB565:
mcam_reg_write_mask(cam, REG_CTRL0,
C0_DF_RGB | C0_RGBF_565 | C0_RGB5_BGGR, C0_DF_MASK);
break;
case V4L2_PIX_FMT_SBGGR8:
mcam_reg_write_mask(cam, REG_CTRL0,
C0_DF_RGB | C0_RGB5_GRBG, C0_DF_MASK);
break;
default:
cam_err(cam, "camera: unknown format: %#x\n", fmt->pixelformat);
break;
}
/*
* Make sure it knows we want to use hsync/vsync.
*/
mcam_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC, C0_SIFM_MASK);
/*
* This field controls the generation of EOF(DVP only)
*/
if (cam->bus_type != V4L2_MBUS_CSI2)
mcam_reg_set_bit(cam, REG_CTRL0,
C0_EOF_VSYNC | C0_VEDGE_CTRL);
}
/*
* Configure the controller for operation; caller holds the
* device mutex.
*/
static int mcam_ctlr_configure(struct mcam_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
clear_bit(CF_SG_RESTART, &cam->flags);
cam->dma_setup(cam);
mcam_ctlr_image(cam);
mcam_set_config_needed(cam, 0);
spin_unlock_irqrestore(&cam->dev_lock, flags);
return 0;
}
static void mcam_ctlr_irq_enable(struct mcam_camera *cam)
{
/*
* Clear any pending interrupts, since we do not
* expect to have I/O active prior to enabling.
*/
mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
mcam_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
}
static void mcam_ctlr_irq_disable(struct mcam_camera *cam)
{
mcam_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
}
static void mcam_ctlr_init(struct mcam_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
/*
* Make sure it's not powered down.
*/
mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
/*
* Turn off the enable bit. It sure should be off anyway,
* but it's good to be sure.
*/
mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
/*
* Clock the sensor appropriately. Controller clock should
* be 48MHz, sensor "typical" value is half that.
*/
mcam_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
/*
* Stop the controller, and don't return until we're really sure that no
* further DMA is going on.
*/
static void mcam_ctlr_stop_dma(struct mcam_camera *cam)
{
unsigned long flags;
/*
* Theory: stop the camera controller (whether it is operating
* or not). Delay briefly just in case we race with the SOF
* interrupt, then wait until no DMA is active.
*/
spin_lock_irqsave(&cam->dev_lock, flags);
clear_bit(CF_SG_RESTART, &cam->flags);
mcam_ctlr_stop(cam);
cam->state = S_IDLE;
spin_unlock_irqrestore(&cam->dev_lock, flags);
/*
* This is a brutally long sleep, but experience shows that
* it can take the controller a while to get the message that
* it needs to stop grabbing frames. In particular, we can
* sometimes (on mmp) get a frame at the end WITHOUT the
* start-of-frame indication.
*/
msleep(150);
if (test_bit(CF_DMA_ACTIVE, &cam->flags))
cam_err(cam, "Timeout waiting for DMA to end\n");
/* This would be bad news - what now? */
spin_lock_irqsave(&cam->dev_lock, flags);
mcam_ctlr_irq_disable(cam);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
/*
* Power up and down.
*/
static int mcam_ctlr_power_up(struct mcam_camera *cam)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&cam->dev_lock, flags);
ret = cam->plat_power_up(cam);
if (ret) {
spin_unlock_irqrestore(&cam->dev_lock, flags);
return ret;
}
mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
spin_unlock_irqrestore(&cam->dev_lock, flags);
msleep(5); /* Just to be sure */
return 0;
}
static void mcam_ctlr_power_down(struct mcam_camera *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->dev_lock, flags);
/*
* School of hard knocks department: be sure we do any register
* twiddling on the controller *before* calling the platform
* power down routine.
*/
mcam_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
cam->plat_power_down(cam);
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
/* -------------------------------------------------------------------- */
/*
* Communications with the sensor.
*/
static int __mcam_cam_reset(struct mcam_camera *cam)
{
return sensor_call(cam, core, reset, 0);
}
/*
* We have found the sensor on the i2c. Let's try to have a
* conversation.
*/
static int mcam_cam_init(struct mcam_camera *cam)
{
int ret;
if (cam->state != S_NOTREADY)
cam_warn(cam, "Cam init with device in funky state %d",
cam->state);
ret = __mcam_cam_reset(cam);
/* Get/set parameters? */
cam->state = S_IDLE;
mcam_ctlr_power_down(cam);
return ret;
}
/*
* Configure the sensor to match the parameters we have. Caller should
* hold s_mutex
*/
static int mcam_cam_set_flip(struct mcam_camera *cam)
{
struct v4l2_control ctrl;
memset(&ctrl, 0, sizeof(ctrl));
ctrl.id = V4L2_CID_VFLIP;
ctrl.value = flip;
return v4l2_s_ctrl(NULL, cam->sensor->ctrl_handler, &ctrl);
}
static int mcam_cam_configure(struct mcam_camera *cam)
{
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
v4l2_fill_mbus_format(&format.format, &cam->pix_format, cam->mbus_code);
ret = sensor_call(cam, core, init, 0);
if (ret == 0)
ret = sensor_call(cam, pad, set_fmt, NULL, &format);
/*
* OV7670 does weird things if flip is set *before* format...
*/
ret += mcam_cam_set_flip(cam);
return ret;
}
/*
* Get everything ready, and start grabbing frames.
*/
static int mcam_read_setup(struct mcam_camera *cam)
{
int ret;
unsigned long flags;
/*
* Configuration. If we still don't have DMA buffers,
* make one last, desperate attempt.
*/
if (cam->buffer_mode == B_vmalloc && cam->nbufs == 0 &&
mcam_alloc_dma_bufs(cam, 0))
return -ENOMEM;
if (mcam_needs_config(cam)) {
mcam_cam_configure(cam);
ret = mcam_ctlr_configure(cam);
if (ret)
return ret;
}
/*
* Turn it loose.
*/
spin_lock_irqsave(&cam->dev_lock, flags);
clear_bit(CF_DMA_ACTIVE, &cam->flags);
mcam_reset_buffers(cam);
/*
* Update CSI2_DPHY value
*/
if (cam->calc_dphy)
cam->calc_dphy(cam);
cam_dbg(cam, "camera: DPHY sets: dphy3=0x%x, dphy5=0x%x, dphy6=0x%x\n",
cam->dphy[0], cam->dphy[1], cam->dphy[2]);
if (cam->bus_type == V4L2_MBUS_CSI2)
mcam_enable_mipi(cam);
else
mcam_disable_mipi(cam);
mcam_ctlr_irq_enable(cam);
cam->state = S_STREAMING;
if (!test_bit(CF_SG_RESTART, &cam->flags))
mcam_ctlr_start(cam);
spin_unlock_irqrestore(&cam->dev_lock, flags);
return 0;
}
/* ----------------------------------------------------------------------- */
/*
* Videobuf2 interface code.
*/
static int mcam_vb_queue_setup(struct vb2_queue *vq,
unsigned int *nbufs,
unsigned int *num_planes, unsigned int sizes[],
struct device *alloc_devs[])
{
struct mcam_camera *cam = vb2_get_drv_priv(vq);
int minbufs = (cam->buffer_mode == B_DMA_contig) ? 3 : 2;
unsigned size = cam->pix_format.sizeimage;
if (*nbufs < minbufs)
*nbufs = minbufs;
if (*num_planes)
return sizes[0] < size ? -EINVAL : 0;
sizes[0] = size;
*num_planes = 1; /* Someday we have to support planar formats... */
return 0;
}
static void mcam_vb_buf_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
unsigned long flags;
int start;
spin_lock_irqsave(&cam->dev_lock, flags);
start = (cam->state == S_BUFWAIT) && !list_empty(&cam->buffers);
list_add(&mvb->queue, &cam->buffers);
if (cam->state == S_STREAMING && test_bit(CF_SG_RESTART, &cam->flags))
mcam_sg_restart(cam);
spin_unlock_irqrestore(&cam->dev_lock, flags);
if (start)
mcam_read_setup(cam);
}
static void mcam_vb_requeue_bufs(struct vb2_queue *vq,
enum vb2_buffer_state state)
{
struct mcam_camera *cam = vb2_get_drv_priv(vq);
struct mcam_vb_buffer *buf, *node;
unsigned long flags;
unsigned i;
spin_lock_irqsave(&cam->dev_lock, flags);
list_for_each_entry_safe(buf, node, &cam->buffers, queue) {
vb2_buffer_done(&buf->vb_buf.vb2_buf, state);
list_del(&buf->queue);
}
for (i = 0; i < MAX_DMA_BUFS; i++) {
buf = cam->vb_bufs[i];
if (buf) {
vb2_buffer_done(&buf->vb_buf.vb2_buf, state);
cam->vb_bufs[i] = NULL;
}
}
spin_unlock_irqrestore(&cam->dev_lock, flags);
}
/*
* These need to be called with the mutex held from vb2
*/
static int mcam_vb_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct mcam_camera *cam = vb2_get_drv_priv(vq);
unsigned int frame;
int ret;
if (cam->state != S_IDLE) {
mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_QUEUED);
return -EINVAL;
}
cam->frame_state.frames = 0;
cam->frame_state.singles = 0;
cam->frame_state.delivered = 0;
cam->sequence = 0;
/*
* Videobuf2 sneakily hoards all the buffers and won't
* give them to us until *after* streaming starts. But
* we can't actually start streaming until we have a
* destination. So go into a wait state and hope they
* give us buffers soon.
*/
if (cam->buffer_mode != B_vmalloc && list_empty(&cam->buffers)) {
cam->state = S_BUFWAIT;
return 0;
}
/*
* Ensure clear the left over frame flags
* before every really start streaming
*/
for (frame = 0; frame < cam->nbufs; frame++)
clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
ret = mcam_read_setup(cam);
if (ret)
mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_QUEUED);
return ret;
}
static void mcam_vb_stop_streaming(struct vb2_queue *vq)
{
struct mcam_camera *cam = vb2_get_drv_priv(vq);
cam_dbg(cam, "stop_streaming: %d frames, %d singles, %d delivered\n",
cam->frame_state.frames, cam->frame_state.singles,
cam->frame_state.delivered);
if (cam->state == S_BUFWAIT) {
/* They never gave us buffers */
cam->state = S_IDLE;
return;
}
if (cam->state != S_STREAMING)
return;
mcam_ctlr_stop_dma(cam);
/*
* Reset the CCIC PHY after stopping streaming,
* otherwise, the CCIC may be unstable.
*/
if (cam->ctlr_reset)
cam->ctlr_reset(cam);
/*
* VB2 reclaims the buffers, so we need to forget
* about them.
*/
mcam_vb_requeue_bufs(vq, VB2_BUF_STATE_ERROR);
}
static const struct vb2_ops mcam_vb2_ops = {
.queue_setup = mcam_vb_queue_setup,
.buf_queue = mcam_vb_buf_queue,
.start_streaming = mcam_vb_start_streaming,
.stop_streaming = mcam_vb_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
#ifdef MCAM_MODE_DMA_SG
/*
* Scatter/gather mode uses all of the above functions plus a
* few extras to deal with DMA mapping.
*/
static int mcam_vb_sg_buf_init(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
mvb->dma_desc = dma_alloc_coherent(cam->dev,
ndesc * sizeof(struct mcam_dma_desc),
&mvb->dma_desc_pa, GFP_KERNEL);
if (mvb->dma_desc == NULL) {
cam_err(cam, "Unable to get DMA descriptor array\n");
return -ENOMEM;
}
return 0;
}
static int mcam_vb_sg_buf_prepare(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
struct sg_table *sg_table = vb2_dma_sg_plane_desc(vb, 0);
struct mcam_dma_desc *desc = mvb->dma_desc;
struct scatterlist *sg;
int i;
for_each_sg(sg_table->sgl, sg, sg_table->nents, i) {
desc->dma_addr = sg_dma_address(sg);
desc->segment_len = sg_dma_len(sg);
desc++;
}
return 0;
}
static void mcam_vb_sg_buf_cleanup(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
struct mcam_vb_buffer *mvb = vb_to_mvb(vbuf);
int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
dma_free_coherent(cam->dev, ndesc * sizeof(struct mcam_dma_desc),
mvb->dma_desc, mvb->dma_desc_pa);
}
static const struct vb2_ops mcam_vb2_sg_ops = {
.queue_setup = mcam_vb_queue_setup,
.buf_init = mcam_vb_sg_buf_init,
.buf_prepare = mcam_vb_sg_buf_prepare,
.buf_queue = mcam_vb_buf_queue,
.buf_cleanup = mcam_vb_sg_buf_cleanup,
.start_streaming = mcam_vb_start_streaming,
.stop_streaming = mcam_vb_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
#endif /* MCAM_MODE_DMA_SG */
static int mcam_setup_vb2(struct mcam_camera *cam)
{
struct vb2_queue *vq = &cam->vb_queue;
memset(vq, 0, sizeof(*vq));
vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
vq->drv_priv = cam;
vq->lock = &cam->s_mutex;
vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF | VB2_READ;
vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
vq->dev = cam->dev;
INIT_LIST_HEAD(&cam->buffers);
switch (cam->buffer_mode) {
case B_DMA_contig:
#ifdef MCAM_MODE_DMA_CONTIG
vq->ops = &mcam_vb2_ops;
vq->mem_ops = &vb2_dma_contig_memops;
cam->dma_setup = mcam_ctlr_dma_contig;
cam->frame_complete = mcam_dma_contig_done;
#endif
break;
case B_DMA_sg:
#ifdef MCAM_MODE_DMA_SG
vq->ops = &mcam_vb2_sg_ops;
vq->mem_ops = &vb2_dma_sg_memops;
cam->dma_setup = mcam_ctlr_dma_sg;
cam->frame_complete = mcam_dma_sg_done;
#endif
break;
case B_vmalloc:
#ifdef MCAM_MODE_VMALLOC
tasklet_init(&cam->s_tasklet, mcam_frame_tasklet,
(unsigned long) cam);
vq->ops = &mcam_vb2_ops;
vq->mem_ops = &vb2_vmalloc_memops;
cam->dma_setup = mcam_ctlr_dma_vmalloc;
cam->frame_complete = mcam_vmalloc_done;
#endif
break;
}
return vb2_queue_init(vq);
}
/* ---------------------------------------------------------------------- */
/*
* The long list of V4L2 ioctl() operations.
*/
static int mcam_vidioc_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
struct mcam_camera *cam = video_drvdata(file);
strcpy(cap->driver, "marvell_ccic");
strcpy(cap->card, "marvell_ccic");
strlcpy(cap->bus_info, cam->bus_info, sizeof(cap->bus_info));
cap->device_caps = V4L2_CAP_VIDEO_CAPTURE |
V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
return 0;
}
static int mcam_vidioc_enum_fmt_vid_cap(struct file *filp,
void *priv, struct v4l2_fmtdesc *fmt)
{
if (fmt->index >= N_MCAM_FMTS)
return -EINVAL;
strlcpy(fmt->description, mcam_formats[fmt->index].desc,
sizeof(fmt->description));
fmt->pixelformat = mcam_formats[fmt->index].pixelformat;
return 0;
}
static int mcam_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
struct v4l2_format *fmt)
{
struct mcam_camera *cam = video_drvdata(filp);
struct mcam_format_struct *f;
struct v4l2_pix_format *pix = &fmt->fmt.pix;
struct v4l2_subdev_pad_config pad_cfg;
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_TRY,
};
int ret;
f = mcam_find_format(pix->pixelformat);
pix->pixelformat = f->pixelformat;
v4l2_fill_mbus_format(&format.format, pix, f->mbus_code);
ret = sensor_call(cam, pad, set_fmt, &pad_cfg, &format);
v4l2_fill_pix_format(pix, &format.format);
pix->bytesperline = pix->width * f->bpp;
switch (f->pixelformat) {
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
pix->sizeimage = pix->height * pix->bytesperline * 3 / 2;
break;
default:
pix->sizeimage = pix->height * pix->bytesperline;
break;
}
pix->colorspace = V4L2_COLORSPACE_SRGB;
return ret;
}
static int mcam_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
struct v4l2_format *fmt)
{
struct mcam_camera *cam = video_drvdata(filp);
struct mcam_format_struct *f;
int ret;
/*
* Can't do anything if the device is not idle
* Also can't if there are streaming buffers in place.
*/
if (cam->state != S_IDLE || vb2_is_busy(&cam->vb_queue))
return -EBUSY;
f = mcam_find_format(fmt->fmt.pix.pixelformat);
/*
* See if the formatting works in principle.
*/
ret = mcam_vidioc_try_fmt_vid_cap(filp, priv, fmt);
if (ret)
return ret;
/*
* Now we start to change things for real, so let's do it
* under lock.
*/
cam->pix_format = fmt->fmt.pix;
cam->mbus_code = f->mbus_code;
/*
* Make sure we have appropriate DMA buffers.
*/
if (cam->buffer_mode == B_vmalloc) {
ret = mcam_check_dma_buffers(cam);
if (ret)
goto out;
}
mcam_set_config_needed(cam, 1);
out:
return ret;
}
/*
* Return our stored notion of how the camera is/should be configured.
* The V4l2 spec wants us to be smarter, and actually get this from
* the camera (and not mess with it at open time). Someday.
*/
static int mcam_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
struct v4l2_format *f)
{
struct mcam_camera *cam = video_drvdata(filp);
f->fmt.pix = cam->pix_format;
return 0;
}
/*
* We only have one input - the sensor - so minimize the nonsense here.
*/
static int mcam_vidioc_enum_input(struct file *filp, void *priv,
struct v4l2_input *input)
{
if (input->index != 0)
return -EINVAL;
input->type = V4L2_INPUT_TYPE_CAMERA;
strcpy(input->name, "Camera");
return 0;
}
static int mcam_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
{
*i = 0;
return 0;
}
static int mcam_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
{
if (i != 0)
return -EINVAL;
return 0;
}
/*
* G/S_PARM. Most of this is done by the sensor, but we are
* the level which controls the number of read buffers.
*/
static int mcam_vidioc_g_parm(struct file *filp, void *priv,
struct v4l2_streamparm *parms)
{
struct mcam_camera *cam = video_drvdata(filp);
int ret;
ret = sensor_call(cam, video, g_parm, parms);
parms->parm.capture.readbuffers = n_dma_bufs;
return ret;
}
static int mcam_vidioc_s_parm(struct file *filp, void *priv,
struct v4l2_streamparm *parms)
{
struct mcam_camera *cam = video_drvdata(filp);
int ret;
ret = sensor_call(cam, video, s_parm, parms);
parms->parm.capture.readbuffers = n_dma_bufs;
return ret;
}
static int mcam_vidioc_enum_framesizes(struct file *filp, void *priv,
struct v4l2_frmsizeenum *sizes)
{
struct mcam_camera *cam = video_drvdata(filp);
struct mcam_format_struct *f;
struct v4l2_subdev_frame_size_enum fse = {
.index = sizes->index,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
f = mcam_find_format(sizes->pixel_format);
if (f->pixelformat != sizes->pixel_format)
return -EINVAL;
fse.code = f->mbus_code;
ret = sensor_call(cam, pad, enum_frame_size, NULL, &fse);
if (ret)
return ret;
if (fse.min_width == fse.max_width &&
fse.min_height == fse.max_height) {
sizes->type = V4L2_FRMSIZE_TYPE_DISCRETE;
sizes->discrete.width = fse.min_width;
sizes->discrete.height = fse.min_height;
return 0;
}
sizes->type = V4L2_FRMSIZE_TYPE_CONTINUOUS;
sizes->stepwise.min_width = fse.min_width;
sizes->stepwise.max_width = fse.max_width;
sizes->stepwise.min_height = fse.min_height;
sizes->stepwise.max_height = fse.max_height;
sizes->stepwise.step_width = 1;
sizes->stepwise.step_height = 1;
return 0;
}
static int mcam_vidioc_enum_frameintervals(struct file *filp, void *priv,
struct v4l2_frmivalenum *interval)
{
struct mcam_camera *cam = video_drvdata(filp);
struct mcam_format_struct *f;
struct v4l2_subdev_frame_interval_enum fie = {
.index = interval->index,
.width = interval->width,
.height = interval->height,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
f = mcam_find_format(interval->pixel_format);
if (f->pixelformat != interval->pixel_format)
return -EINVAL;
fie.code = f->mbus_code;
ret = sensor_call(cam, pad, enum_frame_interval, NULL, &fie);
if (ret)
return ret;
interval->type = V4L2_FRMIVAL_TYPE_DISCRETE;
interval->discrete = fie.interval;
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int mcam_vidioc_g_register(struct file *file, void *priv,
struct v4l2_dbg_register *reg)
{
struct mcam_camera *cam = video_drvdata(file);
if (reg->reg > cam->regs_size - 4)
return -EINVAL;
reg->val = mcam_reg_read(cam, reg->reg);
reg->size = 4;
return 0;
}
static int mcam_vidioc_s_register(struct file *file, void *priv,
const struct v4l2_dbg_register *reg)
{
struct mcam_camera *cam = video_drvdata(file);
if (reg->reg > cam->regs_size - 4)
return -EINVAL;
mcam_reg_write(cam, reg->reg, reg->val);
return 0;
}
#endif
static const struct v4l2_ioctl_ops mcam_v4l_ioctl_ops = {
.vidioc_querycap = mcam_vidioc_querycap,
.vidioc_enum_fmt_vid_cap = mcam_vidioc_enum_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = mcam_vidioc_try_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = mcam_vidioc_s_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = mcam_vidioc_g_fmt_vid_cap,
.vidioc_enum_input = mcam_vidioc_enum_input,
.vidioc_g_input = mcam_vidioc_g_input,
.vidioc_s_input = mcam_vidioc_s_input,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_g_parm = mcam_vidioc_g_parm,
.vidioc_s_parm = mcam_vidioc_s_parm,
.vidioc_enum_framesizes = mcam_vidioc_enum_framesizes,
.vidioc_enum_frameintervals = mcam_vidioc_enum_frameintervals,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.vidioc_g_register = mcam_vidioc_g_register,
.vidioc_s_register = mcam_vidioc_s_register,
#endif
};
/* ---------------------------------------------------------------------- */
/*
* Our various file operations.
*/
static int mcam_v4l_open(struct file *filp)
{
struct mcam_camera *cam = video_drvdata(filp);
int ret;
mutex_lock(&cam->s_mutex);
ret = v4l2_fh_open(filp);
if (ret)
goto out;
if (v4l2_fh_is_singular_file(filp)) {
ret = mcam_ctlr_power_up(cam);
if (ret)
goto out;
__mcam_cam_reset(cam);
mcam_set_config_needed(cam, 1);
}
out:
mutex_unlock(&cam->s_mutex);
if (ret)
v4l2_fh_release(filp);
return ret;
}
static int mcam_v4l_release(struct file *filp)
{
struct mcam_camera *cam = video_drvdata(filp);
bool last_open;
mutex_lock(&cam->s_mutex);
last_open = v4l2_fh_is_singular_file(filp);
_vb2_fop_release(filp, NULL);
if (last_open) {
mcam_disable_mipi(cam);
mcam_ctlr_power_down(cam);
if (cam->buffer_mode == B_vmalloc && alloc_bufs_at_read)
mcam_free_dma_bufs(cam);
}
mutex_unlock(&cam->s_mutex);
return 0;
}
static const struct v4l2_file_operations mcam_v4l_fops = {
.owner = THIS_MODULE,
.open = mcam_v4l_open,
.release = mcam_v4l_release,
.read = vb2_fop_read,
.poll = vb2_fop_poll,
.mmap = vb2_fop_mmap,
.unlocked_ioctl = video_ioctl2,
};
/*
* This template device holds all of those v4l2 methods; we
* clone it for specific real devices.
*/
static struct video_device mcam_v4l_template = {
.name = "mcam",
.fops = &mcam_v4l_fops,
.ioctl_ops = &mcam_v4l_ioctl_ops,
.release = video_device_release_empty,
};
/* ---------------------------------------------------------------------- */
/*
* Interrupt handler stuff
*/
static void mcam_frame_complete(struct mcam_camera *cam, int frame)
{
/*
* Basic frame housekeeping.
*/
set_bit(frame, &cam->flags);
clear_bit(CF_DMA_ACTIVE, &cam->flags);
cam->next_buf = frame;
cam->buf_seq[frame] = cam->sequence++;
cam->frame_state.frames++;
/*
* "This should never happen"
*/
if (cam->state != S_STREAMING)
return;
/*
* Process the frame and set up the next one.
*/
cam->frame_complete(cam, frame);
}
/*
* The interrupt handler; this needs to be called from the
* platform irq handler with the lock held.
*/
int mccic_irq(struct mcam_camera *cam, unsigned int irqs)
{
unsigned int frame, handled = 0;
mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
/*
* Handle any frame completions. There really should
* not be more than one of these, or we have fallen
* far behind.
*
* When running in S/G mode, the frame number lacks any
* real meaning - there's only one descriptor array - but
* the controller still picks a different one to signal
* each time.
*/
for (frame = 0; frame < cam->nbufs; frame++)
if (irqs & (IRQ_EOF0 << frame) &&
test_bit(CF_FRAME_SOF0 + frame, &cam->flags)) {
mcam_frame_complete(cam, frame);
handled = 1;
clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
if (cam->buffer_mode == B_DMA_sg)
break;
}
/*
* If a frame starts, note that we have DMA active. This
* code assumes that we won't get multiple frame interrupts
* at once; may want to rethink that.
*/
for (frame = 0; frame < cam->nbufs; frame++) {
if (irqs & (IRQ_SOF0 << frame)) {
set_bit(CF_FRAME_SOF0 + frame, &cam->flags);
handled = IRQ_HANDLED;
}
}
if (handled == IRQ_HANDLED) {
set_bit(CF_DMA_ACTIVE, &cam->flags);
if (cam->buffer_mode == B_DMA_sg)
mcam_ctlr_stop(cam);
}
return handled;
}
/* ---------------------------------------------------------------------- */
/*
* Registration and such.
*/
static struct ov7670_config sensor_cfg = {
/*
* Exclude QCIF mode, because it only captures a tiny portion
* of the sensor FOV
*/
.min_width = 320,
.min_height = 240,
};
int mccic_register(struct mcam_camera *cam)
{
struct i2c_board_info ov7670_info = {
.type = "ov7670",
.addr = 0x42 >> 1,
.platform_data = &sensor_cfg,
};
int ret;
/*
* Validate the requested buffer mode.
*/
if (buffer_mode >= 0)
cam->buffer_mode = buffer_mode;
if (cam->buffer_mode == B_DMA_sg &&
cam->chip_id == MCAM_CAFE) {
printk(KERN_ERR "marvell-cam: Cafe can't do S/G I/O, "
"attempting vmalloc mode instead\n");
cam->buffer_mode = B_vmalloc;
}
if (!mcam_buffer_mode_supported(cam->buffer_mode)) {
printk(KERN_ERR "marvell-cam: buffer mode %d unsupported\n",
cam->buffer_mode);
return -EINVAL;
}
/*
* Register with V4L
*/
ret = v4l2_device_register(cam->dev, &cam->v4l2_dev);
if (ret)
return ret;
mutex_init(&cam->s_mutex);
cam->state = S_NOTREADY;
mcam_set_config_needed(cam, 1);
cam->pix_format = mcam_def_pix_format;
cam->mbus_code = mcam_def_mbus_code;
mcam_ctlr_init(cam);
/*
* Get the v4l2 setup done.
*/
ret = v4l2_ctrl_handler_init(&cam->ctrl_handler, 10);
if (ret)
goto out_unregister;
cam->v4l2_dev.ctrl_handler = &cam->ctrl_handler;
/*
* Try to find the sensor.
*/
sensor_cfg.clock_speed = cam->clock_speed;
sensor_cfg.use_smbus = cam->use_smbus;
cam->sensor_addr = ov7670_info.addr;
cam->sensor = v4l2_i2c_new_subdev_board(&cam->v4l2_dev,
cam->i2c_adapter, &ov7670_info, NULL);
if (cam->sensor == NULL) {
ret = -ENODEV;
goto out_unregister;
}
ret = mcam_cam_init(cam);
if (ret)
goto out_unregister;
ret = mcam_setup_vb2(cam);
if (ret)
goto out_unregister;
mutex_lock(&cam->s_mutex);
cam->vdev = mcam_v4l_template;
cam->vdev.v4l2_dev = &cam->v4l2_dev;
cam->vdev.lock = &cam->s_mutex;
cam->vdev.queue = &cam->vb_queue;
video_set_drvdata(&cam->vdev, cam);
ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
if (ret) {
mutex_unlock(&cam->s_mutex);
goto out_unregister;
}
/*
* If so requested, try to get our DMA buffers now.
*/
if (cam->buffer_mode == B_vmalloc && !alloc_bufs_at_read) {
if (mcam_alloc_dma_bufs(cam, 1))
cam_warn(cam, "Unable to alloc DMA buffers at load"
" will try again later.");
}
mutex_unlock(&cam->s_mutex);
return 0;
out_unregister:
v4l2_ctrl_handler_free(&cam->ctrl_handler);
v4l2_device_unregister(&cam->v4l2_dev);
return ret;
}
void mccic_shutdown(struct mcam_camera *cam)
{
/*
* If we have no users (and we really, really should have no
* users) the device will already be powered down. Trying to
* take it down again will wedge the machine, which is frowned
* upon.
*/
if (!list_empty(&cam->vdev.fh_list)) {
cam_warn(cam, "Removing a device with users!\n");
mcam_ctlr_power_down(cam);
}
if (cam->buffer_mode == B_vmalloc)
mcam_free_dma_bufs(cam);
video_unregister_device(&cam->vdev);
v4l2_ctrl_handler_free(&cam->ctrl_handler);
v4l2_device_unregister(&cam->v4l2_dev);
}
/*
* Power management
*/
#ifdef CONFIG_PM
void mccic_suspend(struct mcam_camera *cam)
{
mutex_lock(&cam->s_mutex);
if (!list_empty(&cam->vdev.fh_list)) {
enum mcam_state cstate = cam->state;
mcam_ctlr_stop_dma(cam);
mcam_ctlr_power_down(cam);
cam->state = cstate;
}
mutex_unlock(&cam->s_mutex);
}
int mccic_resume(struct mcam_camera *cam)
{
int ret = 0;
mutex_lock(&cam->s_mutex);
if (!list_empty(&cam->vdev.fh_list)) {
ret = mcam_ctlr_power_up(cam);
if (ret) {
mutex_unlock(&cam->s_mutex);
return ret;
}
__mcam_cam_reset(cam);
} else {
mcam_ctlr_power_down(cam);
}
mutex_unlock(&cam->s_mutex);
set_bit(CF_CONFIG_NEEDED, &cam->flags);
if (cam->state == S_STREAMING) {
/*
* If there was a buffer in the DMA engine at suspend
* time, put it back on the queue or we'll forget about it.
*/
if (cam->buffer_mode == B_DMA_sg && cam->vb_bufs[0])
list_add(&cam->vb_bufs[0]->queue, &cam->buffers);
ret = mcam_read_setup(cam);
}
return ret;
}
#endif /* CONFIG_PM */