linux/fs/btrfs/delayed-inode.c
David Sterba bc4ef7592f btrfs: properly set the termination value of ctx->pos in readdir
The value of ctx->pos in the last readdir call is supposed to be set to
INT_MAX due to 32bit compatibility, unless 'pos' is intentially set to a
larger value, then it's LLONG_MAX.

There's a report from PaX SIZE_OVERFLOW plugin that "ctx->pos++"
overflows (https://forums.grsecurity.net/viewtopic.php?f=1&t=4284), on a
64bit arch, where the value is 0x7fffffffffffffff ie. LLONG_MAX before
the increment.

We can get to that situation like that:

* emit all regular readdir entries
* still in the same call to readdir, bump the last pos to INT_MAX
* next call to readdir will not emit any entries, but will reach the
  bump code again, finds pos to be INT_MAX and sets it to LLONG_MAX

Normally this is not a problem, but if we call readdir again, we'll find
'pos' set to LLONG_MAX and the unconditional increment will overflow.

The report from Victor at
(http://thread.gmane.org/gmane.comp.file-systems.btrfs/49500) with debugging
print shows that pattern:

 Overflow: e
 Overflow: 7fffffff
 Overflow: 7fffffffffffffff
 PAX: size overflow detected in function btrfs_real_readdir
   fs/btrfs/inode.c:5760 cicus.935_282 max, count: 9, decl: pos; num: 0;
   context: dir_context;
 CPU: 0 PID: 2630 Comm: polkitd Not tainted 4.2.3-grsec #1
 Hardware name: Gigabyte Technology Co., Ltd. H81ND2H/H81ND2H, BIOS F3 08/11/2015
  ffffffff81901608 0000000000000000 ffffffff819015e6 ffffc90004973d48
  ffffffff81742f0f 0000000000000007 ffffffff81901608 ffffc90004973d78
  ffffffff811cb706 0000000000000000 ffff8800d47359e0 ffffc90004973ed8
 Call Trace:
  [<ffffffff81742f0f>] dump_stack+0x4c/0x7f
  [<ffffffff811cb706>] report_size_overflow+0x36/0x40
  [<ffffffff812ef0bc>] btrfs_real_readdir+0x69c/0x6d0
  [<ffffffff811dafc8>] iterate_dir+0xa8/0x150
  [<ffffffff811e6d8d>] ? __fget_light+0x2d/0x70
  [<ffffffff811dba3a>] SyS_getdents+0xba/0x1c0
 Overflow: 1a
  [<ffffffff811db070>] ? iterate_dir+0x150/0x150
  [<ffffffff81749b69>] entry_SYSCALL_64_fastpath+0x12/0x83

The jump from 7fffffff to 7fffffffffffffff happens when new dir entries
are not yet synced and are processed from the delayed list. Then the code
could go to the bump section again even though it might not emit any new
dir entries from the delayed list.

The fix avoids entering the "bump" section again once we've finished
emitting the entries, both for synced and delayed entries.

References: https://forums.grsecurity.net/viewtopic.php?f=1&t=4284
Reported-by: Victor <services@swwu.com>
CC: stable@vger.kernel.org
Signed-off-by: David Sterba <dsterba@suse.com>
Tested-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-02-11 07:01:59 -08:00

1998 lines
52 KiB
C

/*
* Copyright (C) 2011 Fujitsu. All rights reserved.
* Written by Miao Xie <miaox@cn.fujitsu.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/slab.h>
#include "delayed-inode.h"
#include "disk-io.h"
#include "transaction.h"
#include "ctree.h"
#define BTRFS_DELAYED_WRITEBACK 512
#define BTRFS_DELAYED_BACKGROUND 128
#define BTRFS_DELAYED_BATCH 16
static struct kmem_cache *delayed_node_cache;
int __init btrfs_delayed_inode_init(void)
{
delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
sizeof(struct btrfs_delayed_node),
0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
NULL);
if (!delayed_node_cache)
return -ENOMEM;
return 0;
}
void btrfs_delayed_inode_exit(void)
{
if (delayed_node_cache)
kmem_cache_destroy(delayed_node_cache);
}
static inline void btrfs_init_delayed_node(
struct btrfs_delayed_node *delayed_node,
struct btrfs_root *root, u64 inode_id)
{
delayed_node->root = root;
delayed_node->inode_id = inode_id;
atomic_set(&delayed_node->refs, 0);
delayed_node->ins_root = RB_ROOT;
delayed_node->del_root = RB_ROOT;
mutex_init(&delayed_node->mutex);
INIT_LIST_HEAD(&delayed_node->n_list);
INIT_LIST_HEAD(&delayed_node->p_list);
}
static inline int btrfs_is_continuous_delayed_item(
struct btrfs_delayed_item *item1,
struct btrfs_delayed_item *item2)
{
if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
item1->key.objectid == item2->key.objectid &&
item1->key.type == item2->key.type &&
item1->key.offset + 1 == item2->key.offset)
return 1;
return 0;
}
static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
struct btrfs_root *root)
{
return root->fs_info->delayed_root;
}
static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
{
struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
struct btrfs_root *root = btrfs_inode->root;
u64 ino = btrfs_ino(inode);
struct btrfs_delayed_node *node;
node = ACCESS_ONCE(btrfs_inode->delayed_node);
if (node) {
atomic_inc(&node->refs);
return node;
}
spin_lock(&root->inode_lock);
node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
if (node) {
if (btrfs_inode->delayed_node) {
atomic_inc(&node->refs); /* can be accessed */
BUG_ON(btrfs_inode->delayed_node != node);
spin_unlock(&root->inode_lock);
return node;
}
btrfs_inode->delayed_node = node;
/* can be accessed and cached in the inode */
atomic_add(2, &node->refs);
spin_unlock(&root->inode_lock);
return node;
}
spin_unlock(&root->inode_lock);
return NULL;
}
/* Will return either the node or PTR_ERR(-ENOMEM) */
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
struct inode *inode)
{
struct btrfs_delayed_node *node;
struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
struct btrfs_root *root = btrfs_inode->root;
u64 ino = btrfs_ino(inode);
int ret;
again:
node = btrfs_get_delayed_node(inode);
if (node)
return node;
node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
if (!node)
return ERR_PTR(-ENOMEM);
btrfs_init_delayed_node(node, root, ino);
/* cached in the btrfs inode and can be accessed */
atomic_add(2, &node->refs);
ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
if (ret) {
kmem_cache_free(delayed_node_cache, node);
return ERR_PTR(ret);
}
spin_lock(&root->inode_lock);
ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
if (ret == -EEXIST) {
spin_unlock(&root->inode_lock);
kmem_cache_free(delayed_node_cache, node);
radix_tree_preload_end();
goto again;
}
btrfs_inode->delayed_node = node;
spin_unlock(&root->inode_lock);
radix_tree_preload_end();
return node;
}
/*
* Call it when holding delayed_node->mutex
*
* If mod = 1, add this node into the prepared list.
*/
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
struct btrfs_delayed_node *node,
int mod)
{
spin_lock(&root->lock);
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
if (!list_empty(&node->p_list))
list_move_tail(&node->p_list, &root->prepare_list);
else if (mod)
list_add_tail(&node->p_list, &root->prepare_list);
} else {
list_add_tail(&node->n_list, &root->node_list);
list_add_tail(&node->p_list, &root->prepare_list);
atomic_inc(&node->refs); /* inserted into list */
root->nodes++;
set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
}
spin_unlock(&root->lock);
}
/* Call it when holding delayed_node->mutex */
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
struct btrfs_delayed_node *node)
{
spin_lock(&root->lock);
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
root->nodes--;
atomic_dec(&node->refs); /* not in the list */
list_del_init(&node->n_list);
if (!list_empty(&node->p_list))
list_del_init(&node->p_list);
clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
}
spin_unlock(&root->lock);
}
static struct btrfs_delayed_node *btrfs_first_delayed_node(
struct btrfs_delayed_root *delayed_root)
{
struct list_head *p;
struct btrfs_delayed_node *node = NULL;
spin_lock(&delayed_root->lock);
if (list_empty(&delayed_root->node_list))
goto out;
p = delayed_root->node_list.next;
node = list_entry(p, struct btrfs_delayed_node, n_list);
atomic_inc(&node->refs);
out:
spin_unlock(&delayed_root->lock);
return node;
}
static struct btrfs_delayed_node *btrfs_next_delayed_node(
struct btrfs_delayed_node *node)
{
struct btrfs_delayed_root *delayed_root;
struct list_head *p;
struct btrfs_delayed_node *next = NULL;
delayed_root = node->root->fs_info->delayed_root;
spin_lock(&delayed_root->lock);
if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
/* not in the list */
if (list_empty(&delayed_root->node_list))
goto out;
p = delayed_root->node_list.next;
} else if (list_is_last(&node->n_list, &delayed_root->node_list))
goto out;
else
p = node->n_list.next;
next = list_entry(p, struct btrfs_delayed_node, n_list);
atomic_inc(&next->refs);
out:
spin_unlock(&delayed_root->lock);
return next;
}
static void __btrfs_release_delayed_node(
struct btrfs_delayed_node *delayed_node,
int mod)
{
struct btrfs_delayed_root *delayed_root;
if (!delayed_node)
return;
delayed_root = delayed_node->root->fs_info->delayed_root;
mutex_lock(&delayed_node->mutex);
if (delayed_node->count)
btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
else
btrfs_dequeue_delayed_node(delayed_root, delayed_node);
mutex_unlock(&delayed_node->mutex);
if (atomic_dec_and_test(&delayed_node->refs)) {
bool free = false;
struct btrfs_root *root = delayed_node->root;
spin_lock(&root->inode_lock);
if (atomic_read(&delayed_node->refs) == 0) {
radix_tree_delete(&root->delayed_nodes_tree,
delayed_node->inode_id);
free = true;
}
spin_unlock(&root->inode_lock);
if (free)
kmem_cache_free(delayed_node_cache, delayed_node);
}
}
static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
{
__btrfs_release_delayed_node(node, 0);
}
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
struct btrfs_delayed_root *delayed_root)
{
struct list_head *p;
struct btrfs_delayed_node *node = NULL;
spin_lock(&delayed_root->lock);
if (list_empty(&delayed_root->prepare_list))
goto out;
p = delayed_root->prepare_list.next;
list_del_init(p);
node = list_entry(p, struct btrfs_delayed_node, p_list);
atomic_inc(&node->refs);
out:
spin_unlock(&delayed_root->lock);
return node;
}
static inline void btrfs_release_prepared_delayed_node(
struct btrfs_delayed_node *node)
{
__btrfs_release_delayed_node(node, 1);
}
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
{
struct btrfs_delayed_item *item;
item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
if (item) {
item->data_len = data_len;
item->ins_or_del = 0;
item->bytes_reserved = 0;
item->delayed_node = NULL;
atomic_set(&item->refs, 1);
}
return item;
}
/*
* __btrfs_lookup_delayed_item - look up the delayed item by key
* @delayed_node: pointer to the delayed node
* @key: the key to look up
* @prev: used to store the prev item if the right item isn't found
* @next: used to store the next item if the right item isn't found
*
* Note: if we don't find the right item, we will return the prev item and
* the next item.
*/
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
struct rb_root *root,
struct btrfs_key *key,
struct btrfs_delayed_item **prev,
struct btrfs_delayed_item **next)
{
struct rb_node *node, *prev_node = NULL;
struct btrfs_delayed_item *delayed_item = NULL;
int ret = 0;
node = root->rb_node;
while (node) {
delayed_item = rb_entry(node, struct btrfs_delayed_item,
rb_node);
prev_node = node;
ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
if (ret < 0)
node = node->rb_right;
else if (ret > 0)
node = node->rb_left;
else
return delayed_item;
}
if (prev) {
if (!prev_node)
*prev = NULL;
else if (ret < 0)
*prev = delayed_item;
else if ((node = rb_prev(prev_node)) != NULL) {
*prev = rb_entry(node, struct btrfs_delayed_item,
rb_node);
} else
*prev = NULL;
}
if (next) {
if (!prev_node)
*next = NULL;
else if (ret > 0)
*next = delayed_item;
else if ((node = rb_next(prev_node)) != NULL) {
*next = rb_entry(node, struct btrfs_delayed_item,
rb_node);
} else
*next = NULL;
}
return NULL;
}
static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
struct btrfs_delayed_node *delayed_node,
struct btrfs_key *key)
{
struct btrfs_delayed_item *item;
item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
NULL, NULL);
return item;
}
static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
struct btrfs_delayed_item *ins,
int action)
{
struct rb_node **p, *node;
struct rb_node *parent_node = NULL;
struct rb_root *root;
struct btrfs_delayed_item *item;
int cmp;
if (action == BTRFS_DELAYED_INSERTION_ITEM)
root = &delayed_node->ins_root;
else if (action == BTRFS_DELAYED_DELETION_ITEM)
root = &delayed_node->del_root;
else
BUG();
p = &root->rb_node;
node = &ins->rb_node;
while (*p) {
parent_node = *p;
item = rb_entry(parent_node, struct btrfs_delayed_item,
rb_node);
cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
if (cmp < 0)
p = &(*p)->rb_right;
else if (cmp > 0)
p = &(*p)->rb_left;
else
return -EEXIST;
}
rb_link_node(node, parent_node, p);
rb_insert_color(node, root);
ins->delayed_node = delayed_node;
ins->ins_or_del = action;
if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
action == BTRFS_DELAYED_INSERTION_ITEM &&
ins->key.offset >= delayed_node->index_cnt)
delayed_node->index_cnt = ins->key.offset + 1;
delayed_node->count++;
atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
return 0;
}
static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
struct btrfs_delayed_item *item)
{
return __btrfs_add_delayed_item(node, item,
BTRFS_DELAYED_INSERTION_ITEM);
}
static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
struct btrfs_delayed_item *item)
{
return __btrfs_add_delayed_item(node, item,
BTRFS_DELAYED_DELETION_ITEM);
}
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
{
int seq = atomic_inc_return(&delayed_root->items_seq);
/*
* atomic_dec_return implies a barrier for waitqueue_active
*/
if ((atomic_dec_return(&delayed_root->items) <
BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
waitqueue_active(&delayed_root->wait))
wake_up(&delayed_root->wait);
}
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
{
struct rb_root *root;
struct btrfs_delayed_root *delayed_root;
delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
BUG_ON(!delayed_root);
BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
root = &delayed_item->delayed_node->ins_root;
else
root = &delayed_item->delayed_node->del_root;
rb_erase(&delayed_item->rb_node, root);
delayed_item->delayed_node->count--;
finish_one_item(delayed_root);
}
static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
{
if (item) {
__btrfs_remove_delayed_item(item);
if (atomic_dec_and_test(&item->refs))
kfree(item);
}
}
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
struct btrfs_delayed_node *delayed_node)
{
struct rb_node *p;
struct btrfs_delayed_item *item = NULL;
p = rb_first(&delayed_node->ins_root);
if (p)
item = rb_entry(p, struct btrfs_delayed_item, rb_node);
return item;
}
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
struct btrfs_delayed_node *delayed_node)
{
struct rb_node *p;
struct btrfs_delayed_item *item = NULL;
p = rb_first(&delayed_node->del_root);
if (p)
item = rb_entry(p, struct btrfs_delayed_item, rb_node);
return item;
}
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
struct btrfs_delayed_item *item)
{
struct rb_node *p;
struct btrfs_delayed_item *next = NULL;
p = rb_next(&item->rb_node);
if (p)
next = rb_entry(p, struct btrfs_delayed_item, rb_node);
return next;
}
static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_item *item)
{
struct btrfs_block_rsv *src_rsv;
struct btrfs_block_rsv *dst_rsv;
u64 num_bytes;
int ret;
if (!trans->bytes_reserved)
return 0;
src_rsv = trans->block_rsv;
dst_rsv = &root->fs_info->delayed_block_rsv;
num_bytes = btrfs_calc_trans_metadata_size(root, 1);
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
if (!ret) {
trace_btrfs_space_reservation(root->fs_info, "delayed_item",
item->key.objectid,
num_bytes, 1);
item->bytes_reserved = num_bytes;
}
return ret;
}
static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
struct btrfs_delayed_item *item)
{
struct btrfs_block_rsv *rsv;
if (!item->bytes_reserved)
return;
rsv = &root->fs_info->delayed_block_rsv;
trace_btrfs_space_reservation(root->fs_info, "delayed_item",
item->key.objectid, item->bytes_reserved,
0);
btrfs_block_rsv_release(root, rsv,
item->bytes_reserved);
}
static int btrfs_delayed_inode_reserve_metadata(
struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode,
struct btrfs_delayed_node *node)
{
struct btrfs_block_rsv *src_rsv;
struct btrfs_block_rsv *dst_rsv;
u64 num_bytes;
int ret;
bool release = false;
src_rsv = trans->block_rsv;
dst_rsv = &root->fs_info->delayed_block_rsv;
num_bytes = btrfs_calc_trans_metadata_size(root, 1);
/*
* btrfs_dirty_inode will update the inode under btrfs_join_transaction
* which doesn't reserve space for speed. This is a problem since we
* still need to reserve space for this update, so try to reserve the
* space.
*
* Now if src_rsv == delalloc_block_rsv we'll let it just steal since
* we're accounted for.
*/
if (!src_rsv || (!trans->bytes_reserved &&
src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
BTRFS_RESERVE_NO_FLUSH);
/*
* Since we're under a transaction reserve_metadata_bytes could
* try to commit the transaction which will make it return
* EAGAIN to make us stop the transaction we have, so return
* ENOSPC instead so that btrfs_dirty_inode knows what to do.
*/
if (ret == -EAGAIN)
ret = -ENOSPC;
if (!ret) {
node->bytes_reserved = num_bytes;
trace_btrfs_space_reservation(root->fs_info,
"delayed_inode",
btrfs_ino(inode),
num_bytes, 1);
}
return ret;
} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
spin_lock(&BTRFS_I(inode)->lock);
if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
&BTRFS_I(inode)->runtime_flags)) {
spin_unlock(&BTRFS_I(inode)->lock);
release = true;
goto migrate;
}
spin_unlock(&BTRFS_I(inode)->lock);
/* Ok we didn't have space pre-reserved. This shouldn't happen
* too often but it can happen if we do delalloc to an existing
* inode which gets dirtied because of the time update, and then
* isn't touched again until after the transaction commits and
* then we try to write out the data. First try to be nice and
* reserve something strictly for us. If not be a pain and try
* to steal from the delalloc block rsv.
*/
ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
BTRFS_RESERVE_NO_FLUSH);
if (!ret)
goto out;
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
if (!WARN_ON(ret))
goto out;
/*
* Ok this is a problem, let's just steal from the global rsv
* since this really shouldn't happen that often.
*/
ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
dst_rsv, num_bytes);
goto out;
}
migrate:
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
out:
/*
* Migrate only takes a reservation, it doesn't touch the size of the
* block_rsv. This is to simplify people who don't normally have things
* migrated from their block rsv. If they go to release their
* reservation, that will decrease the size as well, so if migrate
* reduced size we'd end up with a negative size. But for the
* delalloc_meta_reserved stuff we will only know to drop 1 reservation,
* but we could in fact do this reserve/migrate dance several times
* between the time we did the original reservation and we'd clean it
* up. So to take care of this, release the space for the meta
* reservation here. I think it may be time for a documentation page on
* how block rsvs. work.
*/
if (!ret) {
trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
btrfs_ino(inode), num_bytes, 1);
node->bytes_reserved = num_bytes;
}
if (release) {
trace_btrfs_space_reservation(root->fs_info, "delalloc",
btrfs_ino(inode), num_bytes, 0);
btrfs_block_rsv_release(root, src_rsv, num_bytes);
}
return ret;
}
static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
struct btrfs_delayed_node *node)
{
struct btrfs_block_rsv *rsv;
if (!node->bytes_reserved)
return;
rsv = &root->fs_info->delayed_block_rsv;
trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
node->inode_id, node->bytes_reserved, 0);
btrfs_block_rsv_release(root, rsv,
node->bytes_reserved);
node->bytes_reserved = 0;
}
/*
* This helper will insert some continuous items into the same leaf according
* to the free space of the leaf.
*/
static int btrfs_batch_insert_items(struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_item *item)
{
struct btrfs_delayed_item *curr, *next;
int free_space;
int total_data_size = 0, total_size = 0;
struct extent_buffer *leaf;
char *data_ptr;
struct btrfs_key *keys;
u32 *data_size;
struct list_head head;
int slot;
int nitems;
int i;
int ret = 0;
BUG_ON(!path->nodes[0]);
leaf = path->nodes[0];
free_space = btrfs_leaf_free_space(root, leaf);
INIT_LIST_HEAD(&head);
next = item;
nitems = 0;
/*
* count the number of the continuous items that we can insert in batch
*/
while (total_size + next->data_len + sizeof(struct btrfs_item) <=
free_space) {
total_data_size += next->data_len;
total_size += next->data_len + sizeof(struct btrfs_item);
list_add_tail(&next->tree_list, &head);
nitems++;
curr = next;
next = __btrfs_next_delayed_item(curr);
if (!next)
break;
if (!btrfs_is_continuous_delayed_item(curr, next))
break;
}
if (!nitems) {
ret = 0;
goto out;
}
/*
* we need allocate some memory space, but it might cause the task
* to sleep, so we set all locked nodes in the path to blocking locks
* first.
*/
btrfs_set_path_blocking(path);
keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
if (!keys) {
ret = -ENOMEM;
goto out;
}
data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
if (!data_size) {
ret = -ENOMEM;
goto error;
}
/* get keys of all the delayed items */
i = 0;
list_for_each_entry(next, &head, tree_list) {
keys[i] = next->key;
data_size[i] = next->data_len;
i++;
}
/* reset all the locked nodes in the patch to spinning locks. */
btrfs_clear_path_blocking(path, NULL, 0);
/* insert the keys of the items */
setup_items_for_insert(root, path, keys, data_size,
total_data_size, total_size, nitems);
/* insert the dir index items */
slot = path->slots[0];
list_for_each_entry_safe(curr, next, &head, tree_list) {
data_ptr = btrfs_item_ptr(leaf, slot, char);
write_extent_buffer(leaf, &curr->data,
(unsigned long)data_ptr,
curr->data_len);
slot++;
btrfs_delayed_item_release_metadata(root, curr);
list_del(&curr->tree_list);
btrfs_release_delayed_item(curr);
}
error:
kfree(data_size);
kfree(keys);
out:
return ret;
}
/*
* This helper can just do simple insertion that needn't extend item for new
* data, such as directory name index insertion, inode insertion.
*/
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_item *delayed_item)
{
struct extent_buffer *leaf;
char *ptr;
int ret;
ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
delayed_item->data_len);
if (ret < 0 && ret != -EEXIST)
return ret;
leaf = path->nodes[0];
ptr = btrfs_item_ptr(leaf, path->slots[0], char);
write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
delayed_item->data_len);
btrfs_mark_buffer_dirty(leaf);
btrfs_delayed_item_release_metadata(root, delayed_item);
return 0;
}
/*
* we insert an item first, then if there are some continuous items, we try
* to insert those items into the same leaf.
*/
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_root *root,
struct btrfs_delayed_node *node)
{
struct btrfs_delayed_item *curr, *prev;
int ret = 0;
do_again:
mutex_lock(&node->mutex);
curr = __btrfs_first_delayed_insertion_item(node);
if (!curr)
goto insert_end;
ret = btrfs_insert_delayed_item(trans, root, path, curr);
if (ret < 0) {
btrfs_release_path(path);
goto insert_end;
}
prev = curr;
curr = __btrfs_next_delayed_item(prev);
if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
/* insert the continuous items into the same leaf */
path->slots[0]++;
btrfs_batch_insert_items(root, path, curr);
}
btrfs_release_delayed_item(prev);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(path);
mutex_unlock(&node->mutex);
goto do_again;
insert_end:
mutex_unlock(&node->mutex);
return ret;
}
static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_item *item)
{
struct btrfs_delayed_item *curr, *next;
struct extent_buffer *leaf;
struct btrfs_key key;
struct list_head head;
int nitems, i, last_item;
int ret = 0;
BUG_ON(!path->nodes[0]);
leaf = path->nodes[0];
i = path->slots[0];
last_item = btrfs_header_nritems(leaf) - 1;
if (i > last_item)
return -ENOENT; /* FIXME: Is errno suitable? */
next = item;
INIT_LIST_HEAD(&head);
btrfs_item_key_to_cpu(leaf, &key, i);
nitems = 0;
/*
* count the number of the dir index items that we can delete in batch
*/
while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
list_add_tail(&next->tree_list, &head);
nitems++;
curr = next;
next = __btrfs_next_delayed_item(curr);
if (!next)
break;
if (!btrfs_is_continuous_delayed_item(curr, next))
break;
i++;
if (i > last_item)
break;
btrfs_item_key_to_cpu(leaf, &key, i);
}
if (!nitems)
return 0;
ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
if (ret)
goto out;
list_for_each_entry_safe(curr, next, &head, tree_list) {
btrfs_delayed_item_release_metadata(root, curr);
list_del(&curr->tree_list);
btrfs_release_delayed_item(curr);
}
out:
return ret;
}
static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_root *root,
struct btrfs_delayed_node *node)
{
struct btrfs_delayed_item *curr, *prev;
int ret = 0;
do_again:
mutex_lock(&node->mutex);
curr = __btrfs_first_delayed_deletion_item(node);
if (!curr)
goto delete_fail;
ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
if (ret < 0)
goto delete_fail;
else if (ret > 0) {
/*
* can't find the item which the node points to, so this node
* is invalid, just drop it.
*/
prev = curr;
curr = __btrfs_next_delayed_item(prev);
btrfs_release_delayed_item(prev);
ret = 0;
btrfs_release_path(path);
if (curr) {
mutex_unlock(&node->mutex);
goto do_again;
} else
goto delete_fail;
}
btrfs_batch_delete_items(trans, root, path, curr);
btrfs_release_path(path);
mutex_unlock(&node->mutex);
goto do_again;
delete_fail:
btrfs_release_path(path);
mutex_unlock(&node->mutex);
return ret;
}
static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
{
struct btrfs_delayed_root *delayed_root;
if (delayed_node &&
test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
BUG_ON(!delayed_node->root);
clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
delayed_node->count--;
delayed_root = delayed_node->root->fs_info->delayed_root;
finish_one_item(delayed_root);
}
}
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
{
struct btrfs_delayed_root *delayed_root;
ASSERT(delayed_node->root);
clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
delayed_node->count--;
delayed_root = delayed_node->root->fs_info->delayed_root;
finish_one_item(delayed_root);
}
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_node *node)
{
struct btrfs_key key;
struct btrfs_inode_item *inode_item;
struct extent_buffer *leaf;
int mod;
int ret;
key.objectid = node->inode_id;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
mod = -1;
else
mod = 1;
ret = btrfs_lookup_inode(trans, root, path, &key, mod);
if (ret > 0) {
btrfs_release_path(path);
return -ENOENT;
} else if (ret < 0) {
return ret;
}
leaf = path->nodes[0];
inode_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_inode_item);
write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
sizeof(struct btrfs_inode_item));
btrfs_mark_buffer_dirty(leaf);
if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
goto no_iref;
path->slots[0]++;
if (path->slots[0] >= btrfs_header_nritems(leaf))
goto search;
again:
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != node->inode_id)
goto out;
if (key.type != BTRFS_INODE_REF_KEY &&
key.type != BTRFS_INODE_EXTREF_KEY)
goto out;
/*
* Delayed iref deletion is for the inode who has only one link,
* so there is only one iref. The case that several irefs are
* in the same item doesn't exist.
*/
btrfs_del_item(trans, root, path);
out:
btrfs_release_delayed_iref(node);
no_iref:
btrfs_release_path(path);
err_out:
btrfs_delayed_inode_release_metadata(root, node);
btrfs_release_delayed_inode(node);
return ret;
search:
btrfs_release_path(path);
key.type = BTRFS_INODE_EXTREF_KEY;
key.offset = -1;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
goto err_out;
ASSERT(ret);
ret = 0;
leaf = path->nodes[0];
path->slots[0]--;
goto again;
}
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_delayed_node *node)
{
int ret;
mutex_lock(&node->mutex);
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
mutex_unlock(&node->mutex);
return 0;
}
ret = __btrfs_update_delayed_inode(trans, root, path, node);
mutex_unlock(&node->mutex);
return ret;
}
static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_path *path,
struct btrfs_delayed_node *node)
{
int ret;
ret = btrfs_insert_delayed_items(trans, path, node->root, node);
if (ret)
return ret;
ret = btrfs_delete_delayed_items(trans, path, node->root, node);
if (ret)
return ret;
ret = btrfs_update_delayed_inode(trans, node->root, path, node);
return ret;
}
/*
* Called when committing the transaction.
* Returns 0 on success.
* Returns < 0 on error and returns with an aborted transaction with any
* outstanding delayed items cleaned up.
*/
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root, int nr)
{
struct btrfs_delayed_root *delayed_root;
struct btrfs_delayed_node *curr_node, *prev_node;
struct btrfs_path *path;
struct btrfs_block_rsv *block_rsv;
int ret = 0;
bool count = (nr > 0);
if (trans->aborted)
return -EIO;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1;
block_rsv = trans->block_rsv;
trans->block_rsv = &root->fs_info->delayed_block_rsv;
delayed_root = btrfs_get_delayed_root(root);
curr_node = btrfs_first_delayed_node(delayed_root);
while (curr_node && (!count || (count && nr--))) {
ret = __btrfs_commit_inode_delayed_items(trans, path,
curr_node);
if (ret) {
btrfs_release_delayed_node(curr_node);
curr_node = NULL;
btrfs_abort_transaction(trans, root, ret);
break;
}
prev_node = curr_node;
curr_node = btrfs_next_delayed_node(curr_node);
btrfs_release_delayed_node(prev_node);
}
if (curr_node)
btrfs_release_delayed_node(curr_node);
btrfs_free_path(path);
trans->block_rsv = block_rsv;
return ret;
}
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
return __btrfs_run_delayed_items(trans, root, -1);
}
int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
struct btrfs_root *root, int nr)
{
return __btrfs_run_delayed_items(trans, root, nr);
}
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
struct inode *inode)
{
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
struct btrfs_path *path;
struct btrfs_block_rsv *block_rsv;
int ret;
if (!delayed_node)
return 0;
mutex_lock(&delayed_node->mutex);
if (!delayed_node->count) {
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return 0;
}
mutex_unlock(&delayed_node->mutex);
path = btrfs_alloc_path();
if (!path) {
btrfs_release_delayed_node(delayed_node);
return -ENOMEM;
}
path->leave_spinning = 1;
block_rsv = trans->block_rsv;
trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
btrfs_release_delayed_node(delayed_node);
btrfs_free_path(path);
trans->block_rsv = block_rsv;
return ret;
}
int btrfs_commit_inode_delayed_inode(struct inode *inode)
{
struct btrfs_trans_handle *trans;
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
struct btrfs_path *path;
struct btrfs_block_rsv *block_rsv;
int ret;
if (!delayed_node)
return 0;
mutex_lock(&delayed_node->mutex);
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return 0;
}
mutex_unlock(&delayed_node->mutex);
trans = btrfs_join_transaction(delayed_node->root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto trans_out;
}
path->leave_spinning = 1;
block_rsv = trans->block_rsv;
trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
mutex_lock(&delayed_node->mutex);
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
path, delayed_node);
else
ret = 0;
mutex_unlock(&delayed_node->mutex);
btrfs_free_path(path);
trans->block_rsv = block_rsv;
trans_out:
btrfs_end_transaction(trans, delayed_node->root);
btrfs_btree_balance_dirty(delayed_node->root);
out:
btrfs_release_delayed_node(delayed_node);
return ret;
}
void btrfs_remove_delayed_node(struct inode *inode)
{
struct btrfs_delayed_node *delayed_node;
delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
if (!delayed_node)
return;
BTRFS_I(inode)->delayed_node = NULL;
btrfs_release_delayed_node(delayed_node);
}
struct btrfs_async_delayed_work {
struct btrfs_delayed_root *delayed_root;
int nr;
struct btrfs_work work;
};
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
{
struct btrfs_async_delayed_work *async_work;
struct btrfs_delayed_root *delayed_root;
struct btrfs_trans_handle *trans;
struct btrfs_path *path;
struct btrfs_delayed_node *delayed_node = NULL;
struct btrfs_root *root;
struct btrfs_block_rsv *block_rsv;
int total_done = 0;
async_work = container_of(work, struct btrfs_async_delayed_work, work);
delayed_root = async_work->delayed_root;
path = btrfs_alloc_path();
if (!path)
goto out;
again:
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
goto free_path;
delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
if (!delayed_node)
goto free_path;
path->leave_spinning = 1;
root = delayed_node->root;
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
goto release_path;
block_rsv = trans->block_rsv;
trans->block_rsv = &root->fs_info->delayed_block_rsv;
__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
trans->block_rsv = block_rsv;
btrfs_end_transaction(trans, root);
btrfs_btree_balance_dirty_nodelay(root);
release_path:
btrfs_release_path(path);
total_done++;
btrfs_release_prepared_delayed_node(delayed_node);
if (async_work->nr == 0 || total_done < async_work->nr)
goto again;
free_path:
btrfs_free_path(path);
out:
wake_up(&delayed_root->wait);
kfree(async_work);
}
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
struct btrfs_fs_info *fs_info, int nr)
{
struct btrfs_async_delayed_work *async_work;
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
return 0;
async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
if (!async_work)
return -ENOMEM;
async_work->delayed_root = delayed_root;
btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
btrfs_async_run_delayed_root, NULL, NULL);
async_work->nr = nr;
btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
return 0;
}
void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
{
struct btrfs_delayed_root *delayed_root;
delayed_root = btrfs_get_delayed_root(root);
WARN_ON(btrfs_first_delayed_node(delayed_root));
}
static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
{
int val = atomic_read(&delayed_root->items_seq);
if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
return 1;
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
return 1;
return 0;
}
void btrfs_balance_delayed_items(struct btrfs_root *root)
{
struct btrfs_delayed_root *delayed_root;
struct btrfs_fs_info *fs_info = root->fs_info;
delayed_root = btrfs_get_delayed_root(root);
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
return;
if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
int seq;
int ret;
seq = atomic_read(&delayed_root->items_seq);
ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
if (ret)
return;
wait_event_interruptible(delayed_root->wait,
could_end_wait(delayed_root, seq));
return;
}
btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
}
/* Will return 0 or -ENOMEM */
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
struct btrfs_root *root, const char *name,
int name_len, struct inode *dir,
struct btrfs_disk_key *disk_key, u8 type,
u64 index)
{
struct btrfs_delayed_node *delayed_node;
struct btrfs_delayed_item *delayed_item;
struct btrfs_dir_item *dir_item;
int ret;
delayed_node = btrfs_get_or_create_delayed_node(dir);
if (IS_ERR(delayed_node))
return PTR_ERR(delayed_node);
delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
if (!delayed_item) {
ret = -ENOMEM;
goto release_node;
}
delayed_item->key.objectid = btrfs_ino(dir);
delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
delayed_item->key.offset = index;
dir_item = (struct btrfs_dir_item *)delayed_item->data;
dir_item->location = *disk_key;
btrfs_set_stack_dir_transid(dir_item, trans->transid);
btrfs_set_stack_dir_data_len(dir_item, 0);
btrfs_set_stack_dir_name_len(dir_item, name_len);
btrfs_set_stack_dir_type(dir_item, type);
memcpy((char *)(dir_item + 1), name, name_len);
ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
/*
* we have reserved enough space when we start a new transaction,
* so reserving metadata failure is impossible
*/
BUG_ON(ret);
mutex_lock(&delayed_node->mutex);
ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
if (unlikely(ret)) {
btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
"into the insertion tree of the delayed node"
"(root id: %llu, inode id: %llu, errno: %d)",
name_len, name, delayed_node->root->objectid,
delayed_node->inode_id, ret);
BUG();
}
mutex_unlock(&delayed_node->mutex);
release_node:
btrfs_release_delayed_node(delayed_node);
return ret;
}
static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
struct btrfs_delayed_node *node,
struct btrfs_key *key)
{
struct btrfs_delayed_item *item;
mutex_lock(&node->mutex);
item = __btrfs_lookup_delayed_insertion_item(node, key);
if (!item) {
mutex_unlock(&node->mutex);
return 1;
}
btrfs_delayed_item_release_metadata(root, item);
btrfs_release_delayed_item(item);
mutex_unlock(&node->mutex);
return 0;
}
int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *dir,
u64 index)
{
struct btrfs_delayed_node *node;
struct btrfs_delayed_item *item;
struct btrfs_key item_key;
int ret;
node = btrfs_get_or_create_delayed_node(dir);
if (IS_ERR(node))
return PTR_ERR(node);
item_key.objectid = btrfs_ino(dir);
item_key.type = BTRFS_DIR_INDEX_KEY;
item_key.offset = index;
ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
if (!ret)
goto end;
item = btrfs_alloc_delayed_item(0);
if (!item) {
ret = -ENOMEM;
goto end;
}
item->key = item_key;
ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
/*
* we have reserved enough space when we start a new transaction,
* so reserving metadata failure is impossible.
*/
BUG_ON(ret);
mutex_lock(&node->mutex);
ret = __btrfs_add_delayed_deletion_item(node, item);
if (unlikely(ret)) {
btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
"into the deletion tree of the delayed node"
"(root id: %llu, inode id: %llu, errno: %d)",
index, node->root->objectid, node->inode_id,
ret);
BUG();
}
mutex_unlock(&node->mutex);
end:
btrfs_release_delayed_node(node);
return ret;
}
int btrfs_inode_delayed_dir_index_count(struct inode *inode)
{
struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
if (!delayed_node)
return -ENOENT;
/*
* Since we have held i_mutex of this directory, it is impossible that
* a new directory index is added into the delayed node and index_cnt
* is updated now. So we needn't lock the delayed node.
*/
if (!delayed_node->index_cnt) {
btrfs_release_delayed_node(delayed_node);
return -EINVAL;
}
BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
btrfs_release_delayed_node(delayed_node);
return 0;
}
void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
struct list_head *del_list)
{
struct btrfs_delayed_node *delayed_node;
struct btrfs_delayed_item *item;
delayed_node = btrfs_get_delayed_node(inode);
if (!delayed_node)
return;
mutex_lock(&delayed_node->mutex);
item = __btrfs_first_delayed_insertion_item(delayed_node);
while (item) {
atomic_inc(&item->refs);
list_add_tail(&item->readdir_list, ins_list);
item = __btrfs_next_delayed_item(item);
}
item = __btrfs_first_delayed_deletion_item(delayed_node);
while (item) {
atomic_inc(&item->refs);
list_add_tail(&item->readdir_list, del_list);
item = __btrfs_next_delayed_item(item);
}
mutex_unlock(&delayed_node->mutex);
/*
* This delayed node is still cached in the btrfs inode, so refs
* must be > 1 now, and we needn't check it is going to be freed
* or not.
*
* Besides that, this function is used to read dir, we do not
* insert/delete delayed items in this period. So we also needn't
* requeue or dequeue this delayed node.
*/
atomic_dec(&delayed_node->refs);
}
void btrfs_put_delayed_items(struct list_head *ins_list,
struct list_head *del_list)
{
struct btrfs_delayed_item *curr, *next;
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
list_del(&curr->readdir_list);
if (atomic_dec_and_test(&curr->refs))
kfree(curr);
}
list_for_each_entry_safe(curr, next, del_list, readdir_list) {
list_del(&curr->readdir_list);
if (atomic_dec_and_test(&curr->refs))
kfree(curr);
}
}
int btrfs_should_delete_dir_index(struct list_head *del_list,
u64 index)
{
struct btrfs_delayed_item *curr, *next;
int ret;
if (list_empty(del_list))
return 0;
list_for_each_entry_safe(curr, next, del_list, readdir_list) {
if (curr->key.offset > index)
break;
list_del(&curr->readdir_list);
ret = (curr->key.offset == index);
if (atomic_dec_and_test(&curr->refs))
kfree(curr);
if (ret)
return 1;
else
continue;
}
return 0;
}
/*
* btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
*
*/
int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
struct list_head *ins_list, bool *emitted)
{
struct btrfs_dir_item *di;
struct btrfs_delayed_item *curr, *next;
struct btrfs_key location;
char *name;
int name_len;
int over = 0;
unsigned char d_type;
if (list_empty(ins_list))
return 0;
/*
* Changing the data of the delayed item is impossible. So
* we needn't lock them. And we have held i_mutex of the
* directory, nobody can delete any directory indexes now.
*/
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
list_del(&curr->readdir_list);
if (curr->key.offset < ctx->pos) {
if (atomic_dec_and_test(&curr->refs))
kfree(curr);
continue;
}
ctx->pos = curr->key.offset;
di = (struct btrfs_dir_item *)curr->data;
name = (char *)(di + 1);
name_len = btrfs_stack_dir_name_len(di);
d_type = btrfs_filetype_table[di->type];
btrfs_disk_key_to_cpu(&location, &di->location);
over = !dir_emit(ctx, name, name_len,
location.objectid, d_type);
if (atomic_dec_and_test(&curr->refs))
kfree(curr);
if (over)
return 1;
*emitted = true;
}
return 0;
}
static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
struct btrfs_inode_item *inode_item,
struct inode *inode)
{
btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
btrfs_set_stack_inode_generation(inode_item,
BTRFS_I(inode)->generation);
btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
btrfs_set_stack_inode_transid(inode_item, trans->transid);
btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
btrfs_set_stack_inode_block_group(inode_item, 0);
btrfs_set_stack_timespec_sec(&inode_item->atime,
inode->i_atime.tv_sec);
btrfs_set_stack_timespec_nsec(&inode_item->atime,
inode->i_atime.tv_nsec);
btrfs_set_stack_timespec_sec(&inode_item->mtime,
inode->i_mtime.tv_sec);
btrfs_set_stack_timespec_nsec(&inode_item->mtime,
inode->i_mtime.tv_nsec);
btrfs_set_stack_timespec_sec(&inode_item->ctime,
inode->i_ctime.tv_sec);
btrfs_set_stack_timespec_nsec(&inode_item->ctime,
inode->i_ctime.tv_nsec);
btrfs_set_stack_timespec_sec(&inode_item->otime,
BTRFS_I(inode)->i_otime.tv_sec);
btrfs_set_stack_timespec_nsec(&inode_item->otime,
BTRFS_I(inode)->i_otime.tv_nsec);
}
int btrfs_fill_inode(struct inode *inode, u32 *rdev)
{
struct btrfs_delayed_node *delayed_node;
struct btrfs_inode_item *inode_item;
delayed_node = btrfs_get_delayed_node(inode);
if (!delayed_node)
return -ENOENT;
mutex_lock(&delayed_node->mutex);
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return -ENOENT;
}
inode_item = &delayed_node->inode_item;
i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
inode->i_mode = btrfs_stack_inode_mode(inode_item);
set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
inode->i_version = btrfs_stack_inode_sequence(inode_item);
inode->i_rdev = 0;
*rdev = btrfs_stack_inode_rdev(inode_item);
BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
BTRFS_I(inode)->i_otime.tv_sec =
btrfs_stack_timespec_sec(&inode_item->otime);
BTRFS_I(inode)->i_otime.tv_nsec =
btrfs_stack_timespec_nsec(&inode_item->otime);
inode->i_generation = BTRFS_I(inode)->generation;
BTRFS_I(inode)->index_cnt = (u64)-1;
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return 0;
}
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode)
{
struct btrfs_delayed_node *delayed_node;
int ret = 0;
delayed_node = btrfs_get_or_create_delayed_node(inode);
if (IS_ERR(delayed_node))
return PTR_ERR(delayed_node);
mutex_lock(&delayed_node->mutex);
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
goto release_node;
}
ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
delayed_node);
if (ret)
goto release_node;
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
delayed_node->count++;
atomic_inc(&root->fs_info->delayed_root->items);
release_node:
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return ret;
}
int btrfs_delayed_delete_inode_ref(struct inode *inode)
{
struct btrfs_delayed_node *delayed_node;
/*
* we don't do delayed inode updates during log recovery because it
* leads to enospc problems. This means we also can't do
* delayed inode refs
*/
if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
return -EAGAIN;
delayed_node = btrfs_get_or_create_delayed_node(inode);
if (IS_ERR(delayed_node))
return PTR_ERR(delayed_node);
/*
* We don't reserve space for inode ref deletion is because:
* - We ONLY do async inode ref deletion for the inode who has only
* one link(i_nlink == 1), it means there is only one inode ref.
* And in most case, the inode ref and the inode item are in the
* same leaf, and we will deal with them at the same time.
* Since we are sure we will reserve the space for the inode item,
* it is unnecessary to reserve space for inode ref deletion.
* - If the inode ref and the inode item are not in the same leaf,
* We also needn't worry about enospc problem, because we reserve
* much more space for the inode update than it needs.
* - At the worst, we can steal some space from the global reservation.
* It is very rare.
*/
mutex_lock(&delayed_node->mutex);
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
goto release_node;
set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
delayed_node->count++;
atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
release_node:
mutex_unlock(&delayed_node->mutex);
btrfs_release_delayed_node(delayed_node);
return 0;
}
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
{
struct btrfs_root *root = delayed_node->root;
struct btrfs_delayed_item *curr_item, *prev_item;
mutex_lock(&delayed_node->mutex);
curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
while (curr_item) {
btrfs_delayed_item_release_metadata(root, curr_item);
prev_item = curr_item;
curr_item = __btrfs_next_delayed_item(prev_item);
btrfs_release_delayed_item(prev_item);
}
curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
while (curr_item) {
btrfs_delayed_item_release_metadata(root, curr_item);
prev_item = curr_item;
curr_item = __btrfs_next_delayed_item(prev_item);
btrfs_release_delayed_item(prev_item);
}
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
btrfs_release_delayed_iref(delayed_node);
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
btrfs_delayed_inode_release_metadata(root, delayed_node);
btrfs_release_delayed_inode(delayed_node);
}
mutex_unlock(&delayed_node->mutex);
}
void btrfs_kill_delayed_inode_items(struct inode *inode)
{
struct btrfs_delayed_node *delayed_node;
delayed_node = btrfs_get_delayed_node(inode);
if (!delayed_node)
return;
__btrfs_kill_delayed_node(delayed_node);
btrfs_release_delayed_node(delayed_node);
}
void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
{
u64 inode_id = 0;
struct btrfs_delayed_node *delayed_nodes[8];
int i, n;
while (1) {
spin_lock(&root->inode_lock);
n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
(void **)delayed_nodes, inode_id,
ARRAY_SIZE(delayed_nodes));
if (!n) {
spin_unlock(&root->inode_lock);
break;
}
inode_id = delayed_nodes[n - 1]->inode_id + 1;
for (i = 0; i < n; i++)
atomic_inc(&delayed_nodes[i]->refs);
spin_unlock(&root->inode_lock);
for (i = 0; i < n; i++) {
__btrfs_kill_delayed_node(delayed_nodes[i]);
btrfs_release_delayed_node(delayed_nodes[i]);
}
}
}
void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
{
struct btrfs_delayed_root *delayed_root;
struct btrfs_delayed_node *curr_node, *prev_node;
delayed_root = btrfs_get_delayed_root(root);
curr_node = btrfs_first_delayed_node(delayed_root);
while (curr_node) {
__btrfs_kill_delayed_node(curr_node);
prev_node = curr_node;
curr_node = btrfs_next_delayed_node(curr_node);
btrfs_release_delayed_node(prev_node);
}
}