linux/drivers/net/wireless/brcm80211/brcmfmac/dhd_sdio.c
Franky Lin bbfd6a66ff brcmfmac: restrict dongle txglom disable to old SDIO core
txglomming is a firmware feature for sdio bus interface. For SDIO
device cores newer than revision 11, the default setting of
firmware should be used instead of disabling it from the host side.

Reviewed-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: Franky Lin <frankyl@broadcom.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2012-06-27 15:23:17 -04:00

4338 lines
113 KiB
C

/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/printk.h>
#include <linux/pci_ids.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sdio_func.h>
#include <linux/mmc/card.h>
#include <linux/semaphore.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/bcma/bcma.h>
#include <linux/debugfs.h>
#include <linux/vmalloc.h>
#include <asm/unaligned.h>
#include <defs.h>
#include <brcmu_wifi.h>
#include <brcmu_utils.h>
#include <brcm_hw_ids.h>
#include <soc.h>
#include "sdio_host.h"
#include "sdio_chip.h"
#define DCMD_RESP_TIMEOUT 2000 /* In milli second */
#ifdef DEBUG
#define BRCMF_TRAP_INFO_SIZE 80
#define CBUF_LEN (128)
/* Device console log buffer state */
#define CONSOLE_BUFFER_MAX 2024
struct rte_log_le {
__le32 buf; /* Can't be pointer on (64-bit) hosts */
__le32 buf_size;
__le32 idx;
char *_buf_compat; /* Redundant pointer for backward compat. */
};
struct rte_console {
/* Virtual UART
* When there is no UART (e.g. Quickturn),
* the host should write a complete
* input line directly into cbuf and then write
* the length into vcons_in.
* This may also be used when there is a real UART
* (at risk of conflicting with
* the real UART). vcons_out is currently unused.
*/
uint vcons_in;
uint vcons_out;
/* Output (logging) buffer
* Console output is written to a ring buffer log_buf at index log_idx.
* The host may read the output when it sees log_idx advance.
* Output will be lost if the output wraps around faster than the host
* polls.
*/
struct rte_log_le log_le;
/* Console input line buffer
* Characters are read one at a time into cbuf
* until <CR> is received, then
* the buffer is processed as a command line.
* Also used for virtual UART.
*/
uint cbuf_idx;
char cbuf[CBUF_LEN];
};
#endif /* DEBUG */
#include <chipcommon.h>
#include "dhd_bus.h"
#include "dhd_dbg.h"
#define TXQLEN 2048 /* bulk tx queue length */
#define TXHI (TXQLEN - 256) /* turn on flow control above TXHI */
#define TXLOW (TXHI - 256) /* turn off flow control below TXLOW */
#define PRIOMASK 7
#define TXRETRIES 2 /* # of retries for tx frames */
#define BRCMF_RXBOUND 50 /* Default for max rx frames in
one scheduling */
#define BRCMF_TXBOUND 20 /* Default for max tx frames in
one scheduling */
#define BRCMF_TXMINMAX 1 /* Max tx frames if rx still pending */
#define MEMBLOCK 2048 /* Block size used for downloading
of dongle image */
#define MAX_DATA_BUF (32 * 1024) /* Must be large enough to hold
biggest possible glom */
#define BRCMF_FIRSTREAD (1 << 6)
/* SBSDIO_DEVICE_CTL */
/* 1: device will assert busy signal when receiving CMD53 */
#define SBSDIO_DEVCTL_SETBUSY 0x01
/* 1: assertion of sdio interrupt is synchronous to the sdio clock */
#define SBSDIO_DEVCTL_SPI_INTR_SYNC 0x02
/* 1: mask all interrupts to host except the chipActive (rev 8) */
#define SBSDIO_DEVCTL_CA_INT_ONLY 0x04
/* 1: isolate internal sdio signals, put external pads in tri-state; requires
* sdio bus power cycle to clear (rev 9) */
#define SBSDIO_DEVCTL_PADS_ISO 0x08
/* Force SD->SB reset mapping (rev 11) */
#define SBSDIO_DEVCTL_SB_RST_CTL 0x30
/* Determined by CoreControl bit */
#define SBSDIO_DEVCTL_RST_CORECTL 0x00
/* Force backplane reset */
#define SBSDIO_DEVCTL_RST_BPRESET 0x10
/* Force no backplane reset */
#define SBSDIO_DEVCTL_RST_NOBPRESET 0x20
/* direct(mapped) cis space */
/* MAPPED common CIS address */
#define SBSDIO_CIS_BASE_COMMON 0x1000
/* maximum bytes in one CIS */
#define SBSDIO_CIS_SIZE_LIMIT 0x200
/* cis offset addr is < 17 bits */
#define SBSDIO_CIS_OFT_ADDR_MASK 0x1FFFF
/* manfid tuple length, include tuple, link bytes */
#define SBSDIO_CIS_MANFID_TUPLE_LEN 6
/* intstatus */
#define I_SMB_SW0 (1 << 0) /* To SB Mail S/W interrupt 0 */
#define I_SMB_SW1 (1 << 1) /* To SB Mail S/W interrupt 1 */
#define I_SMB_SW2 (1 << 2) /* To SB Mail S/W interrupt 2 */
#define I_SMB_SW3 (1 << 3) /* To SB Mail S/W interrupt 3 */
#define I_SMB_SW_MASK 0x0000000f /* To SB Mail S/W interrupts mask */
#define I_SMB_SW_SHIFT 0 /* To SB Mail S/W interrupts shift */
#define I_HMB_SW0 (1 << 4) /* To Host Mail S/W interrupt 0 */
#define I_HMB_SW1 (1 << 5) /* To Host Mail S/W interrupt 1 */
#define I_HMB_SW2 (1 << 6) /* To Host Mail S/W interrupt 2 */
#define I_HMB_SW3 (1 << 7) /* To Host Mail S/W interrupt 3 */
#define I_HMB_SW_MASK 0x000000f0 /* To Host Mail S/W interrupts mask */
#define I_HMB_SW_SHIFT 4 /* To Host Mail S/W interrupts shift */
#define I_WR_OOSYNC (1 << 8) /* Write Frame Out Of Sync */
#define I_RD_OOSYNC (1 << 9) /* Read Frame Out Of Sync */
#define I_PC (1 << 10) /* descriptor error */
#define I_PD (1 << 11) /* data error */
#define I_DE (1 << 12) /* Descriptor protocol Error */
#define I_RU (1 << 13) /* Receive descriptor Underflow */
#define I_RO (1 << 14) /* Receive fifo Overflow */
#define I_XU (1 << 15) /* Transmit fifo Underflow */
#define I_RI (1 << 16) /* Receive Interrupt */
#define I_BUSPWR (1 << 17) /* SDIO Bus Power Change (rev 9) */
#define I_XMTDATA_AVAIL (1 << 23) /* bits in fifo */
#define I_XI (1 << 24) /* Transmit Interrupt */
#define I_RF_TERM (1 << 25) /* Read Frame Terminate */
#define I_WF_TERM (1 << 26) /* Write Frame Terminate */
#define I_PCMCIA_XU (1 << 27) /* PCMCIA Transmit FIFO Underflow */
#define I_SBINT (1 << 28) /* sbintstatus Interrupt */
#define I_CHIPACTIVE (1 << 29) /* chip from doze to active state */
#define I_SRESET (1 << 30) /* CCCR RES interrupt */
#define I_IOE2 (1U << 31) /* CCCR IOE2 Bit Changed */
#define I_ERRORS (I_PC | I_PD | I_DE | I_RU | I_RO | I_XU)
#define I_DMA (I_RI | I_XI | I_ERRORS)
/* corecontrol */
#define CC_CISRDY (1 << 0) /* CIS Ready */
#define CC_BPRESEN (1 << 1) /* CCCR RES signal */
#define CC_F2RDY (1 << 2) /* set CCCR IOR2 bit */
#define CC_CLRPADSISO (1 << 3) /* clear SDIO pads isolation */
#define CC_XMTDATAAVAIL_MODE (1 << 4)
#define CC_XMTDATAAVAIL_CTRL (1 << 5)
/* SDA_FRAMECTRL */
#define SFC_RF_TERM (1 << 0) /* Read Frame Terminate */
#define SFC_WF_TERM (1 << 1) /* Write Frame Terminate */
#define SFC_CRC4WOOS (1 << 2) /* CRC error for write out of sync */
#define SFC_ABORTALL (1 << 3) /* Abort all in-progress frames */
/* HW frame tag */
#define SDPCM_FRAMETAG_LEN 4 /* 2 bytes len, 2 bytes check val */
/* Total length of frame header for dongle protocol */
#define SDPCM_HDRLEN (SDPCM_FRAMETAG_LEN + SDPCM_SWHEADER_LEN)
#define SDPCM_RESERVE (SDPCM_HDRLEN + BRCMF_SDALIGN)
/*
* Software allocation of To SB Mailbox resources
*/
/* tosbmailbox bits corresponding to intstatus bits */
#define SMB_NAK (1 << 0) /* Frame NAK */
#define SMB_INT_ACK (1 << 1) /* Host Interrupt ACK */
#define SMB_USE_OOB (1 << 2) /* Use OOB Wakeup */
#define SMB_DEV_INT (1 << 3) /* Miscellaneous Interrupt */
/* tosbmailboxdata */
#define SMB_DATA_VERSION_SHIFT 16 /* host protocol version */
/*
* Software allocation of To Host Mailbox resources
*/
/* intstatus bits */
#define I_HMB_FC_STATE I_HMB_SW0 /* Flow Control State */
#define I_HMB_FC_CHANGE I_HMB_SW1 /* Flow Control State Changed */
#define I_HMB_FRAME_IND I_HMB_SW2 /* Frame Indication */
#define I_HMB_HOST_INT I_HMB_SW3 /* Miscellaneous Interrupt */
/* tohostmailboxdata */
#define HMB_DATA_NAKHANDLED 1 /* retransmit NAK'd frame */
#define HMB_DATA_DEVREADY 2 /* talk to host after enable */
#define HMB_DATA_FC 4 /* per prio flowcontrol update flag */
#define HMB_DATA_FWREADY 8 /* fw ready for protocol activity */
#define HMB_DATA_FCDATA_MASK 0xff000000
#define HMB_DATA_FCDATA_SHIFT 24
#define HMB_DATA_VERSION_MASK 0x00ff0000
#define HMB_DATA_VERSION_SHIFT 16
/*
* Software-defined protocol header
*/
/* Current protocol version */
#define SDPCM_PROT_VERSION 4
/* SW frame header */
#define SDPCM_PACKET_SEQUENCE(p) (((u8 *)p)[0] & 0xff)
#define SDPCM_CHANNEL_MASK 0x00000f00
#define SDPCM_CHANNEL_SHIFT 8
#define SDPCM_PACKET_CHANNEL(p) (((u8 *)p)[1] & 0x0f)
#define SDPCM_NEXTLEN_OFFSET 2
/* Data Offset from SOF (HW Tag, SW Tag, Pad) */
#define SDPCM_DOFFSET_OFFSET 3 /* Data Offset */
#define SDPCM_DOFFSET_VALUE(p) (((u8 *)p)[SDPCM_DOFFSET_OFFSET] & 0xff)
#define SDPCM_DOFFSET_MASK 0xff000000
#define SDPCM_DOFFSET_SHIFT 24
#define SDPCM_FCMASK_OFFSET 4 /* Flow control */
#define SDPCM_FCMASK_VALUE(p) (((u8 *)p)[SDPCM_FCMASK_OFFSET] & 0xff)
#define SDPCM_WINDOW_OFFSET 5 /* Credit based fc */
#define SDPCM_WINDOW_VALUE(p) (((u8 *)p)[SDPCM_WINDOW_OFFSET] & 0xff)
#define SDPCM_SWHEADER_LEN 8 /* SW header is 64 bits */
/* logical channel numbers */
#define SDPCM_CONTROL_CHANNEL 0 /* Control channel Id */
#define SDPCM_EVENT_CHANNEL 1 /* Asyc Event Indication Channel Id */
#define SDPCM_DATA_CHANNEL 2 /* Data Xmit/Recv Channel Id */
#define SDPCM_GLOM_CHANNEL 3 /* For coalesced packets */
#define SDPCM_TEST_CHANNEL 15 /* Reserved for test/debug packets */
#define SDPCM_SEQUENCE_WRAP 256 /* wrap-around val for 8bit frame seq */
#define SDPCM_GLOMDESC(p) (((u8 *)p)[1] & 0x80)
/*
* Shared structure between dongle and the host.
* The structure contains pointers to trap or assert information.
*/
#define SDPCM_SHARED_VERSION 0x0003
#define SDPCM_SHARED_VERSION_MASK 0x00FF
#define SDPCM_SHARED_ASSERT_BUILT 0x0100
#define SDPCM_SHARED_ASSERT 0x0200
#define SDPCM_SHARED_TRAP 0x0400
/* Space for header read, limit for data packets */
#define MAX_HDR_READ (1 << 6)
#define MAX_RX_DATASZ 2048
/* Maximum milliseconds to wait for F2 to come up */
#define BRCMF_WAIT_F2RDY 3000
/* Bump up limit on waiting for HT to account for first startup;
* if the image is doing a CRC calculation before programming the PMU
* for HT availability, it could take a couple hundred ms more, so
* max out at a 1 second (1000000us).
*/
#undef PMU_MAX_TRANSITION_DLY
#define PMU_MAX_TRANSITION_DLY 1000000
/* Value for ChipClockCSR during initial setup */
#define BRCMF_INIT_CLKCTL1 (SBSDIO_FORCE_HW_CLKREQ_OFF | \
SBSDIO_ALP_AVAIL_REQ)
/* Flags for SDH calls */
#define F2SYNC (SDIO_REQ_4BYTE | SDIO_REQ_FIXED)
#define BRCMF_SDIO_FW_NAME "brcm/brcmfmac-sdio.bin"
#define BRCMF_SDIO_NV_NAME "brcm/brcmfmac-sdio.txt"
MODULE_FIRMWARE(BRCMF_SDIO_FW_NAME);
MODULE_FIRMWARE(BRCMF_SDIO_NV_NAME);
#define BRCMF_IDLE_IMMEDIATE (-1) /* Enter idle immediately */
#define BRCMF_IDLE_ACTIVE 0 /* Do not request any SD clock change
* when idle
*/
#define BRCMF_IDLE_INTERVAL 1
/*
* Conversion of 802.1D priority to precedence level
*/
static uint prio2prec(u32 prio)
{
return (prio == PRIO_8021D_NONE || prio == PRIO_8021D_BE) ?
(prio^2) : prio;
}
/* core registers */
struct sdpcmd_regs {
u32 corecontrol; /* 0x00, rev8 */
u32 corestatus; /* rev8 */
u32 PAD[1];
u32 biststatus; /* rev8 */
/* PCMCIA access */
u16 pcmciamesportaladdr; /* 0x010, rev8 */
u16 PAD[1];
u16 pcmciamesportalmask; /* rev8 */
u16 PAD[1];
u16 pcmciawrframebc; /* rev8 */
u16 PAD[1];
u16 pcmciaunderflowtimer; /* rev8 */
u16 PAD[1];
/* interrupt */
u32 intstatus; /* 0x020, rev8 */
u32 hostintmask; /* rev8 */
u32 intmask; /* rev8 */
u32 sbintstatus; /* rev8 */
u32 sbintmask; /* rev8 */
u32 funcintmask; /* rev4 */
u32 PAD[2];
u32 tosbmailbox; /* 0x040, rev8 */
u32 tohostmailbox; /* rev8 */
u32 tosbmailboxdata; /* rev8 */
u32 tohostmailboxdata; /* rev8 */
/* synchronized access to registers in SDIO clock domain */
u32 sdioaccess; /* 0x050, rev8 */
u32 PAD[3];
/* PCMCIA frame control */
u8 pcmciaframectrl; /* 0x060, rev8 */
u8 PAD[3];
u8 pcmciawatermark; /* rev8 */
u8 PAD[155];
/* interrupt batching control */
u32 intrcvlazy; /* 0x100, rev8 */
u32 PAD[3];
/* counters */
u32 cmd52rd; /* 0x110, rev8 */
u32 cmd52wr; /* rev8 */
u32 cmd53rd; /* rev8 */
u32 cmd53wr; /* rev8 */
u32 abort; /* rev8 */
u32 datacrcerror; /* rev8 */
u32 rdoutofsync; /* rev8 */
u32 wroutofsync; /* rev8 */
u32 writebusy; /* rev8 */
u32 readwait; /* rev8 */
u32 readterm; /* rev8 */
u32 writeterm; /* rev8 */
u32 PAD[40];
u32 clockctlstatus; /* rev8 */
u32 PAD[7];
u32 PAD[128]; /* DMA engines */
/* SDIO/PCMCIA CIS region */
char cis[512]; /* 0x400-0x5ff, rev6 */
/* PCMCIA function control registers */
char pcmciafcr[256]; /* 0x600-6ff, rev6 */
u16 PAD[55];
/* PCMCIA backplane access */
u16 backplanecsr; /* 0x76E, rev6 */
u16 backplaneaddr0; /* rev6 */
u16 backplaneaddr1; /* rev6 */
u16 backplaneaddr2; /* rev6 */
u16 backplaneaddr3; /* rev6 */
u16 backplanedata0; /* rev6 */
u16 backplanedata1; /* rev6 */
u16 backplanedata2; /* rev6 */
u16 backplanedata3; /* rev6 */
u16 PAD[31];
/* sprom "size" & "blank" info */
u16 spromstatus; /* 0x7BE, rev2 */
u32 PAD[464];
u16 PAD[0x80];
};
#ifdef DEBUG
/* Device console log buffer state */
struct brcmf_console {
uint count; /* Poll interval msec counter */
uint log_addr; /* Log struct address (fixed) */
struct rte_log_le log_le; /* Log struct (host copy) */
uint bufsize; /* Size of log buffer */
u8 *buf; /* Log buffer (host copy) */
uint last; /* Last buffer read index */
};
struct brcmf_trap_info {
__le32 type;
__le32 epc;
__le32 cpsr;
__le32 spsr;
__le32 r0; /* a1 */
__le32 r1; /* a2 */
__le32 r2; /* a3 */
__le32 r3; /* a4 */
__le32 r4; /* v1 */
__le32 r5; /* v2 */
__le32 r6; /* v3 */
__le32 r7; /* v4 */
__le32 r8; /* v5 */
__le32 r9; /* sb/v6 */
__le32 r10; /* sl/v7 */
__le32 r11; /* fp/v8 */
__le32 r12; /* ip */
__le32 r13; /* sp */
__le32 r14; /* lr */
__le32 pc; /* r15 */
};
#endif /* DEBUG */
struct sdpcm_shared {
u32 flags;
u32 trap_addr;
u32 assert_exp_addr;
u32 assert_file_addr;
u32 assert_line;
u32 console_addr; /* Address of struct rte_console */
u32 msgtrace_addr;
u8 tag[32];
u32 brpt_addr;
};
struct sdpcm_shared_le {
__le32 flags;
__le32 trap_addr;
__le32 assert_exp_addr;
__le32 assert_file_addr;
__le32 assert_line;
__le32 console_addr; /* Address of struct rte_console */
__le32 msgtrace_addr;
u8 tag[32];
__le32 brpt_addr;
};
/* misc chip info needed by some of the routines */
/* Private data for SDIO bus interaction */
struct brcmf_sdio {
struct brcmf_sdio_dev *sdiodev; /* sdio device handler */
struct chip_info *ci; /* Chip info struct */
char *vars; /* Variables (from CIS and/or other) */
uint varsz; /* Size of variables buffer */
u32 ramsize; /* Size of RAM in SOCRAM (bytes) */
u32 hostintmask; /* Copy of Host Interrupt Mask */
u32 intstatus; /* Intstatus bits (events) pending */
bool dpc_sched; /* Indicates DPC schedule (intrpt rcvd) */
bool fcstate; /* State of dongle flow-control */
uint blocksize; /* Block size of SDIO transfers */
uint roundup; /* Max roundup limit */
struct pktq txq; /* Queue length used for flow-control */
u8 flowcontrol; /* per prio flow control bitmask */
u8 tx_seq; /* Transmit sequence number (next) */
u8 tx_max; /* Maximum transmit sequence allowed */
u8 hdrbuf[MAX_HDR_READ + BRCMF_SDALIGN];
u8 *rxhdr; /* Header of current rx frame (in hdrbuf) */
u16 nextlen; /* Next Read Len from last header */
u8 rx_seq; /* Receive sequence number (expected) */
bool rxskip; /* Skip receive (awaiting NAK ACK) */
uint rxbound; /* Rx frames to read before resched */
uint txbound; /* Tx frames to send before resched */
uint txminmax;
struct sk_buff *glomd; /* Packet containing glomming descriptor */
struct sk_buff_head glom; /* Packet list for glommed superframe */
uint glomerr; /* Glom packet read errors */
u8 *rxbuf; /* Buffer for receiving control packets */
uint rxblen; /* Allocated length of rxbuf */
u8 *rxctl; /* Aligned pointer into rxbuf */
u8 *databuf; /* Buffer for receiving big glom packet */
u8 *dataptr; /* Aligned pointer into databuf */
uint rxlen; /* Length of valid data in buffer */
u8 sdpcm_ver; /* Bus protocol reported by dongle */
bool intr; /* Use interrupts */
bool poll; /* Use polling */
bool ipend; /* Device interrupt is pending */
uint spurious; /* Count of spurious interrupts */
uint pollrate; /* Ticks between device polls */
uint polltick; /* Tick counter */
#ifdef DEBUG
uint console_interval;
struct brcmf_console console; /* Console output polling support */
uint console_addr; /* Console address from shared struct */
#endif /* DEBUG */
uint clkstate; /* State of sd and backplane clock(s) */
bool activity; /* Activity flag for clock down */
s32 idletime; /* Control for activity timeout */
s32 idlecount; /* Activity timeout counter */
s32 idleclock; /* How to set bus driver when idle */
s32 sd_rxchain;
bool use_rxchain; /* If brcmf should use PKT chains */
bool sleeping; /* Is SDIO bus sleeping? */
bool rxflow_mode; /* Rx flow control mode */
bool rxflow; /* Is rx flow control on */
bool alp_only; /* Don't use HT clock (ALP only) */
/* Field to decide if rx of control frames happen in rxbuf or lb-pool */
bool usebufpool;
u8 *ctrl_frame_buf;
u32 ctrl_frame_len;
bool ctrl_frame_stat;
spinlock_t txqlock;
wait_queue_head_t ctrl_wait;
wait_queue_head_t dcmd_resp_wait;
struct timer_list timer;
struct completion watchdog_wait;
struct task_struct *watchdog_tsk;
bool wd_timer_valid;
uint save_ms;
struct task_struct *dpc_tsk;
struct completion dpc_wait;
struct list_head dpc_tsklst;
spinlock_t dpc_tl_lock;
struct semaphore sdsem;
const struct firmware *firmware;
u32 fw_ptr;
bool txoff; /* Transmit flow-controlled */
struct brcmf_sdio_count sdcnt;
};
/* clkstate */
#define CLK_NONE 0
#define CLK_SDONLY 1
#define CLK_PENDING 2 /* Not used yet */
#define CLK_AVAIL 3
#ifdef DEBUG
static int qcount[NUMPRIO];
static int tx_packets[NUMPRIO];
#endif /* DEBUG */
#define SDIO_DRIVE_STRENGTH 6 /* in milliamps */
#define RETRYCHAN(chan) ((chan) == SDPCM_EVENT_CHANNEL)
/* Retry count for register access failures */
static const uint retry_limit = 2;
/* Limit on rounding up frames */
static const uint max_roundup = 512;
#define ALIGNMENT 4
static void pkt_align(struct sk_buff *p, int len, int align)
{
uint datalign;
datalign = (unsigned long)(p->data);
datalign = roundup(datalign, (align)) - datalign;
if (datalign)
skb_pull(p, datalign);
__skb_trim(p, len);
}
/* To check if there's window offered */
static bool data_ok(struct brcmf_sdio *bus)
{
return (u8)(bus->tx_max - bus->tx_seq) != 0 &&
((u8)(bus->tx_max - bus->tx_seq) & 0x80) == 0;
}
/*
* Reads a register in the SDIO hardware block. This block occupies a series of
* adresses on the 32 bit backplane bus.
*/
static int
r_sdreg32(struct brcmf_sdio *bus, u32 *regvar, u32 offset)
{
u8 idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV);
int ret;
*regvar = brcmf_sdio_regrl(bus->sdiodev,
bus->ci->c_inf[idx].base + offset, &ret);
return ret;
}
static int
w_sdreg32(struct brcmf_sdio *bus, u32 regval, u32 reg_offset)
{
u8 idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV);
int ret;
brcmf_sdio_regwl(bus->sdiodev,
bus->ci->c_inf[idx].base + reg_offset,
regval, &ret);
return ret;
}
#define PKT_AVAILABLE() (intstatus & I_HMB_FRAME_IND)
#define HOSTINTMASK (I_HMB_SW_MASK | I_CHIPACTIVE)
/* Packet free applicable unconditionally for sdio and sdspi.
* Conditional if bufpool was present for gspi bus.
*/
static void brcmf_sdbrcm_pktfree2(struct brcmf_sdio *bus, struct sk_buff *pkt)
{
if (bus->usebufpool)
brcmu_pkt_buf_free_skb(pkt);
}
/* Turn backplane clock on or off */
static int brcmf_sdbrcm_htclk(struct brcmf_sdio *bus, bool on, bool pendok)
{
int err;
u8 clkctl, clkreq, devctl;
unsigned long timeout;
brcmf_dbg(TRACE, "Enter\n");
clkctl = 0;
if (on) {
/* Request HT Avail */
clkreq =
bus->alp_only ? SBSDIO_ALP_AVAIL_REQ : SBSDIO_HT_AVAIL_REQ;
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
clkreq, &err);
if (err) {
brcmf_dbg(ERROR, "HT Avail request error: %d\n", err);
return -EBADE;
}
/* Check current status */
clkctl = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err) {
brcmf_dbg(ERROR, "HT Avail read error: %d\n", err);
return -EBADE;
}
/* Go to pending and await interrupt if appropriate */
if (!SBSDIO_CLKAV(clkctl, bus->alp_only) && pendok) {
/* Allow only clock-available interrupt */
devctl = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_DEVICE_CTL, &err);
if (err) {
brcmf_dbg(ERROR, "Devctl error setting CA: %d\n",
err);
return -EBADE;
}
devctl |= SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL,
devctl, &err);
brcmf_dbg(INFO, "CLKCTL: set PENDING\n");
bus->clkstate = CLK_PENDING;
return 0;
} else if (bus->clkstate == CLK_PENDING) {
/* Cancel CA-only interrupt filter */
devctl = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_DEVICE_CTL, &err);
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL,
devctl, &err);
}
/* Otherwise, wait here (polling) for HT Avail */
timeout = jiffies +
msecs_to_jiffies(PMU_MAX_TRANSITION_DLY/1000);
while (!SBSDIO_CLKAV(clkctl, bus->alp_only)) {
clkctl = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR,
&err);
if (time_after(jiffies, timeout))
break;
else
usleep_range(5000, 10000);
}
if (err) {
brcmf_dbg(ERROR, "HT Avail request error: %d\n", err);
return -EBADE;
}
if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) {
brcmf_dbg(ERROR, "HT Avail timeout (%d): clkctl 0x%02x\n",
PMU_MAX_TRANSITION_DLY, clkctl);
return -EBADE;
}
/* Mark clock available */
bus->clkstate = CLK_AVAIL;
brcmf_dbg(INFO, "CLKCTL: turned ON\n");
#if defined(DEBUG)
if (!bus->alp_only) {
if (SBSDIO_ALPONLY(clkctl))
brcmf_dbg(ERROR, "HT Clock should be on\n");
}
#endif /* defined (DEBUG) */
bus->activity = true;
} else {
clkreq = 0;
if (bus->clkstate == CLK_PENDING) {
/* Cancel CA-only interrupt filter */
devctl = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_DEVICE_CTL, &err);
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL,
devctl, &err);
}
bus->clkstate = CLK_SDONLY;
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
clkreq, &err);
brcmf_dbg(INFO, "CLKCTL: turned OFF\n");
if (err) {
brcmf_dbg(ERROR, "Failed access turning clock off: %d\n",
err);
return -EBADE;
}
}
return 0;
}
/* Change idle/active SD state */
static int brcmf_sdbrcm_sdclk(struct brcmf_sdio *bus, bool on)
{
brcmf_dbg(TRACE, "Enter\n");
if (on)
bus->clkstate = CLK_SDONLY;
else
bus->clkstate = CLK_NONE;
return 0;
}
/* Transition SD and backplane clock readiness */
static int brcmf_sdbrcm_clkctl(struct brcmf_sdio *bus, uint target, bool pendok)
{
#ifdef DEBUG
uint oldstate = bus->clkstate;
#endif /* DEBUG */
brcmf_dbg(TRACE, "Enter\n");
/* Early exit if we're already there */
if (bus->clkstate == target) {
if (target == CLK_AVAIL) {
brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS);
bus->activity = true;
}
return 0;
}
switch (target) {
case CLK_AVAIL:
/* Make sure SD clock is available */
if (bus->clkstate == CLK_NONE)
brcmf_sdbrcm_sdclk(bus, true);
/* Now request HT Avail on the backplane */
brcmf_sdbrcm_htclk(bus, true, pendok);
brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS);
bus->activity = true;
break;
case CLK_SDONLY:
/* Remove HT request, or bring up SD clock */
if (bus->clkstate == CLK_NONE)
brcmf_sdbrcm_sdclk(bus, true);
else if (bus->clkstate == CLK_AVAIL)
brcmf_sdbrcm_htclk(bus, false, false);
else
brcmf_dbg(ERROR, "request for %d -> %d\n",
bus->clkstate, target);
brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS);
break;
case CLK_NONE:
/* Make sure to remove HT request */
if (bus->clkstate == CLK_AVAIL)
brcmf_sdbrcm_htclk(bus, false, false);
/* Now remove the SD clock */
brcmf_sdbrcm_sdclk(bus, false);
brcmf_sdbrcm_wd_timer(bus, 0);
break;
}
#ifdef DEBUG
brcmf_dbg(INFO, "%d -> %d\n", oldstate, bus->clkstate);
#endif /* DEBUG */
return 0;
}
static int brcmf_sdbrcm_bussleep(struct brcmf_sdio *bus, bool sleep)
{
int ret;
brcmf_dbg(INFO, "request %s (currently %s)\n",
sleep ? "SLEEP" : "WAKE",
bus->sleeping ? "SLEEP" : "WAKE");
/* Done if we're already in the requested state */
if (sleep == bus->sleeping)
return 0;
/* Going to sleep: set the alarm and turn off the lights... */
if (sleep) {
/* Don't sleep if something is pending */
if (bus->dpc_sched || bus->rxskip || pktq_len(&bus->txq))
return -EBUSY;
/* Make sure the controller has the bus up */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
/* Tell device to start using OOB wakeup */
ret = w_sdreg32(bus, SMB_USE_OOB,
offsetof(struct sdpcmd_regs, tosbmailbox));
if (ret != 0)
brcmf_dbg(ERROR, "CANNOT SIGNAL CHIP, WILL NOT WAKE UP!!\n");
/* Turn off our contribution to the HT clock request */
brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false);
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
SBSDIO_FORCE_HW_CLKREQ_OFF, NULL);
/* Isolate the bus */
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL,
SBSDIO_DEVCTL_PADS_ISO, NULL);
/* Change state */
bus->sleeping = true;
} else {
/* Waking up: bus power up is ok, set local state */
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
0, NULL);
/* Make sure the controller has the bus up */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
/* Send misc interrupt to indicate OOB not needed */
ret = w_sdreg32(bus, 0,
offsetof(struct sdpcmd_regs, tosbmailboxdata));
if (ret == 0)
ret = w_sdreg32(bus, SMB_DEV_INT,
offsetof(struct sdpcmd_regs, tosbmailbox));
if (ret != 0)
brcmf_dbg(ERROR, "CANNOT SIGNAL CHIP TO CLEAR OOB!!\n");
/* Make sure we have SD bus access */
brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false);
/* Change state */
bus->sleeping = false;
}
return 0;
}
static void bus_wake(struct brcmf_sdio *bus)
{
if (bus->sleeping)
brcmf_sdbrcm_bussleep(bus, false);
}
static u32 brcmf_sdbrcm_hostmail(struct brcmf_sdio *bus)
{
u32 intstatus = 0;
u32 hmb_data;
u8 fcbits;
int ret;
brcmf_dbg(TRACE, "Enter\n");
/* Read mailbox data and ack that we did so */
ret = r_sdreg32(bus, &hmb_data,
offsetof(struct sdpcmd_regs, tohostmailboxdata));
if (ret == 0)
w_sdreg32(bus, SMB_INT_ACK,
offsetof(struct sdpcmd_regs, tosbmailbox));
bus->sdcnt.f1regdata += 2;
/* Dongle recomposed rx frames, accept them again */
if (hmb_data & HMB_DATA_NAKHANDLED) {
brcmf_dbg(INFO, "Dongle reports NAK handled, expect rtx of %d\n",
bus->rx_seq);
if (!bus->rxskip)
brcmf_dbg(ERROR, "unexpected NAKHANDLED!\n");
bus->rxskip = false;
intstatus |= I_HMB_FRAME_IND;
}
/*
* DEVREADY does not occur with gSPI.
*/
if (hmb_data & (HMB_DATA_DEVREADY | HMB_DATA_FWREADY)) {
bus->sdpcm_ver =
(hmb_data & HMB_DATA_VERSION_MASK) >>
HMB_DATA_VERSION_SHIFT;
if (bus->sdpcm_ver != SDPCM_PROT_VERSION)
brcmf_dbg(ERROR, "Version mismatch, dongle reports %d, "
"expecting %d\n",
bus->sdpcm_ver, SDPCM_PROT_VERSION);
else
brcmf_dbg(INFO, "Dongle ready, protocol version %d\n",
bus->sdpcm_ver);
}
/*
* Flow Control has been moved into the RX headers and this out of band
* method isn't used any more.
* remaining backward compatible with older dongles.
*/
if (hmb_data & HMB_DATA_FC) {
fcbits = (hmb_data & HMB_DATA_FCDATA_MASK) >>
HMB_DATA_FCDATA_SHIFT;
if (fcbits & ~bus->flowcontrol)
bus->sdcnt.fc_xoff++;
if (bus->flowcontrol & ~fcbits)
bus->sdcnt.fc_xon++;
bus->sdcnt.fc_rcvd++;
bus->flowcontrol = fcbits;
}
/* Shouldn't be any others */
if (hmb_data & ~(HMB_DATA_DEVREADY |
HMB_DATA_NAKHANDLED |
HMB_DATA_FC |
HMB_DATA_FWREADY |
HMB_DATA_FCDATA_MASK | HMB_DATA_VERSION_MASK))
brcmf_dbg(ERROR, "Unknown mailbox data content: 0x%02x\n",
hmb_data);
return intstatus;
}
static void brcmf_sdbrcm_rxfail(struct brcmf_sdio *bus, bool abort, bool rtx)
{
uint retries = 0;
u16 lastrbc;
u8 hi, lo;
int err;
brcmf_dbg(ERROR, "%sterminate frame%s\n",
abort ? "abort command, " : "",
rtx ? ", send NAK" : "");
if (abort)
brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL,
SFC_RF_TERM, &err);
bus->sdcnt.f1regdata++;
/* Wait until the packet has been flushed (device/FIFO stable) */
for (lastrbc = retries = 0xffff; retries > 0; retries--) {
hi = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_RFRAMEBCHI, &err);
lo = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_RFRAMEBCLO, &err);
bus->sdcnt.f1regdata += 2;
if ((hi == 0) && (lo == 0))
break;
if ((hi > (lastrbc >> 8)) && (lo > (lastrbc & 0x00ff))) {
brcmf_dbg(ERROR, "count growing: last 0x%04x now 0x%04x\n",
lastrbc, (hi << 8) + lo);
}
lastrbc = (hi << 8) + lo;
}
if (!retries)
brcmf_dbg(ERROR, "count never zeroed: last 0x%04x\n", lastrbc);
else
brcmf_dbg(INFO, "flush took %d iterations\n", 0xffff - retries);
if (rtx) {
bus->sdcnt.rxrtx++;
err = w_sdreg32(bus, SMB_NAK,
offsetof(struct sdpcmd_regs, tosbmailbox));
bus->sdcnt.f1regdata++;
if (err == 0)
bus->rxskip = true;
}
/* Clear partial in any case */
bus->nextlen = 0;
/* If we can't reach the device, signal failure */
if (err)
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
}
/* copy a buffer into a pkt buffer chain */
static uint brcmf_sdbrcm_glom_from_buf(struct brcmf_sdio *bus, uint len)
{
uint n, ret = 0;
struct sk_buff *p;
u8 *buf;
buf = bus->dataptr;
/* copy the data */
skb_queue_walk(&bus->glom, p) {
n = min_t(uint, p->len, len);
memcpy(p->data, buf, n);
buf += n;
len -= n;
ret += n;
if (!len)
break;
}
return ret;
}
/* return total length of buffer chain */
static uint brcmf_sdbrcm_glom_len(struct brcmf_sdio *bus)
{
struct sk_buff *p;
uint total;
total = 0;
skb_queue_walk(&bus->glom, p)
total += p->len;
return total;
}
static void brcmf_sdbrcm_free_glom(struct brcmf_sdio *bus)
{
struct sk_buff *cur, *next;
skb_queue_walk_safe(&bus->glom, cur, next) {
skb_unlink(cur, &bus->glom);
brcmu_pkt_buf_free_skb(cur);
}
}
static u8 brcmf_sdbrcm_rxglom(struct brcmf_sdio *bus, u8 rxseq)
{
u16 dlen, totlen;
u8 *dptr, num = 0;
u16 sublen, check;
struct sk_buff *pfirst, *pnext;
int errcode;
u8 chan, seq, doff, sfdoff;
u8 txmax;
int ifidx = 0;
bool usechain = bus->use_rxchain;
/* If packets, issue read(s) and send up packet chain */
/* Return sequence numbers consumed? */
brcmf_dbg(TRACE, "start: glomd %p glom %p\n",
bus->glomd, skb_peek(&bus->glom));
/* If there's a descriptor, generate the packet chain */
if (bus->glomd) {
pfirst = pnext = NULL;
dlen = (u16) (bus->glomd->len);
dptr = bus->glomd->data;
if (!dlen || (dlen & 1)) {
brcmf_dbg(ERROR, "bad glomd len(%d), ignore descriptor\n",
dlen);
dlen = 0;
}
for (totlen = num = 0; dlen; num++) {
/* Get (and move past) next length */
sublen = get_unaligned_le16(dptr);
dlen -= sizeof(u16);
dptr += sizeof(u16);
if ((sublen < SDPCM_HDRLEN) ||
((num == 0) && (sublen < (2 * SDPCM_HDRLEN)))) {
brcmf_dbg(ERROR, "descriptor len %d bad: %d\n",
num, sublen);
pnext = NULL;
break;
}
if (sublen % BRCMF_SDALIGN) {
brcmf_dbg(ERROR, "sublen %d not multiple of %d\n",
sublen, BRCMF_SDALIGN);
usechain = false;
}
totlen += sublen;
/* For last frame, adjust read len so total
is a block multiple */
if (!dlen) {
sublen +=
(roundup(totlen, bus->blocksize) - totlen);
totlen = roundup(totlen, bus->blocksize);
}
/* Allocate/chain packet for next subframe */
pnext = brcmu_pkt_buf_get_skb(sublen + BRCMF_SDALIGN);
if (pnext == NULL) {
brcmf_dbg(ERROR, "bcm_pkt_buf_get_skb failed, num %d len %d\n",
num, sublen);
break;
}
skb_queue_tail(&bus->glom, pnext);
/* Adhere to start alignment requirements */
pkt_align(pnext, sublen, BRCMF_SDALIGN);
}
/* If all allocations succeeded, save packet chain
in bus structure */
if (pnext) {
brcmf_dbg(GLOM, "allocated %d-byte packet chain for %d subframes\n",
totlen, num);
if (BRCMF_GLOM_ON() && bus->nextlen &&
totlen != bus->nextlen) {
brcmf_dbg(GLOM, "glomdesc mismatch: nextlen %d glomdesc %d rxseq %d\n",
bus->nextlen, totlen, rxseq);
}
pfirst = pnext = NULL;
} else {
brcmf_sdbrcm_free_glom(bus);
num = 0;
}
/* Done with descriptor packet */
brcmu_pkt_buf_free_skb(bus->glomd);
bus->glomd = NULL;
bus->nextlen = 0;
}
/* Ok -- either we just generated a packet chain,
or had one from before */
if (!skb_queue_empty(&bus->glom)) {
if (BRCMF_GLOM_ON()) {
brcmf_dbg(GLOM, "try superframe read, packet chain:\n");
skb_queue_walk(&bus->glom, pnext) {
brcmf_dbg(GLOM, " %p: %p len 0x%04x (%d)\n",
pnext, (u8 *) (pnext->data),
pnext->len, pnext->len);
}
}
pfirst = skb_peek(&bus->glom);
dlen = (u16) brcmf_sdbrcm_glom_len(bus);
/* Do an SDIO read for the superframe. Configurable iovar to
* read directly into the chained packet, or allocate a large
* packet and and copy into the chain.
*/
if (usechain) {
errcode = brcmf_sdcard_recv_chain(bus->sdiodev,
bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, &bus->glom);
} else if (bus->dataptr) {
errcode = brcmf_sdcard_recv_buf(bus->sdiodev,
bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC,
bus->dataptr, dlen);
sublen = (u16) brcmf_sdbrcm_glom_from_buf(bus, dlen);
if (sublen != dlen) {
brcmf_dbg(ERROR, "FAILED TO COPY, dlen %d sublen %d\n",
dlen, sublen);
errcode = -1;
}
pnext = NULL;
} else {
brcmf_dbg(ERROR, "COULDN'T ALLOC %d-BYTE GLOM, FORCE FAILURE\n",
dlen);
errcode = -1;
}
bus->sdcnt.f2rxdata++;
/* On failure, kill the superframe, allow a couple retries */
if (errcode < 0) {
brcmf_dbg(ERROR, "glom read of %d bytes failed: %d\n",
dlen, errcode);
bus->sdiodev->bus_if->dstats.rx_errors++;
if (bus->glomerr++ < 3) {
brcmf_sdbrcm_rxfail(bus, true, true);
} else {
bus->glomerr = 0;
brcmf_sdbrcm_rxfail(bus, true, false);
bus->sdcnt.rxglomfail++;
brcmf_sdbrcm_free_glom(bus);
}
return 0;
}
brcmf_dbg_hex_dump(BRCMF_GLOM_ON(),
pfirst->data, min_t(int, pfirst->len, 48),
"SUPERFRAME:\n");
/* Validate the superframe header */
dptr = (u8 *) (pfirst->data);
sublen = get_unaligned_le16(dptr);
check = get_unaligned_le16(dptr + sizeof(u16));
chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]);
bus->nextlen = dptr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET];
if ((bus->nextlen << 4) > MAX_RX_DATASZ) {
brcmf_dbg(INFO, "nextlen too large (%d) seq %d\n",
bus->nextlen, seq);
bus->nextlen = 0;
}
doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
txmax = SDPCM_WINDOW_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
errcode = 0;
if ((u16)~(sublen ^ check)) {
brcmf_dbg(ERROR, "(superframe): HW hdr error: len/check 0x%04x/0x%04x\n",
sublen, check);
errcode = -1;
} else if (roundup(sublen, bus->blocksize) != dlen) {
brcmf_dbg(ERROR, "(superframe): len 0x%04x, rounded 0x%04x, expect 0x%04x\n",
sublen, roundup(sublen, bus->blocksize),
dlen);
errcode = -1;
} else if (SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]) !=
SDPCM_GLOM_CHANNEL) {
brcmf_dbg(ERROR, "(superframe): bad channel %d\n",
SDPCM_PACKET_CHANNEL(
&dptr[SDPCM_FRAMETAG_LEN]));
errcode = -1;
} else if (SDPCM_GLOMDESC(&dptr[SDPCM_FRAMETAG_LEN])) {
brcmf_dbg(ERROR, "(superframe): got 2nd descriptor?\n");
errcode = -1;
} else if ((doff < SDPCM_HDRLEN) ||
(doff > (pfirst->len - SDPCM_HDRLEN))) {
brcmf_dbg(ERROR, "(superframe): Bad data offset %d: HW %d pkt %d min %d\n",
doff, sublen, pfirst->len, SDPCM_HDRLEN);
errcode = -1;
}
/* Check sequence number of superframe SW header */
if (rxseq != seq) {
brcmf_dbg(INFO, "(superframe) rx_seq %d, expected %d\n",
seq, rxseq);
bus->sdcnt.rx_badseq++;
rxseq = seq;
}
/* Check window for sanity */
if ((u8) (txmax - bus->tx_seq) > 0x40) {
brcmf_dbg(ERROR, "unlikely tx max %d with tx_seq %d\n",
txmax, bus->tx_seq);
txmax = bus->tx_seq + 2;
}
bus->tx_max = txmax;
/* Remove superframe header, remember offset */
skb_pull(pfirst, doff);
sfdoff = doff;
num = 0;
/* Validate all the subframe headers */
skb_queue_walk(&bus->glom, pnext) {
/* leave when invalid subframe is found */
if (errcode)
break;
dptr = (u8 *) (pnext->data);
dlen = (u16) (pnext->len);
sublen = get_unaligned_le16(dptr);
check = get_unaligned_le16(dptr + sizeof(u16));
chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
brcmf_dbg_hex_dump(BRCMF_GLOM_ON(),
dptr, 32, "subframe:\n");
if ((u16)~(sublen ^ check)) {
brcmf_dbg(ERROR, "(subframe %d): HW hdr error: len/check 0x%04x/0x%04x\n",
num, sublen, check);
errcode = -1;
} else if ((sublen > dlen) || (sublen < SDPCM_HDRLEN)) {
brcmf_dbg(ERROR, "(subframe %d): length mismatch: len 0x%04x, expect 0x%04x\n",
num, sublen, dlen);
errcode = -1;
} else if ((chan != SDPCM_DATA_CHANNEL) &&
(chan != SDPCM_EVENT_CHANNEL)) {
brcmf_dbg(ERROR, "(subframe %d): bad channel %d\n",
num, chan);
errcode = -1;
} else if ((doff < SDPCM_HDRLEN) || (doff > sublen)) {
brcmf_dbg(ERROR, "(subframe %d): Bad data offset %d: HW %d min %d\n",
num, doff, sublen, SDPCM_HDRLEN);
errcode = -1;
}
/* increase the subframe count */
num++;
}
if (errcode) {
/* Terminate frame on error, request
a couple retries */
if (bus->glomerr++ < 3) {
/* Restore superframe header space */
skb_push(pfirst, sfdoff);
brcmf_sdbrcm_rxfail(bus, true, true);
} else {
bus->glomerr = 0;
brcmf_sdbrcm_rxfail(bus, true, false);
bus->sdcnt.rxglomfail++;
brcmf_sdbrcm_free_glom(bus);
}
bus->nextlen = 0;
return 0;
}
/* Basic SD framing looks ok - process each packet (header) */
skb_queue_walk_safe(&bus->glom, pfirst, pnext) {
dptr = (u8 *) (pfirst->data);
sublen = get_unaligned_le16(dptr);
chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
brcmf_dbg(GLOM, "Get subframe %d, %p(%p/%d), sublen %d chan %d seq %d\n",
num, pfirst, pfirst->data,
pfirst->len, sublen, chan, seq);
/* precondition: chan == SDPCM_DATA_CHANNEL ||
chan == SDPCM_EVENT_CHANNEL */
if (rxseq != seq) {
brcmf_dbg(GLOM, "rx_seq %d, expected %d\n",
seq, rxseq);
bus->sdcnt.rx_badseq++;
rxseq = seq;
}
rxseq++;
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_DATA_ON(),
dptr, dlen, "Rx Subframe Data:\n");
__skb_trim(pfirst, sublen);
skb_pull(pfirst, doff);
if (pfirst->len == 0) {
skb_unlink(pfirst, &bus->glom);
brcmu_pkt_buf_free_skb(pfirst);
continue;
} else if (brcmf_proto_hdrpull(bus->sdiodev->dev,
&ifidx, pfirst) != 0) {
brcmf_dbg(ERROR, "rx protocol error\n");
bus->sdiodev->bus_if->dstats.rx_errors++;
skb_unlink(pfirst, &bus->glom);
brcmu_pkt_buf_free_skb(pfirst);
continue;
}
brcmf_dbg_hex_dump(BRCMF_GLOM_ON(),
pfirst->data,
min_t(int, pfirst->len, 32),
"subframe %d to stack, %p (%p/%d) nxt/lnk %p/%p\n",
bus->glom.qlen, pfirst, pfirst->data,
pfirst->len, pfirst->next,
pfirst->prev);
}
/* sent any remaining packets up */
if (bus->glom.qlen) {
up(&bus->sdsem);
brcmf_rx_frame(bus->sdiodev->dev, ifidx, &bus->glom);
down(&bus->sdsem);
}
bus->sdcnt.rxglomframes++;
bus->sdcnt.rxglompkts += bus->glom.qlen;
}
return num;
}
static int brcmf_sdbrcm_dcmd_resp_wait(struct brcmf_sdio *bus, uint *condition,
bool *pending)
{
DECLARE_WAITQUEUE(wait, current);
int timeout = msecs_to_jiffies(DCMD_RESP_TIMEOUT);
/* Wait until control frame is available */
add_wait_queue(&bus->dcmd_resp_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
while (!(*condition) && (!signal_pending(current) && timeout))
timeout = schedule_timeout(timeout);
if (signal_pending(current))
*pending = true;
set_current_state(TASK_RUNNING);
remove_wait_queue(&bus->dcmd_resp_wait, &wait);
return timeout;
}
static int brcmf_sdbrcm_dcmd_resp_wake(struct brcmf_sdio *bus)
{
if (waitqueue_active(&bus->dcmd_resp_wait))
wake_up_interruptible(&bus->dcmd_resp_wait);
return 0;
}
static void
brcmf_sdbrcm_read_control(struct brcmf_sdio *bus, u8 *hdr, uint len, uint doff)
{
uint rdlen, pad;
int sdret;
brcmf_dbg(TRACE, "Enter\n");
/* Set rxctl for frame (w/optional alignment) */
bus->rxctl = bus->rxbuf;
bus->rxctl += BRCMF_FIRSTREAD;
pad = ((unsigned long)bus->rxctl % BRCMF_SDALIGN);
if (pad)
bus->rxctl += (BRCMF_SDALIGN - pad);
bus->rxctl -= BRCMF_FIRSTREAD;
/* Copy the already-read portion over */
memcpy(bus->rxctl, hdr, BRCMF_FIRSTREAD);
if (len <= BRCMF_FIRSTREAD)
goto gotpkt;
/* Raise rdlen to next SDIO block to avoid tail command */
rdlen = len - BRCMF_FIRSTREAD;
if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) {
pad = bus->blocksize - (rdlen % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize) &&
((len + pad) < bus->sdiodev->bus_if->maxctl))
rdlen += pad;
} else if (rdlen % BRCMF_SDALIGN) {
rdlen += BRCMF_SDALIGN - (rdlen % BRCMF_SDALIGN);
}
/* Satisfy length-alignment requirements */
if (rdlen & (ALIGNMENT - 1))
rdlen = roundup(rdlen, ALIGNMENT);
/* Drop if the read is too big or it exceeds our maximum */
if ((rdlen + BRCMF_FIRSTREAD) > bus->sdiodev->bus_if->maxctl) {
brcmf_dbg(ERROR, "%d-byte control read exceeds %d-byte buffer\n",
rdlen, bus->sdiodev->bus_if->maxctl);
bus->sdiodev->bus_if->dstats.rx_errors++;
brcmf_sdbrcm_rxfail(bus, false, false);
goto done;
}
if ((len - doff) > bus->sdiodev->bus_if->maxctl) {
brcmf_dbg(ERROR, "%d-byte ctl frame (%d-byte ctl data) exceeds %d-byte limit\n",
len, len - doff, bus->sdiodev->bus_if->maxctl);
bus->sdiodev->bus_if->dstats.rx_errors++;
bus->sdcnt.rx_toolong++;
brcmf_sdbrcm_rxfail(bus, false, false);
goto done;
}
/* Read remainder of frame body into the rxctl buffer */
sdret = brcmf_sdcard_recv_buf(bus->sdiodev,
bus->sdiodev->sbwad,
SDIO_FUNC_2,
F2SYNC, (bus->rxctl + BRCMF_FIRSTREAD), rdlen);
bus->sdcnt.f2rxdata++;
/* Control frame failures need retransmission */
if (sdret < 0) {
brcmf_dbg(ERROR, "read %d control bytes failed: %d\n",
rdlen, sdret);
bus->sdcnt.rxc_errors++;
brcmf_sdbrcm_rxfail(bus, true, true);
goto done;
}
gotpkt:
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_CTL_ON(),
bus->rxctl, len, "RxCtrl:\n");
/* Point to valid data and indicate its length */
bus->rxctl += doff;
bus->rxlen = len - doff;
done:
/* Awake any waiters */
brcmf_sdbrcm_dcmd_resp_wake(bus);
}
/* Pad read to blocksize for efficiency */
static void brcmf_pad(struct brcmf_sdio *bus, u16 *pad, u16 *rdlen)
{
if (bus->roundup && bus->blocksize && *rdlen > bus->blocksize) {
*pad = bus->blocksize - (*rdlen % bus->blocksize);
if (*pad <= bus->roundup && *pad < bus->blocksize &&
*rdlen + *pad + BRCMF_FIRSTREAD < MAX_RX_DATASZ)
*rdlen += *pad;
} else if (*rdlen % BRCMF_SDALIGN) {
*rdlen += BRCMF_SDALIGN - (*rdlen % BRCMF_SDALIGN);
}
}
static void
brcmf_alloc_pkt_and_read(struct brcmf_sdio *bus, u16 rdlen,
struct sk_buff **pkt, u8 **rxbuf)
{
int sdret; /* Return code from calls */
*pkt = brcmu_pkt_buf_get_skb(rdlen + BRCMF_SDALIGN);
if (*pkt == NULL)
return;
pkt_align(*pkt, rdlen, BRCMF_SDALIGN);
*rxbuf = (u8 *) ((*pkt)->data);
/* Read the entire frame */
sdret = brcmf_sdcard_recv_pkt(bus->sdiodev, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, *pkt);
bus->sdcnt.f2rxdata++;
if (sdret < 0) {
brcmf_dbg(ERROR, "(nextlen): read %d bytes failed: %d\n",
rdlen, sdret);
brcmu_pkt_buf_free_skb(*pkt);
bus->sdiodev->bus_if->dstats.rx_errors++;
/* Force retry w/normal header read.
* Don't attempt NAK for
* gSPI
*/
brcmf_sdbrcm_rxfail(bus, true, true);
*pkt = NULL;
}
}
/* Checks the header */
static int
brcmf_check_rxbuf(struct brcmf_sdio *bus, struct sk_buff *pkt, u8 *rxbuf,
u8 rxseq, u16 nextlen, u16 *len)
{
u16 check;
bool len_consistent; /* Result of comparing readahead len and
len from hw-hdr */
memcpy(bus->rxhdr, rxbuf, SDPCM_HDRLEN);
/* Extract hardware header fields */
*len = get_unaligned_le16(bus->rxhdr);
check = get_unaligned_le16(bus->rxhdr + sizeof(u16));
/* All zeros means readahead info was bad */
if (!(*len | check)) {
brcmf_dbg(INFO, "(nextlen): read zeros in HW header???\n");
goto fail;
}
/* Validate check bytes */
if ((u16)~(*len ^ check)) {
brcmf_dbg(ERROR, "(nextlen): HW hdr error: nextlen/len/check 0x%04x/0x%04x/0x%04x\n",
nextlen, *len, check);
bus->sdcnt.rx_badhdr++;
brcmf_sdbrcm_rxfail(bus, false, false);
goto fail;
}
/* Validate frame length */
if (*len < SDPCM_HDRLEN) {
brcmf_dbg(ERROR, "(nextlen): HW hdr length invalid: %d\n",
*len);
goto fail;
}
/* Check for consistency with readahead info */
len_consistent = (nextlen != (roundup(*len, 16) >> 4));
if (len_consistent) {
/* Mismatch, force retry w/normal
header (may be >4K) */
brcmf_dbg(ERROR, "(nextlen): mismatch, nextlen %d len %d rnd %d; expected rxseq %d\n",
nextlen, *len, roundup(*len, 16),
rxseq);
brcmf_sdbrcm_rxfail(bus, true, true);
goto fail;
}
return 0;
fail:
brcmf_sdbrcm_pktfree2(bus, pkt);
return -EINVAL;
}
/* Return true if there may be more frames to read */
static uint
brcmf_sdbrcm_readframes(struct brcmf_sdio *bus, uint maxframes, bool *finished)
{
u16 len, check; /* Extracted hardware header fields */
u8 chan, seq, doff; /* Extracted software header fields */
u8 fcbits; /* Extracted fcbits from software header */
struct sk_buff *pkt; /* Packet for event or data frames */
u16 pad; /* Number of pad bytes to read */
u16 rdlen; /* Total number of bytes to read */
u8 rxseq; /* Next sequence number to expect */
uint rxleft = 0; /* Remaining number of frames allowed */
int sdret; /* Return code from calls */
u8 txmax; /* Maximum tx sequence offered */
u8 *rxbuf;
int ifidx = 0;
uint rxcount = 0; /* Total frames read */
brcmf_dbg(TRACE, "Enter\n");
/* Not finished unless we encounter no more frames indication */
*finished = false;
for (rxseq = bus->rx_seq, rxleft = maxframes;
!bus->rxskip && rxleft &&
bus->sdiodev->bus_if->state != BRCMF_BUS_DOWN;
rxseq++, rxleft--) {
/* Handle glomming separately */
if (bus->glomd || !skb_queue_empty(&bus->glom)) {
u8 cnt;
brcmf_dbg(GLOM, "calling rxglom: glomd %p, glom %p\n",
bus->glomd, skb_peek(&bus->glom));
cnt = brcmf_sdbrcm_rxglom(bus, rxseq);
brcmf_dbg(GLOM, "rxglom returned %d\n", cnt);
rxseq += cnt - 1;
rxleft = (rxleft > cnt) ? (rxleft - cnt) : 1;
continue;
}
/* Try doing single read if we can */
if (bus->nextlen) {
u16 nextlen = bus->nextlen;
bus->nextlen = 0;
rdlen = len = nextlen << 4;
brcmf_pad(bus, &pad, &rdlen);
/*
* After the frame is received we have to
* distinguish whether it is data
* or non-data frame.
*/
brcmf_alloc_pkt_and_read(bus, rdlen, &pkt, &rxbuf);
if (pkt == NULL) {
/* Give up on data, request rtx of events */
brcmf_dbg(ERROR, "(nextlen): brcmf_alloc_pkt_and_read failed: len %d rdlen %d expected rxseq %d\n",
len, rdlen, rxseq);
continue;
}
if (brcmf_check_rxbuf(bus, pkt, rxbuf, rxseq, nextlen,
&len) < 0)
continue;
/* Extract software header fields */
chan = SDPCM_PACKET_CHANNEL(
&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(
&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(
&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
txmax = SDPCM_WINDOW_VALUE(
&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
bus->nextlen =
bus->rxhdr[SDPCM_FRAMETAG_LEN +
SDPCM_NEXTLEN_OFFSET];
if ((bus->nextlen << 4) > MAX_RX_DATASZ) {
brcmf_dbg(INFO, "(nextlen): got frame w/nextlen too large (%d), seq %d\n",
bus->nextlen, seq);
bus->nextlen = 0;
}
bus->sdcnt.rx_readahead_cnt++;
/* Handle Flow Control */
fcbits = SDPCM_FCMASK_VALUE(
&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
if (bus->flowcontrol != fcbits) {
if (~bus->flowcontrol & fcbits)
bus->sdcnt.fc_xoff++;
if (bus->flowcontrol & ~fcbits)
bus->sdcnt.fc_xon++;
bus->sdcnt.fc_rcvd++;
bus->flowcontrol = fcbits;
}
/* Check and update sequence number */
if (rxseq != seq) {
brcmf_dbg(INFO, "(nextlen): rx_seq %d, expected %d\n",
seq, rxseq);
bus->sdcnt.rx_badseq++;
rxseq = seq;
}
/* Check window for sanity */
if ((u8) (txmax - bus->tx_seq) > 0x40) {
brcmf_dbg(ERROR, "got unlikely tx max %d with tx_seq %d\n",
txmax, bus->tx_seq);
txmax = bus->tx_seq + 2;
}
bus->tx_max = txmax;
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_DATA_ON(),
rxbuf, len, "Rx Data:\n");
brcmf_dbg_hex_dump(!(BRCMF_BYTES_ON() &&
BRCMF_DATA_ON()) &&
BRCMF_HDRS_ON(),
bus->rxhdr, SDPCM_HDRLEN,
"RxHdr:\n");
if (chan == SDPCM_CONTROL_CHANNEL) {
brcmf_dbg(ERROR, "(nextlen): readahead on control packet %d?\n",
seq);
/* Force retry w/normal header read */
bus->nextlen = 0;
brcmf_sdbrcm_rxfail(bus, false, true);
brcmf_sdbrcm_pktfree2(bus, pkt);
continue;
}
/* Validate data offset */
if ((doff < SDPCM_HDRLEN) || (doff > len)) {
brcmf_dbg(ERROR, "(nextlen): bad data offset %d: HW len %d min %d\n",
doff, len, SDPCM_HDRLEN);
brcmf_sdbrcm_rxfail(bus, false, false);
brcmf_sdbrcm_pktfree2(bus, pkt);
continue;
}
/* All done with this one -- now deliver the packet */
goto deliver;
}
/* Read frame header (hardware and software) */
sdret = brcmf_sdcard_recv_buf(bus->sdiodev, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, bus->rxhdr,
BRCMF_FIRSTREAD);
bus->sdcnt.f2rxhdrs++;
if (sdret < 0) {
brcmf_dbg(ERROR, "RXHEADER FAILED: %d\n", sdret);
bus->sdcnt.rx_hdrfail++;
brcmf_sdbrcm_rxfail(bus, true, true);
continue;
}
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() || BRCMF_HDRS_ON(),
bus->rxhdr, SDPCM_HDRLEN, "RxHdr:\n");
/* Extract hardware header fields */
len = get_unaligned_le16(bus->rxhdr);
check = get_unaligned_le16(bus->rxhdr + sizeof(u16));
/* All zeros means no more frames */
if (!(len | check)) {
*finished = true;
break;
}
/* Validate check bytes */
if ((u16) ~(len ^ check)) {
brcmf_dbg(ERROR, "HW hdr err: len/check 0x%04x/0x%04x\n",
len, check);
bus->sdcnt.rx_badhdr++;
brcmf_sdbrcm_rxfail(bus, false, false);
continue;
}
/* Validate frame length */
if (len < SDPCM_HDRLEN) {
brcmf_dbg(ERROR, "HW hdr length invalid: %d\n", len);
continue;
}
/* Extract software header fields */
chan = SDPCM_PACKET_CHANNEL(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
txmax = SDPCM_WINDOW_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
/* Validate data offset */
if ((doff < SDPCM_HDRLEN) || (doff > len)) {
brcmf_dbg(ERROR, "Bad data offset %d: HW len %d, min %d seq %d\n",
doff, len, SDPCM_HDRLEN, seq);
bus->sdcnt.rx_badhdr++;
brcmf_sdbrcm_rxfail(bus, false, false);
continue;
}
/* Save the readahead length if there is one */
bus->nextlen =
bus->rxhdr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET];
if ((bus->nextlen << 4) > MAX_RX_DATASZ) {
brcmf_dbg(INFO, "(nextlen): got frame w/nextlen too large (%d), seq %d\n",
bus->nextlen, seq);
bus->nextlen = 0;
}
/* Handle Flow Control */
fcbits = SDPCM_FCMASK_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
if (bus->flowcontrol != fcbits) {
if (~bus->flowcontrol & fcbits)
bus->sdcnt.fc_xoff++;
if (bus->flowcontrol & ~fcbits)
bus->sdcnt.fc_xon++;
bus->sdcnt.fc_rcvd++;
bus->flowcontrol = fcbits;
}
/* Check and update sequence number */
if (rxseq != seq) {
brcmf_dbg(INFO, "rx_seq %d, expected %d\n", seq, rxseq);
bus->sdcnt.rx_badseq++;
rxseq = seq;
}
/* Check window for sanity */
if ((u8) (txmax - bus->tx_seq) > 0x40) {
brcmf_dbg(ERROR, "unlikely tx max %d with tx_seq %d\n",
txmax, bus->tx_seq);
txmax = bus->tx_seq + 2;
}
bus->tx_max = txmax;
/* Call a separate function for control frames */
if (chan == SDPCM_CONTROL_CHANNEL) {
brcmf_sdbrcm_read_control(bus, bus->rxhdr, len, doff);
continue;
}
/* precondition: chan is either SDPCM_DATA_CHANNEL,
SDPCM_EVENT_CHANNEL, SDPCM_TEST_CHANNEL or
SDPCM_GLOM_CHANNEL */
/* Length to read */
rdlen = (len > BRCMF_FIRSTREAD) ? (len - BRCMF_FIRSTREAD) : 0;
/* May pad read to blocksize for efficiency */
if (bus->roundup && bus->blocksize &&
(rdlen > bus->blocksize)) {
pad = bus->blocksize - (rdlen % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize) &&
((rdlen + pad + BRCMF_FIRSTREAD) < MAX_RX_DATASZ))
rdlen += pad;
} else if (rdlen % BRCMF_SDALIGN) {
rdlen += BRCMF_SDALIGN - (rdlen % BRCMF_SDALIGN);
}
/* Satisfy length-alignment requirements */
if (rdlen & (ALIGNMENT - 1))
rdlen = roundup(rdlen, ALIGNMENT);
if ((rdlen + BRCMF_FIRSTREAD) > MAX_RX_DATASZ) {
/* Too long -- skip this frame */
brcmf_dbg(ERROR, "too long: len %d rdlen %d\n",
len, rdlen);
bus->sdiodev->bus_if->dstats.rx_errors++;
bus->sdcnt.rx_toolong++;
brcmf_sdbrcm_rxfail(bus, false, false);
continue;
}
pkt = brcmu_pkt_buf_get_skb(rdlen +
BRCMF_FIRSTREAD + BRCMF_SDALIGN);
if (!pkt) {
/* Give up on data, request rtx of events */
brcmf_dbg(ERROR, "brcmu_pkt_buf_get_skb failed: rdlen %d chan %d\n",
rdlen, chan);
bus->sdiodev->bus_if->dstats.rx_dropped++;
brcmf_sdbrcm_rxfail(bus, false, RETRYCHAN(chan));
continue;
}
/* Leave room for what we already read, and align remainder */
skb_pull(pkt, BRCMF_FIRSTREAD);
pkt_align(pkt, rdlen, BRCMF_SDALIGN);
/* Read the remaining frame data */
sdret = brcmf_sdcard_recv_pkt(bus->sdiodev, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, pkt);
bus->sdcnt.f2rxdata++;
if (sdret < 0) {
brcmf_dbg(ERROR, "read %d %s bytes failed: %d\n", rdlen,
((chan == SDPCM_EVENT_CHANNEL) ? "event"
: ((chan == SDPCM_DATA_CHANNEL) ? "data"
: "test")), sdret);
brcmu_pkt_buf_free_skb(pkt);
bus->sdiodev->bus_if->dstats.rx_errors++;
brcmf_sdbrcm_rxfail(bus, true, RETRYCHAN(chan));
continue;
}
/* Copy the already-read portion */
skb_push(pkt, BRCMF_FIRSTREAD);
memcpy(pkt->data, bus->rxhdr, BRCMF_FIRSTREAD);
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_DATA_ON(),
pkt->data, len, "Rx Data:\n");
deliver:
/* Save superframe descriptor and allocate packet frame */
if (chan == SDPCM_GLOM_CHANNEL) {
if (SDPCM_GLOMDESC(&bus->rxhdr[SDPCM_FRAMETAG_LEN])) {
brcmf_dbg(GLOM, "glom descriptor, %d bytes:\n",
len);
brcmf_dbg_hex_dump(BRCMF_GLOM_ON(),
pkt->data, len,
"Glom Data:\n");
__skb_trim(pkt, len);
skb_pull(pkt, SDPCM_HDRLEN);
bus->glomd = pkt;
} else {
brcmf_dbg(ERROR, "%s: glom superframe w/o "
"descriptor!\n", __func__);
brcmf_sdbrcm_rxfail(bus, false, false);
}
continue;
}
/* Fill in packet len and prio, deliver upward */
__skb_trim(pkt, len);
skb_pull(pkt, doff);
if (pkt->len == 0) {
brcmu_pkt_buf_free_skb(pkt);
continue;
} else if (brcmf_proto_hdrpull(bus->sdiodev->dev, &ifidx,
pkt) != 0) {
brcmf_dbg(ERROR, "rx protocol error\n");
brcmu_pkt_buf_free_skb(pkt);
bus->sdiodev->bus_if->dstats.rx_errors++;
continue;
}
/* Unlock during rx call */
up(&bus->sdsem);
brcmf_rx_packet(bus->sdiodev->dev, ifidx, pkt);
down(&bus->sdsem);
}
rxcount = maxframes - rxleft;
/* Message if we hit the limit */
if (!rxleft)
brcmf_dbg(DATA, "hit rx limit of %d frames\n",
maxframes);
else
brcmf_dbg(DATA, "processed %d frames\n", rxcount);
/* Back off rxseq if awaiting rtx, update rx_seq */
if (bus->rxskip)
rxseq--;
bus->rx_seq = rxseq;
return rxcount;
}
static void
brcmf_sdbrcm_wait_for_event(struct brcmf_sdio *bus, bool *lockvar)
{
up(&bus->sdsem);
wait_event_interruptible_timeout(bus->ctrl_wait, !*lockvar, HZ * 2);
down(&bus->sdsem);
return;
}
static void
brcmf_sdbrcm_wait_event_wakeup(struct brcmf_sdio *bus)
{
if (waitqueue_active(&bus->ctrl_wait))
wake_up_interruptible(&bus->ctrl_wait);
return;
}
/* Writes a HW/SW header into the packet and sends it. */
/* Assumes: (a) header space already there, (b) caller holds lock */
static int brcmf_sdbrcm_txpkt(struct brcmf_sdio *bus, struct sk_buff *pkt,
uint chan, bool free_pkt)
{
int ret;
u8 *frame;
u16 len, pad = 0;
u32 swheader;
struct sk_buff *new;
int i;
brcmf_dbg(TRACE, "Enter\n");
frame = (u8 *) (pkt->data);
/* Add alignment padding, allocate new packet if needed */
pad = ((unsigned long)frame % BRCMF_SDALIGN);
if (pad) {
if (skb_headroom(pkt) < pad) {
brcmf_dbg(INFO, "insufficient headroom %d for %d pad\n",
skb_headroom(pkt), pad);
bus->sdiodev->bus_if->tx_realloc++;
new = brcmu_pkt_buf_get_skb(pkt->len + BRCMF_SDALIGN);
if (!new) {
brcmf_dbg(ERROR, "couldn't allocate new %d-byte packet\n",
pkt->len + BRCMF_SDALIGN);
ret = -ENOMEM;
goto done;
}
pkt_align(new, pkt->len, BRCMF_SDALIGN);
memcpy(new->data, pkt->data, pkt->len);
if (free_pkt)
brcmu_pkt_buf_free_skb(pkt);
/* free the pkt if canned one is not used */
free_pkt = true;
pkt = new;
frame = (u8 *) (pkt->data);
/* precondition: (frame % BRCMF_SDALIGN) == 0) */
pad = 0;
} else {
skb_push(pkt, pad);
frame = (u8 *) (pkt->data);
/* precondition: pad + SDPCM_HDRLEN <= pkt->len */
memset(frame, 0, pad + SDPCM_HDRLEN);
}
}
/* precondition: pad < BRCMF_SDALIGN */
/* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */
len = (u16) (pkt->len);
*(__le16 *) frame = cpu_to_le16(len);
*(((__le16 *) frame) + 1) = cpu_to_le16(~len);
/* Software tag: channel, sequence number, data offset */
swheader =
((chan << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK) | bus->tx_seq |
(((pad +
SDPCM_HDRLEN) << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK);
put_unaligned_le32(swheader, frame + SDPCM_FRAMETAG_LEN);
put_unaligned_le32(0, frame + SDPCM_FRAMETAG_LEN + sizeof(swheader));
#ifdef DEBUG
tx_packets[pkt->priority]++;
#endif
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() &&
((BRCMF_CTL_ON() && chan == SDPCM_CONTROL_CHANNEL) ||
(BRCMF_DATA_ON() && chan != SDPCM_CONTROL_CHANNEL)),
frame, len, "Tx Frame:\n");
brcmf_dbg_hex_dump(!(BRCMF_BYTES_ON() &&
((BRCMF_CTL_ON() &&
chan == SDPCM_CONTROL_CHANNEL) ||
(BRCMF_DATA_ON() &&
chan != SDPCM_CONTROL_CHANNEL))) &&
BRCMF_HDRS_ON(),
frame, min_t(u16, len, 16), "TxHdr:\n");
/* Raise len to next SDIO block to eliminate tail command */
if (bus->roundup && bus->blocksize && (len > bus->blocksize)) {
u16 pad = bus->blocksize - (len % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize))
len += pad;
} else if (len % BRCMF_SDALIGN) {
len += BRCMF_SDALIGN - (len % BRCMF_SDALIGN);
}
/* Some controllers have trouble with odd bytes -- round to even */
if (len & (ALIGNMENT - 1))
len = roundup(len, ALIGNMENT);
ret = brcmf_sdcard_send_pkt(bus->sdiodev, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, pkt);
bus->sdcnt.f2txdata++;
if (ret < 0) {
/* On failure, abort the command and terminate the frame */
brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n",
ret);
bus->sdcnt.tx_sderrs++;
brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL,
SFC_WF_TERM, NULL);
bus->sdcnt.f1regdata++;
for (i = 0; i < 3; i++) {
u8 hi, lo;
hi = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCHI, NULL);
lo = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCLO, NULL);
bus->sdcnt.f1regdata += 2;
if ((hi == 0) && (lo == 0))
break;
}
}
if (ret == 0)
bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP;
done:
/* restore pkt buffer pointer before calling tx complete routine */
skb_pull(pkt, SDPCM_HDRLEN + pad);
up(&bus->sdsem);
brcmf_txcomplete(bus->sdiodev->dev, pkt, ret != 0);
down(&bus->sdsem);
if (free_pkt)
brcmu_pkt_buf_free_skb(pkt);
return ret;
}
static uint brcmf_sdbrcm_sendfromq(struct brcmf_sdio *bus, uint maxframes)
{
struct sk_buff *pkt;
u32 intstatus = 0;
int ret = 0, prec_out;
uint cnt = 0;
uint datalen;
u8 tx_prec_map;
brcmf_dbg(TRACE, "Enter\n");
tx_prec_map = ~bus->flowcontrol;
/* Send frames until the limit or some other event */
for (cnt = 0; (cnt < maxframes) && data_ok(bus); cnt++) {
spin_lock_bh(&bus->txqlock);
pkt = brcmu_pktq_mdeq(&bus->txq, tx_prec_map, &prec_out);
if (pkt == NULL) {
spin_unlock_bh(&bus->txqlock);
break;
}
spin_unlock_bh(&bus->txqlock);
datalen = pkt->len - SDPCM_HDRLEN;
ret = brcmf_sdbrcm_txpkt(bus, pkt, SDPCM_DATA_CHANNEL, true);
if (ret)
bus->sdiodev->bus_if->dstats.tx_errors++;
else
bus->sdiodev->bus_if->dstats.tx_bytes += datalen;
/* In poll mode, need to check for other events */
if (!bus->intr && cnt) {
/* Check device status, signal pending interrupt */
ret = r_sdreg32(bus, &intstatus,
offsetof(struct sdpcmd_regs,
intstatus));
bus->sdcnt.f2txdata++;
if (ret != 0)
break;
if (intstatus & bus->hostintmask)
bus->ipend = true;
}
}
/* Deflow-control stack if needed */
if (bus->sdiodev->bus_if->drvr_up &&
(bus->sdiodev->bus_if->state == BRCMF_BUS_DATA) &&
bus->txoff && (pktq_len(&bus->txq) < TXLOW)) {
bus->txoff = OFF;
brcmf_txflowcontrol(bus->sdiodev->dev, 0, OFF);
}
return cnt;
}
static void brcmf_sdbrcm_bus_stop(struct device *dev)
{
u32 local_hostintmask;
u8 saveclk;
int err;
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
brcmf_dbg(TRACE, "Enter\n");
if (bus->watchdog_tsk) {
send_sig(SIGTERM, bus->watchdog_tsk, 1);
kthread_stop(bus->watchdog_tsk);
bus->watchdog_tsk = NULL;
}
if (bus->dpc_tsk && bus->dpc_tsk != current) {
send_sig(SIGTERM, bus->dpc_tsk, 1);
kthread_stop(bus->dpc_tsk);
bus->dpc_tsk = NULL;
}
down(&bus->sdsem);
bus_wake(bus);
/* Enable clock for device interrupts */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
/* Disable and clear interrupts at the chip level also */
w_sdreg32(bus, 0, offsetof(struct sdpcmd_regs, hostintmask));
local_hostintmask = bus->hostintmask;
bus->hostintmask = 0;
/* Change our idea of bus state */
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
/* Force clocks on backplane to be sure F2 interrupt propagates */
saveclk = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (!err) {
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
(saveclk | SBSDIO_FORCE_HT), &err);
}
if (err)
brcmf_dbg(ERROR, "Failed to force clock for F2: err %d\n", err);
/* Turn off the bus (F2), free any pending packets */
brcmf_dbg(INTR, "disable SDIO interrupts\n");
brcmf_sdio_regwb(bus->sdiodev, SDIO_CCCR_IOEx, SDIO_FUNC_ENABLE_1,
NULL);
/* Clear any pending interrupts now that F2 is disabled */
w_sdreg32(bus, local_hostintmask,
offsetof(struct sdpcmd_regs, intstatus));
/* Turn off the backplane clock (only) */
brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false);
/* Clear the data packet queues */
brcmu_pktq_flush(&bus->txq, true, NULL, NULL);
/* Clear any held glomming stuff */
if (bus->glomd)
brcmu_pkt_buf_free_skb(bus->glomd);
brcmf_sdbrcm_free_glom(bus);
/* Clear rx control and wake any waiters */
bus->rxlen = 0;
brcmf_sdbrcm_dcmd_resp_wake(bus);
/* Reset some F2 state stuff */
bus->rxskip = false;
bus->tx_seq = bus->rx_seq = 0;
up(&bus->sdsem);
}
#ifdef CONFIG_BRCMFMAC_SDIO_OOB
static inline void brcmf_sdbrcm_clrintr(struct brcmf_sdio *bus)
{
unsigned long flags;
spin_lock_irqsave(&bus->sdiodev->irq_en_lock, flags);
if (!bus->sdiodev->irq_en && !bus->ipend) {
enable_irq(bus->sdiodev->irq);
bus->sdiodev->irq_en = true;
}
spin_unlock_irqrestore(&bus->sdiodev->irq_en_lock, flags);
}
#else
static inline void brcmf_sdbrcm_clrintr(struct brcmf_sdio *bus)
{
}
#endif /* CONFIG_BRCMFMAC_SDIO_OOB */
static bool brcmf_sdbrcm_dpc(struct brcmf_sdio *bus)
{
u32 intstatus, newstatus = 0;
uint rxlimit = bus->rxbound; /* Rx frames to read before resched */
uint txlimit = bus->txbound; /* Tx frames to send before resched */
uint framecnt = 0; /* Temporary counter of tx/rx frames */
bool rxdone = true; /* Flag for no more read data */
bool resched = false; /* Flag indicating resched wanted */
int err;
brcmf_dbg(TRACE, "Enter\n");
/* Start with leftover status bits */
intstatus = bus->intstatus;
down(&bus->sdsem);
/* If waiting for HTAVAIL, check status */
if (bus->clkstate == CLK_PENDING) {
u8 clkctl, devctl = 0;
#ifdef DEBUG
/* Check for inconsistent device control */
devctl = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_DEVICE_CTL, &err);
if (err) {
brcmf_dbg(ERROR, "error reading DEVCTL: %d\n", err);
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
}
#endif /* DEBUG */
/* Read CSR, if clock on switch to AVAIL, else ignore */
clkctl = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err) {
brcmf_dbg(ERROR, "error reading CSR: %d\n",
err);
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
}
brcmf_dbg(INFO, "DPC: PENDING, devctl 0x%02x clkctl 0x%02x\n",
devctl, clkctl);
if (SBSDIO_HTAV(clkctl)) {
devctl = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_DEVICE_CTL, &err);
if (err) {
brcmf_dbg(ERROR, "error reading DEVCTL: %d\n",
err);
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
}
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_DEVICE_CTL,
devctl, &err);
if (err) {
brcmf_dbg(ERROR, "error writing DEVCTL: %d\n",
err);
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
}
bus->clkstate = CLK_AVAIL;
} else {
goto clkwait;
}
}
bus_wake(bus);
/* Make sure backplane clock is on */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, true);
if (bus->clkstate == CLK_PENDING)
goto clkwait;
/* Pending interrupt indicates new device status */
if (bus->ipend) {
bus->ipend = false;
err = r_sdreg32(bus, &newstatus,
offsetof(struct sdpcmd_regs, intstatus));
bus->sdcnt.f1regdata++;
if (err != 0)
newstatus = 0;
newstatus &= bus->hostintmask;
bus->fcstate = !!(newstatus & I_HMB_FC_STATE);
if (newstatus) {
err = w_sdreg32(bus, newstatus,
offsetof(struct sdpcmd_regs,
intstatus));
bus->sdcnt.f1regdata++;
}
}
/* Merge new bits with previous */
intstatus |= newstatus;
bus->intstatus = 0;
/* Handle flow-control change: read new state in case our ack
* crossed another change interrupt. If change still set, assume
* FC ON for safety, let next loop through do the debounce.
*/
if (intstatus & I_HMB_FC_CHANGE) {
intstatus &= ~I_HMB_FC_CHANGE;
err = w_sdreg32(bus, I_HMB_FC_CHANGE,
offsetof(struct sdpcmd_regs, intstatus));
err = r_sdreg32(bus, &newstatus,
offsetof(struct sdpcmd_regs, intstatus));
bus->sdcnt.f1regdata += 2;
bus->fcstate =
!!(newstatus & (I_HMB_FC_STATE | I_HMB_FC_CHANGE));
intstatus |= (newstatus & bus->hostintmask);
}
/* Handle host mailbox indication */
if (intstatus & I_HMB_HOST_INT) {
intstatus &= ~I_HMB_HOST_INT;
intstatus |= brcmf_sdbrcm_hostmail(bus);
}
/* Generally don't ask for these, can get CRC errors... */
if (intstatus & I_WR_OOSYNC) {
brcmf_dbg(ERROR, "Dongle reports WR_OOSYNC\n");
intstatus &= ~I_WR_OOSYNC;
}
if (intstatus & I_RD_OOSYNC) {
brcmf_dbg(ERROR, "Dongle reports RD_OOSYNC\n");
intstatus &= ~I_RD_OOSYNC;
}
if (intstatus & I_SBINT) {
brcmf_dbg(ERROR, "Dongle reports SBINT\n");
intstatus &= ~I_SBINT;
}
/* Would be active due to wake-wlan in gSPI */
if (intstatus & I_CHIPACTIVE) {
brcmf_dbg(INFO, "Dongle reports CHIPACTIVE\n");
intstatus &= ~I_CHIPACTIVE;
}
/* Ignore frame indications if rxskip is set */
if (bus->rxskip)
intstatus &= ~I_HMB_FRAME_IND;
/* On frame indication, read available frames */
if (PKT_AVAILABLE()) {
framecnt = brcmf_sdbrcm_readframes(bus, rxlimit, &rxdone);
if (rxdone || bus->rxskip)
intstatus &= ~I_HMB_FRAME_IND;
rxlimit -= min(framecnt, rxlimit);
}
/* Keep still-pending events for next scheduling */
bus->intstatus = intstatus;
clkwait:
brcmf_sdbrcm_clrintr(bus);
if (data_ok(bus) && bus->ctrl_frame_stat &&
(bus->clkstate == CLK_AVAIL)) {
int ret, i;
ret = brcmf_sdcard_send_buf(bus->sdiodev, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, (u8 *) bus->ctrl_frame_buf,
(u32) bus->ctrl_frame_len);
if (ret < 0) {
/* On failure, abort the command and
terminate the frame */
brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n",
ret);
bus->sdcnt.tx_sderrs++;
brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL,
SFC_WF_TERM, &err);
bus->sdcnt.f1regdata++;
for (i = 0; i < 3; i++) {
u8 hi, lo;
hi = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCHI,
&err);
lo = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCLO,
&err);
bus->sdcnt.f1regdata += 2;
if ((hi == 0) && (lo == 0))
break;
}
}
if (ret == 0)
bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP;
brcmf_dbg(INFO, "Return_dpc value is : %d\n", ret);
bus->ctrl_frame_stat = false;
brcmf_sdbrcm_wait_event_wakeup(bus);
}
/* Send queued frames (limit 1 if rx may still be pending) */
else if ((bus->clkstate == CLK_AVAIL) && !bus->fcstate &&
brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) && txlimit
&& data_ok(bus)) {
framecnt = rxdone ? txlimit : min(txlimit, bus->txminmax);
framecnt = brcmf_sdbrcm_sendfromq(bus, framecnt);
txlimit -= framecnt;
}
/* Resched if events or tx frames are pending,
else await next interrupt */
/* On failed register access, all bets are off:
no resched or interrupts */
if ((bus->sdiodev->bus_if->state == BRCMF_BUS_DOWN) || (err != 0)) {
brcmf_dbg(ERROR, "failed backplane access over SDIO, halting operation\n");
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
bus->intstatus = 0;
} else if (bus->clkstate == CLK_PENDING) {
brcmf_dbg(INFO, "rescheduled due to CLK_PENDING awaiting I_CHIPACTIVE interrupt\n");
resched = true;
} else if (bus->intstatus || bus->ipend ||
(!bus->fcstate && brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol)
&& data_ok(bus)) || PKT_AVAILABLE()) {
resched = true;
}
bus->dpc_sched = resched;
/* If we're done for now, turn off clock request. */
if ((bus->clkstate != CLK_PENDING)
&& bus->idletime == BRCMF_IDLE_IMMEDIATE) {
bus->activity = false;
brcmf_sdbrcm_clkctl(bus, CLK_NONE, false);
}
up(&bus->sdsem);
return resched;
}
static inline void brcmf_sdbrcm_adddpctsk(struct brcmf_sdio *bus)
{
struct list_head *new_hd;
unsigned long flags;
if (in_interrupt())
new_hd = kzalloc(sizeof(struct list_head), GFP_ATOMIC);
else
new_hd = kzalloc(sizeof(struct list_head), GFP_KERNEL);
if (new_hd == NULL)
return;
spin_lock_irqsave(&bus->dpc_tl_lock, flags);
list_add_tail(new_hd, &bus->dpc_tsklst);
spin_unlock_irqrestore(&bus->dpc_tl_lock, flags);
}
static int brcmf_sdbrcm_dpc_thread(void *data)
{
struct brcmf_sdio *bus = (struct brcmf_sdio *) data;
struct list_head *cur_hd, *tmp_hd;
unsigned long flags;
allow_signal(SIGTERM);
/* Run until signal received */
while (1) {
if (kthread_should_stop())
break;
if (list_empty(&bus->dpc_tsklst))
if (wait_for_completion_interruptible(&bus->dpc_wait))
break;
spin_lock_irqsave(&bus->dpc_tl_lock, flags);
list_for_each_safe(cur_hd, tmp_hd, &bus->dpc_tsklst) {
spin_unlock_irqrestore(&bus->dpc_tl_lock, flags);
if (bus->sdiodev->bus_if->state == BRCMF_BUS_DOWN) {
/* after stopping the bus, exit thread */
brcmf_sdbrcm_bus_stop(bus->sdiodev->dev);
bus->dpc_tsk = NULL;
spin_lock_irqsave(&bus->dpc_tl_lock, flags);
break;
}
if (brcmf_sdbrcm_dpc(bus))
brcmf_sdbrcm_adddpctsk(bus);
spin_lock_irqsave(&bus->dpc_tl_lock, flags);
list_del(cur_hd);
kfree(cur_hd);
}
spin_unlock_irqrestore(&bus->dpc_tl_lock, flags);
}
return 0;
}
static int brcmf_sdbrcm_bus_txdata(struct device *dev, struct sk_buff *pkt)
{
int ret = -EBADE;
uint datalen, prec;
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
brcmf_dbg(TRACE, "Enter\n");
datalen = pkt->len;
/* Add space for the header */
skb_push(pkt, SDPCM_HDRLEN);
/* precondition: IS_ALIGNED((unsigned long)(pkt->data), 2) */
prec = prio2prec((pkt->priority & PRIOMASK));
/* Check for existing queue, current flow-control,
pending event, or pending clock */
brcmf_dbg(TRACE, "deferring pktq len %d\n", pktq_len(&bus->txq));
bus->sdcnt.fcqueued++;
/* Priority based enq */
spin_lock_bh(&bus->txqlock);
if (!brcmf_c_prec_enq(bus->sdiodev->dev, &bus->txq, pkt, prec)) {
skb_pull(pkt, SDPCM_HDRLEN);
brcmf_txcomplete(bus->sdiodev->dev, pkt, false);
brcmu_pkt_buf_free_skb(pkt);
brcmf_dbg(ERROR, "out of bus->txq !!!\n");
ret = -ENOSR;
} else {
ret = 0;
}
spin_unlock_bh(&bus->txqlock);
if (pktq_len(&bus->txq) >= TXHI) {
bus->txoff = ON;
brcmf_txflowcontrol(bus->sdiodev->dev, 0, ON);
}
#ifdef DEBUG
if (pktq_plen(&bus->txq, prec) > qcount[prec])
qcount[prec] = pktq_plen(&bus->txq, prec);
#endif
/* Schedule DPC if needed to send queued packet(s) */
if (!bus->dpc_sched) {
bus->dpc_sched = true;
if (bus->dpc_tsk) {
brcmf_sdbrcm_adddpctsk(bus);
complete(&bus->dpc_wait);
}
}
return ret;
}
static int
brcmf_sdbrcm_membytes(struct brcmf_sdio *bus, bool write, u32 address, u8 *data,
uint size)
{
int bcmerror = 0;
u32 sdaddr;
uint dsize;
/* Determine initial transfer parameters */
sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK;
if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK)
dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr);
else
dsize = size;
/* Set the backplane window to include the start address */
bcmerror = brcmf_sdcard_set_sbaddr_window(bus->sdiodev, address);
if (bcmerror) {
brcmf_dbg(ERROR, "window change failed\n");
goto xfer_done;
}
/* Do the transfer(s) */
while (size) {
brcmf_dbg(INFO, "%s %d bytes at offset 0x%08x in window 0x%08x\n",
write ? "write" : "read", dsize,
sdaddr, address & SBSDIO_SBWINDOW_MASK);
bcmerror = brcmf_sdcard_rwdata(bus->sdiodev, write,
sdaddr, data, dsize);
if (bcmerror) {
brcmf_dbg(ERROR, "membytes transfer failed\n");
break;
}
/* Adjust for next transfer (if any) */
size -= dsize;
if (size) {
data += dsize;
address += dsize;
bcmerror = brcmf_sdcard_set_sbaddr_window(bus->sdiodev,
address);
if (bcmerror) {
brcmf_dbg(ERROR, "window change failed\n");
break;
}
sdaddr = 0;
dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size);
}
}
xfer_done:
/* Return the window to backplane enumeration space for core access */
if (brcmf_sdcard_set_sbaddr_window(bus->sdiodev, bus->sdiodev->sbwad))
brcmf_dbg(ERROR, "FAILED to set window back to 0x%x\n",
bus->sdiodev->sbwad);
return bcmerror;
}
#ifdef DEBUG
#define CONSOLE_LINE_MAX 192
static int brcmf_sdbrcm_readconsole(struct brcmf_sdio *bus)
{
struct brcmf_console *c = &bus->console;
u8 line[CONSOLE_LINE_MAX], ch;
u32 n, idx, addr;
int rv;
/* Don't do anything until FWREADY updates console address */
if (bus->console_addr == 0)
return 0;
/* Read console log struct */
addr = bus->console_addr + offsetof(struct rte_console, log_le);
rv = brcmf_sdbrcm_membytes(bus, false, addr, (u8 *)&c->log_le,
sizeof(c->log_le));
if (rv < 0)
return rv;
/* Allocate console buffer (one time only) */
if (c->buf == NULL) {
c->bufsize = le32_to_cpu(c->log_le.buf_size);
c->buf = kmalloc(c->bufsize, GFP_ATOMIC);
if (c->buf == NULL)
return -ENOMEM;
}
idx = le32_to_cpu(c->log_le.idx);
/* Protect against corrupt value */
if (idx > c->bufsize)
return -EBADE;
/* Skip reading the console buffer if the index pointer
has not moved */
if (idx == c->last)
return 0;
/* Read the console buffer */
addr = le32_to_cpu(c->log_le.buf);
rv = brcmf_sdbrcm_membytes(bus, false, addr, c->buf, c->bufsize);
if (rv < 0)
return rv;
while (c->last != idx) {
for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) {
if (c->last == idx) {
/* This would output a partial line.
* Instead, back up
* the buffer pointer and output this
* line next time around.
*/
if (c->last >= n)
c->last -= n;
else
c->last = c->bufsize - n;
goto break2;
}
ch = c->buf[c->last];
c->last = (c->last + 1) % c->bufsize;
if (ch == '\n')
break;
line[n] = ch;
}
if (n > 0) {
if (line[n - 1] == '\r')
n--;
line[n] = 0;
pr_debug("CONSOLE: %s\n", line);
}
}
break2:
return 0;
}
#endif /* DEBUG */
static int brcmf_tx_frame(struct brcmf_sdio *bus, u8 *frame, u16 len)
{
int i;
int ret;
bus->ctrl_frame_stat = false;
ret = brcmf_sdcard_send_buf(bus->sdiodev, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, frame, len);
if (ret < 0) {
/* On failure, abort the command and terminate the frame */
brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n",
ret);
bus->sdcnt.tx_sderrs++;
brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_FRAMECTRL,
SFC_WF_TERM, NULL);
bus->sdcnt.f1regdata++;
for (i = 0; i < 3; i++) {
u8 hi, lo;
hi = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCHI, NULL);
lo = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_WFRAMEBCLO, NULL);
bus->sdcnt.f1regdata += 2;
if (hi == 0 && lo == 0)
break;
}
return ret;
}
bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP;
return ret;
}
static int
brcmf_sdbrcm_bus_txctl(struct device *dev, unsigned char *msg, uint msglen)
{
u8 *frame;
u16 len;
u32 swheader;
uint retries = 0;
u8 doff = 0;
int ret = -1;
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
brcmf_dbg(TRACE, "Enter\n");
/* Back the pointer to make a room for bus header */
frame = msg - SDPCM_HDRLEN;
len = (msglen += SDPCM_HDRLEN);
/* Add alignment padding (optional for ctl frames) */
doff = ((unsigned long)frame % BRCMF_SDALIGN);
if (doff) {
frame -= doff;
len += doff;
msglen += doff;
memset(frame, 0, doff + SDPCM_HDRLEN);
}
/* precondition: doff < BRCMF_SDALIGN */
doff += SDPCM_HDRLEN;
/* Round send length to next SDIO block */
if (bus->roundup && bus->blocksize && (len > bus->blocksize)) {
u16 pad = bus->blocksize - (len % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize))
len += pad;
} else if (len % BRCMF_SDALIGN) {
len += BRCMF_SDALIGN - (len % BRCMF_SDALIGN);
}
/* Satisfy length-alignment requirements */
if (len & (ALIGNMENT - 1))
len = roundup(len, ALIGNMENT);
/* precondition: IS_ALIGNED((unsigned long)frame, 2) */
/* Need to lock here to protect txseq and SDIO tx calls */
down(&bus->sdsem);
bus_wake(bus);
/* Make sure backplane clock is on */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
/* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */
*(__le16 *) frame = cpu_to_le16((u16) msglen);
*(((__le16 *) frame) + 1) = cpu_to_le16(~msglen);
/* Software tag: channel, sequence number, data offset */
swheader =
((SDPCM_CONTROL_CHANNEL << SDPCM_CHANNEL_SHIFT) &
SDPCM_CHANNEL_MASK)
| bus->tx_seq | ((doff << SDPCM_DOFFSET_SHIFT) &
SDPCM_DOFFSET_MASK);
put_unaligned_le32(swheader, frame + SDPCM_FRAMETAG_LEN);
put_unaligned_le32(0, frame + SDPCM_FRAMETAG_LEN + sizeof(swheader));
if (!data_ok(bus)) {
brcmf_dbg(INFO, "No bus credit bus->tx_max %d, bus->tx_seq %d\n",
bus->tx_max, bus->tx_seq);
bus->ctrl_frame_stat = true;
/* Send from dpc */
bus->ctrl_frame_buf = frame;
bus->ctrl_frame_len = len;
brcmf_sdbrcm_wait_for_event(bus, &bus->ctrl_frame_stat);
if (!bus->ctrl_frame_stat) {
brcmf_dbg(INFO, "ctrl_frame_stat == false\n");
ret = 0;
} else {
brcmf_dbg(INFO, "ctrl_frame_stat == true\n");
ret = -1;
}
}
if (ret == -1) {
brcmf_dbg_hex_dump(BRCMF_BYTES_ON() && BRCMF_CTL_ON(),
frame, len, "Tx Frame:\n");
brcmf_dbg_hex_dump(!(BRCMF_BYTES_ON() && BRCMF_CTL_ON()) &&
BRCMF_HDRS_ON(),
frame, min_t(u16, len, 16), "TxHdr:\n");
do {
ret = brcmf_tx_frame(bus, frame, len);
} while (ret < 0 && retries++ < TXRETRIES);
}
if ((bus->idletime == BRCMF_IDLE_IMMEDIATE) && !bus->dpc_sched) {
bus->activity = false;
brcmf_sdbrcm_clkctl(bus, CLK_NONE, true);
}
up(&bus->sdsem);
if (ret)
bus->sdcnt.tx_ctlerrs++;
else
bus->sdcnt.tx_ctlpkts++;
return ret ? -EIO : 0;
}
#ifdef DEBUG
static inline bool brcmf_sdio_valid_shared_address(u32 addr)
{
return !(addr == 0 || ((~addr >> 16) & 0xffff) == (addr & 0xffff));
}
static int brcmf_sdio_readshared(struct brcmf_sdio *bus,
struct sdpcm_shared *sh)
{
u32 addr;
int rv;
u32 shaddr = 0;
struct sdpcm_shared_le sh_le;
__le32 addr_le;
shaddr = bus->ramsize - 4;
/*
* Read last word in socram to determine
* address of sdpcm_shared structure
*/
rv = brcmf_sdbrcm_membytes(bus, false, shaddr,
(u8 *)&addr_le, 4);
if (rv < 0)
return rv;
addr = le32_to_cpu(addr_le);
brcmf_dbg(INFO, "sdpcm_shared address 0x%08X\n", addr);
/*
* Check if addr is valid.
* NVRAM length at the end of memory should have been overwritten.
*/
if (!brcmf_sdio_valid_shared_address(addr)) {
brcmf_dbg(ERROR, "invalid sdpcm_shared address 0x%08X\n",
addr);
return -EINVAL;
}
/* Read hndrte_shared structure */
rv = brcmf_sdbrcm_membytes(bus, false, addr, (u8 *)&sh_le,
sizeof(struct sdpcm_shared_le));
if (rv < 0)
return rv;
/* Endianness */
sh->flags = le32_to_cpu(sh_le.flags);
sh->trap_addr = le32_to_cpu(sh_le.trap_addr);
sh->assert_exp_addr = le32_to_cpu(sh_le.assert_exp_addr);
sh->assert_file_addr = le32_to_cpu(sh_le.assert_file_addr);
sh->assert_line = le32_to_cpu(sh_le.assert_line);
sh->console_addr = le32_to_cpu(sh_le.console_addr);
sh->msgtrace_addr = le32_to_cpu(sh_le.msgtrace_addr);
if ((sh->flags & SDPCM_SHARED_VERSION_MASK) != SDPCM_SHARED_VERSION) {
brcmf_dbg(ERROR,
"sdpcm_shared version mismatch: dhd %d dongle %d\n",
SDPCM_SHARED_VERSION,
sh->flags & SDPCM_SHARED_VERSION_MASK);
return -EPROTO;
}
return 0;
}
static int brcmf_sdio_dump_console(struct brcmf_sdio *bus,
struct sdpcm_shared *sh, char __user *data,
size_t count)
{
u32 addr, console_ptr, console_size, console_index;
char *conbuf = NULL;
__le32 sh_val;
int rv;
loff_t pos = 0;
int nbytes = 0;
/* obtain console information from device memory */
addr = sh->console_addr + offsetof(struct rte_console, log_le);
rv = brcmf_sdbrcm_membytes(bus, false, addr,
(u8 *)&sh_val, sizeof(u32));
if (rv < 0)
return rv;
console_ptr = le32_to_cpu(sh_val);
addr = sh->console_addr + offsetof(struct rte_console, log_le.buf_size);
rv = brcmf_sdbrcm_membytes(bus, false, addr,
(u8 *)&sh_val, sizeof(u32));
if (rv < 0)
return rv;
console_size = le32_to_cpu(sh_val);
addr = sh->console_addr + offsetof(struct rte_console, log_le.idx);
rv = brcmf_sdbrcm_membytes(bus, false, addr,
(u8 *)&sh_val, sizeof(u32));
if (rv < 0)
return rv;
console_index = le32_to_cpu(sh_val);
/* allocate buffer for console data */
if (console_size <= CONSOLE_BUFFER_MAX)
conbuf = vzalloc(console_size+1);
if (!conbuf)
return -ENOMEM;
/* obtain the console data from device */
conbuf[console_size] = '\0';
rv = brcmf_sdbrcm_membytes(bus, false, console_ptr, (u8 *)conbuf,
console_size);
if (rv < 0)
goto done;
rv = simple_read_from_buffer(data, count, &pos,
conbuf + console_index,
console_size - console_index);
if (rv < 0)
goto done;
nbytes = rv;
if (console_index > 0) {
pos = 0;
rv = simple_read_from_buffer(data+nbytes, count, &pos,
conbuf, console_index - 1);
if (rv < 0)
goto done;
rv += nbytes;
}
done:
vfree(conbuf);
return rv;
}
static int brcmf_sdio_trap_info(struct brcmf_sdio *bus, struct sdpcm_shared *sh,
char __user *data, size_t count)
{
int error, res;
char buf[350];
struct brcmf_trap_info tr;
int nbytes;
loff_t pos = 0;
if ((sh->flags & SDPCM_SHARED_TRAP) == 0)
return 0;
error = brcmf_sdbrcm_membytes(bus, false, sh->trap_addr, (u8 *)&tr,
sizeof(struct brcmf_trap_info));
if (error < 0)
return error;
nbytes = brcmf_sdio_dump_console(bus, sh, data, count);
if (nbytes < 0)
return nbytes;
res = scnprintf(buf, sizeof(buf),
"dongle trap info: type 0x%x @ epc 0x%08x\n"
" cpsr 0x%08x spsr 0x%08x sp 0x%08x\n"
" lr 0x%08x pc 0x%08x offset 0x%x\n"
" r0 0x%08x r1 0x%08x r2 0x%08x r3 0x%08x\n"
" r4 0x%08x r5 0x%08x r6 0x%08x r7 0x%08x\n",
le32_to_cpu(tr.type), le32_to_cpu(tr.epc),
le32_to_cpu(tr.cpsr), le32_to_cpu(tr.spsr),
le32_to_cpu(tr.r13), le32_to_cpu(tr.r14),
le32_to_cpu(tr.pc), le32_to_cpu(sh->trap_addr),
le32_to_cpu(tr.r0), le32_to_cpu(tr.r1),
le32_to_cpu(tr.r2), le32_to_cpu(tr.r3),
le32_to_cpu(tr.r4), le32_to_cpu(tr.r5),
le32_to_cpu(tr.r6), le32_to_cpu(tr.r7));
error = simple_read_from_buffer(data+nbytes, count, &pos, buf, res);
if (error < 0)
return error;
nbytes += error;
return nbytes;
}
static int brcmf_sdio_assert_info(struct brcmf_sdio *bus,
struct sdpcm_shared *sh, char __user *data,
size_t count)
{
int error = 0;
char buf[200];
char file[80] = "?";
char expr[80] = "<???>";
int res;
loff_t pos = 0;
if ((sh->flags & SDPCM_SHARED_ASSERT_BUILT) == 0) {
brcmf_dbg(INFO, "firmware not built with -assert\n");
return 0;
} else if ((sh->flags & SDPCM_SHARED_ASSERT) == 0) {
brcmf_dbg(INFO, "no assert in dongle\n");
return 0;
}
if (sh->assert_file_addr != 0) {
error = brcmf_sdbrcm_membytes(bus, false, sh->assert_file_addr,
(u8 *)file, 80);
if (error < 0)
return error;
}
if (sh->assert_exp_addr != 0) {
error = brcmf_sdbrcm_membytes(bus, false, sh->assert_exp_addr,
(u8 *)expr, 80);
if (error < 0)
return error;
}
res = scnprintf(buf, sizeof(buf),
"dongle assert: %s:%d: assert(%s)\n",
file, sh->assert_line, expr);
return simple_read_from_buffer(data, count, &pos, buf, res);
}
static int brcmf_sdbrcm_checkdied(struct brcmf_sdio *bus)
{
int error;
struct sdpcm_shared sh;
down(&bus->sdsem);
error = brcmf_sdio_readshared(bus, &sh);
up(&bus->sdsem);
if (error < 0)
return error;
if ((sh.flags & SDPCM_SHARED_ASSERT_BUILT) == 0)
brcmf_dbg(INFO, "firmware not built with -assert\n");
else if (sh.flags & SDPCM_SHARED_ASSERT)
brcmf_dbg(ERROR, "assertion in dongle\n");
if (sh.flags & SDPCM_SHARED_TRAP)
brcmf_dbg(ERROR, "firmware trap in dongle\n");
return 0;
}
static int brcmf_sdbrcm_died_dump(struct brcmf_sdio *bus, char __user *data,
size_t count, loff_t *ppos)
{
int error = 0;
struct sdpcm_shared sh;
int nbytes = 0;
loff_t pos = *ppos;
if (pos != 0)
return 0;
down(&bus->sdsem);
error = brcmf_sdio_readshared(bus, &sh);
if (error < 0)
goto done;
error = brcmf_sdio_assert_info(bus, &sh, data, count);
if (error < 0)
goto done;
nbytes = error;
error = brcmf_sdio_trap_info(bus, &sh, data, count);
if (error < 0)
goto done;
error += nbytes;
*ppos += error;
done:
up(&bus->sdsem);
return error;
}
static ssize_t brcmf_sdio_forensic_read(struct file *f, char __user *data,
size_t count, loff_t *ppos)
{
struct brcmf_sdio *bus = f->private_data;
int res;
res = brcmf_sdbrcm_died_dump(bus, data, count, ppos);
if (res > 0)
*ppos += res;
return (ssize_t)res;
}
static const struct file_operations brcmf_sdio_forensic_ops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = brcmf_sdio_forensic_read
};
static void brcmf_sdio_debugfs_create(struct brcmf_sdio *bus)
{
struct brcmf_pub *drvr = bus->sdiodev->bus_if->drvr;
struct dentry *dentry = brcmf_debugfs_get_devdir(drvr);
if (IS_ERR_OR_NULL(dentry))
return;
debugfs_create_file("forensics", S_IRUGO, dentry, bus,
&brcmf_sdio_forensic_ops);
brcmf_debugfs_create_sdio_count(drvr, &bus->sdcnt);
}
#else
static int brcmf_sdbrcm_checkdied(struct brcmf_sdio *bus)
{
return 0;
}
static void brcmf_sdio_debugfs_create(struct brcmf_sdio *bus)
{
}
#endif /* DEBUG */
static int
brcmf_sdbrcm_bus_rxctl(struct device *dev, unsigned char *msg, uint msglen)
{
int timeleft;
uint rxlen = 0;
bool pending;
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
brcmf_dbg(TRACE, "Enter\n");
/* Wait until control frame is available */
timeleft = brcmf_sdbrcm_dcmd_resp_wait(bus, &bus->rxlen, &pending);
down(&bus->sdsem);
rxlen = bus->rxlen;
memcpy(msg, bus->rxctl, min(msglen, rxlen));
bus->rxlen = 0;
up(&bus->sdsem);
if (rxlen) {
brcmf_dbg(CTL, "resumed on rxctl frame, got %d expected %d\n",
rxlen, msglen);
} else if (timeleft == 0) {
brcmf_dbg(ERROR, "resumed on timeout\n");
brcmf_sdbrcm_checkdied(bus);
} else if (pending) {
brcmf_dbg(CTL, "cancelled\n");
return -ERESTARTSYS;
} else {
brcmf_dbg(CTL, "resumed for unknown reason?\n");
brcmf_sdbrcm_checkdied(bus);
}
if (rxlen)
bus->sdcnt.rx_ctlpkts++;
else
bus->sdcnt.rx_ctlerrs++;
return rxlen ? (int)rxlen : -ETIMEDOUT;
}
static int brcmf_sdbrcm_downloadvars(struct brcmf_sdio *bus, void *arg, int len)
{
int bcmerror = 0;
brcmf_dbg(TRACE, "Enter\n");
/* Basic sanity checks */
if (bus->sdiodev->bus_if->drvr_up) {
bcmerror = -EISCONN;
goto err;
}
if (!len) {
bcmerror = -EOVERFLOW;
goto err;
}
/* Free the old ones and replace with passed variables */
kfree(bus->vars);
bus->vars = kmalloc(len, GFP_ATOMIC);
bus->varsz = bus->vars ? len : 0;
if (bus->vars == NULL) {
bcmerror = -ENOMEM;
goto err;
}
/* Copy the passed variables, which should include the
terminating double-null */
memcpy(bus->vars, arg, bus->varsz);
err:
return bcmerror;
}
static int brcmf_sdbrcm_write_vars(struct brcmf_sdio *bus)
{
int bcmerror = 0;
u32 varsize;
u32 varaddr;
u8 *vbuffer;
u32 varsizew;
__le32 varsizew_le;
#ifdef DEBUG
char *nvram_ularray;
#endif /* DEBUG */
/* Even if there are no vars are to be written, we still
need to set the ramsize. */
varsize = bus->varsz ? roundup(bus->varsz, 4) : 0;
varaddr = (bus->ramsize - 4) - varsize;
if (bus->vars) {
vbuffer = kzalloc(varsize, GFP_ATOMIC);
if (!vbuffer)
return -ENOMEM;
memcpy(vbuffer, bus->vars, bus->varsz);
/* Write the vars list */
bcmerror =
brcmf_sdbrcm_membytes(bus, true, varaddr, vbuffer, varsize);
#ifdef DEBUG
/* Verify NVRAM bytes */
brcmf_dbg(INFO, "Compare NVRAM dl & ul; varsize=%d\n", varsize);
nvram_ularray = kmalloc(varsize, GFP_ATOMIC);
if (!nvram_ularray) {
kfree(vbuffer);
return -ENOMEM;
}
/* Upload image to verify downloaded contents. */
memset(nvram_ularray, 0xaa, varsize);
/* Read the vars list to temp buffer for comparison */
bcmerror =
brcmf_sdbrcm_membytes(bus, false, varaddr, nvram_ularray,
varsize);
if (bcmerror) {
brcmf_dbg(ERROR, "error %d on reading %d nvram bytes at 0x%08x\n",
bcmerror, varsize, varaddr);
}
/* Compare the org NVRAM with the one read from RAM */
if (memcmp(vbuffer, nvram_ularray, varsize))
brcmf_dbg(ERROR, "Downloaded NVRAM image is corrupted\n");
else
brcmf_dbg(ERROR, "Download/Upload/Compare of NVRAM ok\n");
kfree(nvram_ularray);
#endif /* DEBUG */
kfree(vbuffer);
}
/* adjust to the user specified RAM */
brcmf_dbg(INFO, "Physical memory size: %d\n", bus->ramsize);
brcmf_dbg(INFO, "Vars are at %d, orig varsize is %d\n",
varaddr, varsize);
varsize = ((bus->ramsize - 4) - varaddr);
/*
* Determine the length token:
* Varsize, converted to words, in lower 16-bits, checksum
* in upper 16-bits.
*/
if (bcmerror) {
varsizew = 0;
varsizew_le = cpu_to_le32(0);
} else {
varsizew = varsize / 4;
varsizew = (~varsizew << 16) | (varsizew & 0x0000FFFF);
varsizew_le = cpu_to_le32(varsizew);
}
brcmf_dbg(INFO, "New varsize is %d, length token=0x%08x\n",
varsize, varsizew);
/* Write the length token to the last word */
bcmerror = brcmf_sdbrcm_membytes(bus, true, (bus->ramsize - 4),
(u8 *)&varsizew_le, 4);
return bcmerror;
}
static int brcmf_sdbrcm_download_state(struct brcmf_sdio *bus, bool enter)
{
int bcmerror = 0;
struct chip_info *ci = bus->ci;
/* To enter download state, disable ARM and reset SOCRAM.
* To exit download state, simply reset ARM (default is RAM boot).
*/
if (enter) {
bus->alp_only = true;
ci->coredisable(bus->sdiodev, ci, BCMA_CORE_ARM_CM3);
ci->resetcore(bus->sdiodev, ci, BCMA_CORE_INTERNAL_MEM);
/* Clear the top bit of memory */
if (bus->ramsize) {
u32 zeros = 0;
brcmf_sdbrcm_membytes(bus, true, bus->ramsize - 4,
(u8 *)&zeros, 4);
}
} else {
if (!ci->iscoreup(bus->sdiodev, ci, BCMA_CORE_INTERNAL_MEM)) {
brcmf_dbg(ERROR, "SOCRAM core is down after reset?\n");
bcmerror = -EBADE;
goto fail;
}
bcmerror = brcmf_sdbrcm_write_vars(bus);
if (bcmerror) {
brcmf_dbg(ERROR, "no vars written to RAM\n");
bcmerror = 0;
}
w_sdreg32(bus, 0xFFFFFFFF,
offsetof(struct sdpcmd_regs, intstatus));
ci->resetcore(bus->sdiodev, ci, BCMA_CORE_ARM_CM3);
/* Allow HT Clock now that the ARM is running. */
bus->alp_only = false;
bus->sdiodev->bus_if->state = BRCMF_BUS_LOAD;
}
fail:
return bcmerror;
}
static int brcmf_sdbrcm_get_image(char *buf, int len, struct brcmf_sdio *bus)
{
if (bus->firmware->size < bus->fw_ptr + len)
len = bus->firmware->size - bus->fw_ptr;
memcpy(buf, &bus->firmware->data[bus->fw_ptr], len);
bus->fw_ptr += len;
return len;
}
static int brcmf_sdbrcm_download_code_file(struct brcmf_sdio *bus)
{
int offset = 0;
uint len;
u8 *memblock = NULL, *memptr;
int ret;
brcmf_dbg(INFO, "Enter\n");
ret = request_firmware(&bus->firmware, BRCMF_SDIO_FW_NAME,
&bus->sdiodev->func[2]->dev);
if (ret) {
brcmf_dbg(ERROR, "Fail to request firmware %d\n", ret);
return ret;
}
bus->fw_ptr = 0;
memptr = memblock = kmalloc(MEMBLOCK + BRCMF_SDALIGN, GFP_ATOMIC);
if (memblock == NULL) {
ret = -ENOMEM;
goto err;
}
if ((u32)(unsigned long)memblock % BRCMF_SDALIGN)
memptr += (BRCMF_SDALIGN -
((u32)(unsigned long)memblock % BRCMF_SDALIGN));
/* Download image */
while ((len =
brcmf_sdbrcm_get_image((char *)memptr, MEMBLOCK, bus))) {
ret = brcmf_sdbrcm_membytes(bus, true, offset, memptr, len);
if (ret) {
brcmf_dbg(ERROR, "error %d on writing %d membytes at 0x%08x\n",
ret, MEMBLOCK, offset);
goto err;
}
offset += MEMBLOCK;
}
err:
kfree(memblock);
release_firmware(bus->firmware);
bus->fw_ptr = 0;
return ret;
}
/*
* ProcessVars:Takes a buffer of "<var>=<value>\n" lines read from a file
* and ending in a NUL.
* Removes carriage returns, empty lines, comment lines, and converts
* newlines to NULs.
* Shortens buffer as needed and pads with NULs. End of buffer is marked
* by two NULs.
*/
static uint brcmf_process_nvram_vars(char *varbuf, uint len)
{
char *dp;
bool findNewline;
int column;
uint buf_len, n;
dp = varbuf;
findNewline = false;
column = 0;
for (n = 0; n < len; n++) {
if (varbuf[n] == 0)
break;
if (varbuf[n] == '\r')
continue;
if (findNewline && varbuf[n] != '\n')
continue;
findNewline = false;
if (varbuf[n] == '#') {
findNewline = true;
continue;
}
if (varbuf[n] == '\n') {
if (column == 0)
continue;
*dp++ = 0;
column = 0;
continue;
}
*dp++ = varbuf[n];
column++;
}
buf_len = dp - varbuf;
while (dp < varbuf + n)
*dp++ = 0;
return buf_len;
}
static int brcmf_sdbrcm_download_nvram(struct brcmf_sdio *bus)
{
uint len;
char *memblock = NULL;
char *bufp;
int ret;
ret = request_firmware(&bus->firmware, BRCMF_SDIO_NV_NAME,
&bus->sdiodev->func[2]->dev);
if (ret) {
brcmf_dbg(ERROR, "Fail to request nvram %d\n", ret);
return ret;
}
bus->fw_ptr = 0;
memblock = kmalloc(MEMBLOCK, GFP_ATOMIC);
if (memblock == NULL) {
ret = -ENOMEM;
goto err;
}
len = brcmf_sdbrcm_get_image(memblock, MEMBLOCK, bus);
if (len > 0 && len < MEMBLOCK) {
bufp = (char *)memblock;
bufp[len] = 0;
len = brcmf_process_nvram_vars(bufp, len);
bufp += len;
*bufp++ = 0;
if (len)
ret = brcmf_sdbrcm_downloadvars(bus, memblock, len + 1);
if (ret)
brcmf_dbg(ERROR, "error downloading vars: %d\n", ret);
} else {
brcmf_dbg(ERROR, "error reading nvram file: %d\n", len);
ret = -EIO;
}
err:
kfree(memblock);
release_firmware(bus->firmware);
bus->fw_ptr = 0;
return ret;
}
static int _brcmf_sdbrcm_download_firmware(struct brcmf_sdio *bus)
{
int bcmerror = -1;
/* Keep arm in reset */
if (brcmf_sdbrcm_download_state(bus, true)) {
brcmf_dbg(ERROR, "error placing ARM core in reset\n");
goto err;
}
/* External image takes precedence if specified */
if (brcmf_sdbrcm_download_code_file(bus)) {
brcmf_dbg(ERROR, "dongle image file download failed\n");
goto err;
}
/* External nvram takes precedence if specified */
if (brcmf_sdbrcm_download_nvram(bus))
brcmf_dbg(ERROR, "dongle nvram file download failed\n");
/* Take arm out of reset */
if (brcmf_sdbrcm_download_state(bus, false)) {
brcmf_dbg(ERROR, "error getting out of ARM core reset\n");
goto err;
}
bcmerror = 0;
err:
return bcmerror;
}
static bool
brcmf_sdbrcm_download_firmware(struct brcmf_sdio *bus)
{
bool ret;
/* Download the firmware */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
ret = _brcmf_sdbrcm_download_firmware(bus) == 0;
brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false);
return ret;
}
static int brcmf_sdbrcm_bus_init(struct device *dev)
{
struct brcmf_bus *bus_if = dev_get_drvdata(dev);
struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
struct brcmf_sdio *bus = sdiodev->bus;
unsigned long timeout;
u8 ready, enable;
int err, ret = 0;
u8 saveclk;
brcmf_dbg(TRACE, "Enter\n");
/* try to download image and nvram to the dongle */
if (bus_if->state == BRCMF_BUS_DOWN) {
if (!(brcmf_sdbrcm_download_firmware(bus)))
return -1;
}
if (!bus->sdiodev->bus_if->drvr)
return 0;
/* Start the watchdog timer */
bus->sdcnt.tickcnt = 0;
brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS);
down(&bus->sdsem);
/* Make sure backplane clock is on, needed to generate F2 interrupt */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
if (bus->clkstate != CLK_AVAIL)
goto exit;
/* Force clocks on backplane to be sure F2 interrupt propagates */
saveclk = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (!err) {
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
(saveclk | SBSDIO_FORCE_HT), &err);
}
if (err) {
brcmf_dbg(ERROR, "Failed to force clock for F2: err %d\n", err);
goto exit;
}
/* Enable function 2 (frame transfers) */
w_sdreg32(bus, SDPCM_PROT_VERSION << SMB_DATA_VERSION_SHIFT,
offsetof(struct sdpcmd_regs, tosbmailboxdata));
enable = (SDIO_FUNC_ENABLE_1 | SDIO_FUNC_ENABLE_2);
brcmf_sdio_regwb(bus->sdiodev, SDIO_CCCR_IOEx, enable, NULL);
timeout = jiffies + msecs_to_jiffies(BRCMF_WAIT_F2RDY);
ready = 0;
while (enable != ready) {
ready = brcmf_sdio_regrb(bus->sdiodev,
SDIO_CCCR_IORx, NULL);
if (time_after(jiffies, timeout))
break;
else if (time_after(jiffies, timeout - BRCMF_WAIT_F2RDY + 50))
/* prevent busy waiting if it takes too long */
msleep_interruptible(20);
}
brcmf_dbg(INFO, "enable 0x%02x, ready 0x%02x\n", enable, ready);
/* If F2 successfully enabled, set core and enable interrupts */
if (ready == enable) {
/* Set up the interrupt mask and enable interrupts */
bus->hostintmask = HOSTINTMASK;
w_sdreg32(bus, bus->hostintmask,
offsetof(struct sdpcmd_regs, hostintmask));
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_WATERMARK, 8, &err);
} else {
/* Disable F2 again */
enable = SDIO_FUNC_ENABLE_1;
brcmf_sdio_regwb(bus->sdiodev, SDIO_CCCR_IOEx, enable, NULL);
ret = -ENODEV;
}
/* Restore previous clock setting */
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, saveclk, &err);
if (ret == 0) {
ret = brcmf_sdio_intr_register(bus->sdiodev);
if (ret != 0)
brcmf_dbg(ERROR, "intr register failed:%d\n", ret);
}
/* If we didn't come up, turn off backplane clock */
if (bus_if->state != BRCMF_BUS_DATA)
brcmf_sdbrcm_clkctl(bus, CLK_NONE, false);
exit:
up(&bus->sdsem);
return ret;
}
void brcmf_sdbrcm_isr(void *arg)
{
struct brcmf_sdio *bus = (struct brcmf_sdio *) arg;
brcmf_dbg(TRACE, "Enter\n");
if (!bus) {
brcmf_dbg(ERROR, "bus is null pointer, exiting\n");
return;
}
if (bus->sdiodev->bus_if->state == BRCMF_BUS_DOWN) {
brcmf_dbg(ERROR, "bus is down. we have nothing to do\n");
return;
}
/* Count the interrupt call */
bus->sdcnt.intrcount++;
bus->ipend = true;
/* Shouldn't get this interrupt if we're sleeping? */
if (bus->sleeping) {
brcmf_dbg(ERROR, "INTERRUPT WHILE SLEEPING??\n");
return;
}
/* Disable additional interrupts (is this needed now)? */
if (!bus->intr)
brcmf_dbg(ERROR, "isr w/o interrupt configured!\n");
bus->dpc_sched = true;
if (bus->dpc_tsk) {
brcmf_sdbrcm_adddpctsk(bus);
complete(&bus->dpc_wait);
}
}
static bool brcmf_sdbrcm_bus_watchdog(struct brcmf_sdio *bus)
{
#ifdef DEBUG
struct brcmf_bus *bus_if = dev_get_drvdata(bus->sdiodev->dev);
#endif /* DEBUG */
brcmf_dbg(TIMER, "Enter\n");
/* Ignore the timer if simulating bus down */
if (bus->sleeping)
return false;
down(&bus->sdsem);
/* Poll period: check device if appropriate. */
if (bus->poll && (++bus->polltick >= bus->pollrate)) {
u32 intstatus = 0;
/* Reset poll tick */
bus->polltick = 0;
/* Check device if no interrupts */
if (!bus->intr ||
(bus->sdcnt.intrcount == bus->sdcnt.lastintrs)) {
if (!bus->dpc_sched) {
u8 devpend;
devpend = brcmf_sdio_regrb(bus->sdiodev,
SDIO_CCCR_INTx,
NULL);
intstatus =
devpend & (INTR_STATUS_FUNC1 |
INTR_STATUS_FUNC2);
}
/* If there is something, make like the ISR and
schedule the DPC */
if (intstatus) {
bus->sdcnt.pollcnt++;
bus->ipend = true;
bus->dpc_sched = true;
if (bus->dpc_tsk) {
brcmf_sdbrcm_adddpctsk(bus);
complete(&bus->dpc_wait);
}
}
}
/* Update interrupt tracking */
bus->sdcnt.lastintrs = bus->sdcnt.intrcount;
}
#ifdef DEBUG
/* Poll for console output periodically */
if (bus_if->state == BRCMF_BUS_DATA &&
bus->console_interval != 0) {
bus->console.count += BRCMF_WD_POLL_MS;
if (bus->console.count >= bus->console_interval) {
bus->console.count -= bus->console_interval;
/* Make sure backplane clock is on */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
if (brcmf_sdbrcm_readconsole(bus) < 0)
/* stop on error */
bus->console_interval = 0;
}
}
#endif /* DEBUG */
/* On idle timeout clear activity flag and/or turn off clock */
if ((bus->idletime > 0) && (bus->clkstate == CLK_AVAIL)) {
if (++bus->idlecount >= bus->idletime) {
bus->idlecount = 0;
if (bus->activity) {
bus->activity = false;
brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS);
} else {
brcmf_sdbrcm_clkctl(bus, CLK_NONE, false);
}
}
}
up(&bus->sdsem);
return bus->ipend;
}
static bool brcmf_sdbrcm_chipmatch(u16 chipid)
{
if (chipid == BCM4329_CHIP_ID)
return true;
if (chipid == BCM4330_CHIP_ID)
return true;
return false;
}
static void brcmf_sdbrcm_release_malloc(struct brcmf_sdio *bus)
{
brcmf_dbg(TRACE, "Enter\n");
kfree(bus->rxbuf);
bus->rxctl = bus->rxbuf = NULL;
bus->rxlen = 0;
kfree(bus->databuf);
bus->databuf = NULL;
}
static bool brcmf_sdbrcm_probe_malloc(struct brcmf_sdio *bus)
{
brcmf_dbg(TRACE, "Enter\n");
if (bus->sdiodev->bus_if->maxctl) {
bus->rxblen =
roundup((bus->sdiodev->bus_if->maxctl + SDPCM_HDRLEN),
ALIGNMENT) + BRCMF_SDALIGN;
bus->rxbuf = kmalloc(bus->rxblen, GFP_ATOMIC);
if (!(bus->rxbuf))
goto fail;
}
/* Allocate buffer to receive glomed packet */
bus->databuf = kmalloc(MAX_DATA_BUF, GFP_ATOMIC);
if (!(bus->databuf)) {
/* release rxbuf which was already located as above */
if (!bus->rxblen)
kfree(bus->rxbuf);
goto fail;
}
/* Align the buffer */
if ((unsigned long)bus->databuf % BRCMF_SDALIGN)
bus->dataptr = bus->databuf + (BRCMF_SDALIGN -
((unsigned long)bus->databuf % BRCMF_SDALIGN));
else
bus->dataptr = bus->databuf;
return true;
fail:
return false;
}
static bool
brcmf_sdbrcm_probe_attach(struct brcmf_sdio *bus, u32 regsva)
{
u8 clkctl = 0;
int err = 0;
int reg_addr;
u32 reg_val;
u8 idx;
bus->alp_only = true;
pr_debug("F1 signature read @0x18000000=0x%4x\n",
brcmf_sdio_regrl(bus->sdiodev, SI_ENUM_BASE, NULL));
/*
* Force PLL off until brcmf_sdio_chip_attach()
* programs PLL control regs
*/
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR,
BRCMF_INIT_CLKCTL1, &err);
if (!err)
clkctl = brcmf_sdio_regrb(bus->sdiodev,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err || ((clkctl & ~SBSDIO_AVBITS) != BRCMF_INIT_CLKCTL1)) {
brcmf_dbg(ERROR, "ChipClkCSR access: err %d wrote 0x%02x read 0x%02x\n",
err, BRCMF_INIT_CLKCTL1, clkctl);
goto fail;
}
if (brcmf_sdio_chip_attach(bus->sdiodev, &bus->ci, regsva)) {
brcmf_dbg(ERROR, "brcmf_sdio_chip_attach failed!\n");
goto fail;
}
if (!brcmf_sdbrcm_chipmatch((u16) bus->ci->chip)) {
brcmf_dbg(ERROR, "unsupported chip: 0x%04x\n", bus->ci->chip);
goto fail;
}
brcmf_sdio_chip_drivestrengthinit(bus->sdiodev, bus->ci,
SDIO_DRIVE_STRENGTH);
/* Get info on the SOCRAM cores... */
bus->ramsize = bus->ci->ramsize;
if (!(bus->ramsize)) {
brcmf_dbg(ERROR, "failed to find SOCRAM memory!\n");
goto fail;
}
/* Set core control so an SDIO reset does a backplane reset */
idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV);
reg_addr = bus->ci->c_inf[idx].base +
offsetof(struct sdpcmd_regs, corecontrol);
reg_val = brcmf_sdio_regrl(bus->sdiodev, reg_addr, NULL);
brcmf_sdio_regwl(bus->sdiodev, reg_addr, reg_val | CC_BPRESEN, NULL);
brcmu_pktq_init(&bus->txq, (PRIOMASK + 1), TXQLEN);
/* Locate an appropriately-aligned portion of hdrbuf */
bus->rxhdr = (u8 *) roundup((unsigned long)&bus->hdrbuf[0],
BRCMF_SDALIGN);
/* Set the poll and/or interrupt flags */
bus->intr = true;
bus->poll = false;
if (bus->poll)
bus->pollrate = 1;
return true;
fail:
return false;
}
static bool brcmf_sdbrcm_probe_init(struct brcmf_sdio *bus)
{
brcmf_dbg(TRACE, "Enter\n");
/* Disable F2 to clear any intermediate frame state on the dongle */
brcmf_sdio_regwb(bus->sdiodev, SDIO_CCCR_IOEx,
SDIO_FUNC_ENABLE_1, NULL);
bus->sdiodev->bus_if->state = BRCMF_BUS_DOWN;
bus->sleeping = false;
bus->rxflow = false;
/* Done with backplane-dependent accesses, can drop clock... */
brcmf_sdio_regwb(bus->sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, 0, NULL);
/* ...and initialize clock/power states */
bus->clkstate = CLK_SDONLY;
bus->idletime = BRCMF_IDLE_INTERVAL;
bus->idleclock = BRCMF_IDLE_ACTIVE;
/* Query the F2 block size, set roundup accordingly */
bus->blocksize = bus->sdiodev->func[2]->cur_blksize;
bus->roundup = min(max_roundup, bus->blocksize);
/* bus module does not support packet chaining */
bus->use_rxchain = false;
bus->sd_rxchain = false;
return true;
}
static int
brcmf_sdbrcm_watchdog_thread(void *data)
{
struct brcmf_sdio *bus = (struct brcmf_sdio *)data;
allow_signal(SIGTERM);
/* Run until signal received */
while (1) {
if (kthread_should_stop())
break;
if (!wait_for_completion_interruptible(&bus->watchdog_wait)) {
brcmf_sdbrcm_bus_watchdog(bus);
/* Count the tick for reference */
bus->sdcnt.tickcnt++;
} else
break;
}
return 0;
}
static void
brcmf_sdbrcm_watchdog(unsigned long data)
{
struct brcmf_sdio *bus = (struct brcmf_sdio *)data;
if (bus->watchdog_tsk) {
complete(&bus->watchdog_wait);
/* Reschedule the watchdog */
if (bus->wd_timer_valid)
mod_timer(&bus->timer,
jiffies + BRCMF_WD_POLL_MS * HZ / 1000);
}
}
static void brcmf_sdbrcm_release_dongle(struct brcmf_sdio *bus)
{
brcmf_dbg(TRACE, "Enter\n");
if (bus->ci) {
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
brcmf_sdbrcm_clkctl(bus, CLK_NONE, false);
brcmf_sdio_chip_detach(&bus->ci);
if (bus->vars && bus->varsz)
kfree(bus->vars);
bus->vars = NULL;
}
brcmf_dbg(TRACE, "Disconnected\n");
}
/* Detach and free everything */
static void brcmf_sdbrcm_release(struct brcmf_sdio *bus)
{
brcmf_dbg(TRACE, "Enter\n");
if (bus) {
/* De-register interrupt handler */
brcmf_sdio_intr_unregister(bus->sdiodev);
if (bus->sdiodev->bus_if->drvr) {
brcmf_detach(bus->sdiodev->dev);
brcmf_sdbrcm_release_dongle(bus);
}
brcmf_sdbrcm_release_malloc(bus);
kfree(bus);
}
brcmf_dbg(TRACE, "Disconnected\n");
}
void *brcmf_sdbrcm_probe(u32 regsva, struct brcmf_sdio_dev *sdiodev)
{
int ret;
struct brcmf_sdio *bus;
struct brcmf_bus_dcmd *dlst;
u32 dngl_txglom;
u8 idx;
brcmf_dbg(TRACE, "Enter\n");
/* We make an assumption about address window mappings:
* regsva == SI_ENUM_BASE*/
/* Allocate private bus interface state */
bus = kzalloc(sizeof(struct brcmf_sdio), GFP_ATOMIC);
if (!bus)
goto fail;
bus->sdiodev = sdiodev;
sdiodev->bus = bus;
skb_queue_head_init(&bus->glom);
bus->txbound = BRCMF_TXBOUND;
bus->rxbound = BRCMF_RXBOUND;
bus->txminmax = BRCMF_TXMINMAX;
bus->tx_seq = SDPCM_SEQUENCE_WRAP - 1;
bus->usebufpool = false; /* Use bufpool if allocated,
else use locally malloced rxbuf */
/* attempt to attach to the dongle */
if (!(brcmf_sdbrcm_probe_attach(bus, regsva))) {
brcmf_dbg(ERROR, "brcmf_sdbrcm_probe_attach failed\n");
goto fail;
}
spin_lock_init(&bus->txqlock);
init_waitqueue_head(&bus->ctrl_wait);
init_waitqueue_head(&bus->dcmd_resp_wait);
/* Set up the watchdog timer */
init_timer(&bus->timer);
bus->timer.data = (unsigned long)bus;
bus->timer.function = brcmf_sdbrcm_watchdog;
/* Initialize thread based operation and lock */
sema_init(&bus->sdsem, 1);
/* Initialize watchdog thread */
init_completion(&bus->watchdog_wait);
bus->watchdog_tsk = kthread_run(brcmf_sdbrcm_watchdog_thread,
bus, "brcmf_watchdog");
if (IS_ERR(bus->watchdog_tsk)) {
pr_warn("brcmf_watchdog thread failed to start\n");
bus->watchdog_tsk = NULL;
}
/* Initialize DPC thread */
init_completion(&bus->dpc_wait);
INIT_LIST_HEAD(&bus->dpc_tsklst);
spin_lock_init(&bus->dpc_tl_lock);
bus->dpc_tsk = kthread_run(brcmf_sdbrcm_dpc_thread,
bus, "brcmf_dpc");
if (IS_ERR(bus->dpc_tsk)) {
pr_warn("brcmf_dpc thread failed to start\n");
bus->dpc_tsk = NULL;
}
/* Assign bus interface call back */
bus->sdiodev->bus_if->brcmf_bus_stop = brcmf_sdbrcm_bus_stop;
bus->sdiodev->bus_if->brcmf_bus_init = brcmf_sdbrcm_bus_init;
bus->sdiodev->bus_if->brcmf_bus_txdata = brcmf_sdbrcm_bus_txdata;
bus->sdiodev->bus_if->brcmf_bus_txctl = brcmf_sdbrcm_bus_txctl;
bus->sdiodev->bus_if->brcmf_bus_rxctl = brcmf_sdbrcm_bus_rxctl;
/* Attach to the brcmf/OS/network interface */
ret = brcmf_attach(SDPCM_RESERVE, bus->sdiodev->dev);
if (ret != 0) {
brcmf_dbg(ERROR, "brcmf_attach failed\n");
goto fail;
}
/* Allocate buffers */
if (!(brcmf_sdbrcm_probe_malloc(bus))) {
brcmf_dbg(ERROR, "brcmf_sdbrcm_probe_malloc failed\n");
goto fail;
}
if (!(brcmf_sdbrcm_probe_init(bus))) {
brcmf_dbg(ERROR, "brcmf_sdbrcm_probe_init failed\n");
goto fail;
}
brcmf_sdio_debugfs_create(bus);
brcmf_dbg(INFO, "completed!!\n");
/* sdio bus core specific dcmd */
idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV);
dlst = kzalloc(sizeof(struct brcmf_bus_dcmd), GFP_KERNEL);
if (bus->ci->c_inf[idx].rev < 12 && dlst) {
/* for sdio core rev < 12, disable txgloming */
dngl_txglom = 0;
dlst->name = "bus:txglom";
dlst->param = (char *)&dngl_txglom;
dlst->param_len = sizeof(u32);
list_add(&dlst->list, &bus->sdiodev->bus_if->dcmd_list);
}
/* if firmware path present try to download and bring up bus */
ret = brcmf_bus_start(bus->sdiodev->dev);
if (ret != 0) {
if (ret == -ENOLINK) {
brcmf_dbg(ERROR, "dongle is not responding\n");
goto fail;
}
}
return bus;
fail:
brcmf_sdbrcm_release(bus);
return NULL;
}
void brcmf_sdbrcm_disconnect(void *ptr)
{
struct brcmf_sdio *bus = (struct brcmf_sdio *)ptr;
brcmf_dbg(TRACE, "Enter\n");
if (bus)
brcmf_sdbrcm_release(bus);
brcmf_dbg(TRACE, "Disconnected\n");
}
void
brcmf_sdbrcm_wd_timer(struct brcmf_sdio *bus, uint wdtick)
{
/* Totally stop the timer */
if (!wdtick && bus->wd_timer_valid) {
del_timer_sync(&bus->timer);
bus->wd_timer_valid = false;
bus->save_ms = wdtick;
return;
}
/* don't start the wd until fw is loaded */
if (bus->sdiodev->bus_if->state == BRCMF_BUS_DOWN)
return;
if (wdtick) {
if (bus->save_ms != BRCMF_WD_POLL_MS) {
if (bus->wd_timer_valid)
/* Stop timer and restart at new value */
del_timer_sync(&bus->timer);
/* Create timer again when watchdog period is
dynamically changed or in the first instance
*/
bus->timer.expires =
jiffies + BRCMF_WD_POLL_MS * HZ / 1000;
add_timer(&bus->timer);
} else {
/* Re arm the timer, at last watchdog period */
mod_timer(&bus->timer,
jiffies + BRCMF_WD_POLL_MS * HZ / 1000);
}
bus->wd_timer_valid = true;
bus->save_ms = wdtick;
}
}