1c2f87c225
memblock is now fully integrated into the kernel and is the prefered method for tracking memory. Rather than reinvent the wheel with meminfo, migrate to using memblock directly instead of meminfo as an intermediate. Acked-by: Jason Cooper <jason@lakedaemon.net> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Acked-by: Kukjin Kim <kgene.kim@samsung.com> Tested-by: Marek Szyprowski <m.szyprowski@samsung.com> Tested-by: Leif Lindholm <leif.lindholm@linaro.org> Signed-off-by: Laura Abbott <lauraa@codeaurora.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
389 lines
9.8 KiB
C
389 lines
9.8 KiB
C
/*
|
|
* linux/arch/arm/mm/nommu.c
|
|
*
|
|
* ARM uCLinux supporting functions.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/io.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/kernel.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/page.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/mach/arch.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/mpu.h>
|
|
#include <asm/procinfo.h>
|
|
|
|
#include "mm.h"
|
|
|
|
#ifdef CONFIG_ARM_MPU
|
|
struct mpu_rgn_info mpu_rgn_info;
|
|
|
|
/* Region number */
|
|
static void rgnr_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v));
|
|
}
|
|
|
|
/* Data-side / unified region attributes */
|
|
|
|
/* Region access control register */
|
|
static void dracr_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v));
|
|
}
|
|
|
|
/* Region size register */
|
|
static void drsr_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v));
|
|
}
|
|
|
|
/* Region base address register */
|
|
static void drbar_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v));
|
|
}
|
|
|
|
static u32 drbar_read(void)
|
|
{
|
|
u32 v;
|
|
asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v));
|
|
return v;
|
|
}
|
|
/* Optional instruction-side region attributes */
|
|
|
|
/* I-side Region access control register */
|
|
static void iracr_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v));
|
|
}
|
|
|
|
/* I-side Region size register */
|
|
static void irsr_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v));
|
|
}
|
|
|
|
/* I-side Region base address register */
|
|
static void irbar_write(u32 v)
|
|
{
|
|
asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v));
|
|
}
|
|
|
|
static unsigned long irbar_read(void)
|
|
{
|
|
unsigned long v;
|
|
asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v));
|
|
return v;
|
|
}
|
|
|
|
/* MPU initialisation functions */
|
|
void __init sanity_check_meminfo_mpu(void)
|
|
{
|
|
int i;
|
|
phys_addr_t phys_offset = PHYS_OFFSET;
|
|
phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
|
|
struct memblock_region *reg;
|
|
bool first = true;
|
|
phys_addr_t mem_start;
|
|
phys_addr_t mem_end;
|
|
|
|
for_each_memblock(memory, reg) {
|
|
if (first) {
|
|
/*
|
|
* Initially only use memory continuous from
|
|
* PHYS_OFFSET */
|
|
if (reg->base != phys_offset)
|
|
panic("First memory bank must be contiguous from PHYS_OFFSET");
|
|
|
|
mem_start = reg->base;
|
|
mem_end = reg->base + reg->size;
|
|
specified_mem_size = reg->size;
|
|
first = false;
|
|
} else {
|
|
/*
|
|
* memblock auto merges contiguous blocks, remove
|
|
* all blocks afterwards
|
|
*/
|
|
pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
|
|
&mem_start, ®->base);
|
|
memblock_remove(reg->base, reg->size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* MPU has curious alignment requirements: Size must be power of 2, and
|
|
* region start must be aligned to the region size
|
|
*/
|
|
if (phys_offset != 0)
|
|
pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
|
|
|
|
/*
|
|
* Maximum aligned region might overflow phys_addr_t if phys_offset is
|
|
* 0. Hence we keep everything below 4G until we take the smaller of
|
|
* the aligned_region_size and rounded_mem_size, one of which is
|
|
* guaranteed to be smaller than the maximum physical address.
|
|
*/
|
|
aligned_region_size = (phys_offset - 1) ^ (phys_offset);
|
|
/* Find the max power-of-two sized region that fits inside our bank */
|
|
rounded_mem_size = (1 << __fls(specified_mem_size)) - 1;
|
|
|
|
/* The actual region size is the smaller of the two */
|
|
aligned_region_size = aligned_region_size < rounded_mem_size
|
|
? aligned_region_size + 1
|
|
: rounded_mem_size + 1;
|
|
|
|
if (aligned_region_size != specified_mem_size) {
|
|
pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
|
|
&specified_mem_size, &aligned_region_size);
|
|
memblock_remove(mem_start + aligned_region_size,
|
|
specified_mem_size - aligned_round_size);
|
|
|
|
mem_end = mem_start + aligned_region_size;
|
|
}
|
|
|
|
pr_debug("MPU Region from %pa size %pa (end %pa))\n",
|
|
&phys_offset, &aligned_region_size, &mem_end);
|
|
|
|
}
|
|
|
|
static int mpu_present(void)
|
|
{
|
|
return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
|
|
}
|
|
|
|
static int mpu_max_regions(void)
|
|
{
|
|
/*
|
|
* We don't support a different number of I/D side regions so if we
|
|
* have separate instruction and data memory maps then return
|
|
* whichever side has a smaller number of supported regions.
|
|
*/
|
|
u32 dregions, iregions, mpuir;
|
|
mpuir = read_cpuid(CPUID_MPUIR);
|
|
|
|
dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
|
|
|
|
/* Check for separate d-side and i-side memory maps */
|
|
if (mpuir & MPUIR_nU)
|
|
iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
|
|
|
|
/* Use the smallest of the two maxima */
|
|
return min(dregions, iregions);
|
|
}
|
|
|
|
static int mpu_iside_independent(void)
|
|
{
|
|
/* MPUIR.nU specifies whether there is *not* a unified memory map */
|
|
return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
|
|
}
|
|
|
|
static int mpu_min_region_order(void)
|
|
{
|
|
u32 drbar_result, irbar_result;
|
|
/* We've kept a region free for this probing */
|
|
rgnr_write(MPU_PROBE_REGION);
|
|
isb();
|
|
/*
|
|
* As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
|
|
* region order
|
|
*/
|
|
drbar_write(0xFFFFFFFC);
|
|
drbar_result = irbar_result = drbar_read();
|
|
drbar_write(0x0);
|
|
/* If the MPU is non-unified, we use the larger of the two minima*/
|
|
if (mpu_iside_independent()) {
|
|
irbar_write(0xFFFFFFFC);
|
|
irbar_result = irbar_read();
|
|
irbar_write(0x0);
|
|
}
|
|
isb(); /* Ensure that MPU region operations have completed */
|
|
/* Return whichever result is larger */
|
|
return __ffs(max(drbar_result, irbar_result));
|
|
}
|
|
|
|
static int mpu_setup_region(unsigned int number, phys_addr_t start,
|
|
unsigned int size_order, unsigned int properties)
|
|
{
|
|
u32 size_data;
|
|
|
|
/* We kept a region free for probing resolution of MPU regions*/
|
|
if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
|
|
return -ENOENT;
|
|
|
|
if (size_order > 32)
|
|
return -ENOMEM;
|
|
|
|
if (size_order < mpu_min_region_order())
|
|
return -ENOMEM;
|
|
|
|
/* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */
|
|
size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
|
|
|
|
dsb(); /* Ensure all previous data accesses occur with old mappings */
|
|
rgnr_write(number);
|
|
isb();
|
|
drbar_write(start);
|
|
dracr_write(properties);
|
|
isb(); /* Propagate properties before enabling region */
|
|
drsr_write(size_data);
|
|
|
|
/* Check for independent I-side registers */
|
|
if (mpu_iside_independent()) {
|
|
irbar_write(start);
|
|
iracr_write(properties);
|
|
isb();
|
|
irsr_write(size_data);
|
|
}
|
|
isb();
|
|
|
|
/* Store region info (we treat i/d side the same, so only store d) */
|
|
mpu_rgn_info.rgns[number].dracr = properties;
|
|
mpu_rgn_info.rgns[number].drbar = start;
|
|
mpu_rgn_info.rgns[number].drsr = size_data;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up default MPU regions, doing nothing if there is no MPU
|
|
*/
|
|
void __init mpu_setup(void)
|
|
{
|
|
int region_err;
|
|
if (!mpu_present())
|
|
return;
|
|
|
|
region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
|
|
ilog2(meminfo.bank[0].size),
|
|
MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
|
|
if (region_err) {
|
|
panic("MPU region initialization failure! %d", region_err);
|
|
} else {
|
|
pr_info("Using ARMv7 PMSA Compliant MPU. "
|
|
"Region independence: %s, Max regions: %d\n",
|
|
mpu_iside_independent() ? "Yes" : "No",
|
|
mpu_max_regions());
|
|
}
|
|
}
|
|
#else
|
|
static void sanity_check_meminfo_mpu(void) {}
|
|
static void __init mpu_setup(void) {}
|
|
#endif /* CONFIG_ARM_MPU */
|
|
|
|
void __init arm_mm_memblock_reserve(void)
|
|
{
|
|
#ifndef CONFIG_CPU_V7M
|
|
/*
|
|
* Register the exception vector page.
|
|
* some architectures which the DRAM is the exception vector to trap,
|
|
* alloc_page breaks with error, although it is not NULL, but "0."
|
|
*/
|
|
memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
|
|
#else /* ifndef CONFIG_CPU_V7M */
|
|
/*
|
|
* There is no dedicated vector page on V7-M. So nothing needs to be
|
|
* reserved here.
|
|
*/
|
|
#endif
|
|
}
|
|
|
|
void __init sanity_check_meminfo(void)
|
|
{
|
|
phys_addr_t end;
|
|
sanity_check_meminfo_mpu();
|
|
end = memblock_end_of_DRAM();
|
|
high_memory = __va(end - 1) + 1;
|
|
}
|
|
|
|
/*
|
|
* early_paging_init() recreates boot time page table setup, allowing machines
|
|
* to switch over to a high (>4G) address space on LPAE systems
|
|
*/
|
|
void __init early_paging_init(const struct machine_desc *mdesc,
|
|
struct proc_info_list *procinfo)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* paging_init() sets up the page tables, initialises the zone memory
|
|
* maps, and sets up the zero page, bad page and bad page tables.
|
|
*/
|
|
void __init paging_init(const struct machine_desc *mdesc)
|
|
{
|
|
early_trap_init((void *)CONFIG_VECTORS_BASE);
|
|
mpu_setup();
|
|
bootmem_init();
|
|
}
|
|
|
|
/*
|
|
* We don't need to do anything here for nommu machines.
|
|
*/
|
|
void setup_mm_for_reboot(void)
|
|
{
|
|
}
|
|
|
|
void flush_dcache_page(struct page *page)
|
|
{
|
|
__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
|
|
}
|
|
EXPORT_SYMBOL(flush_dcache_page);
|
|
|
|
void flush_kernel_dcache_page(struct page *page)
|
|
{
|
|
__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
|
|
}
|
|
EXPORT_SYMBOL(flush_kernel_dcache_page);
|
|
|
|
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
|
|
unsigned long uaddr, void *dst, const void *src,
|
|
unsigned long len)
|
|
{
|
|
memcpy(dst, src, len);
|
|
if (vma->vm_flags & VM_EXEC)
|
|
__cpuc_coherent_user_range(uaddr, uaddr + len);
|
|
}
|
|
|
|
void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
|
|
size_t size, unsigned int mtype)
|
|
{
|
|
if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
|
|
return NULL;
|
|
return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
|
|
}
|
|
EXPORT_SYMBOL(__arm_ioremap_pfn);
|
|
|
|
void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset,
|
|
size_t size, unsigned int mtype, void *caller)
|
|
{
|
|
return __arm_ioremap_pfn(pfn, offset, size, mtype);
|
|
}
|
|
|
|
void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size,
|
|
unsigned int mtype)
|
|
{
|
|
return (void __iomem *)phys_addr;
|
|
}
|
|
EXPORT_SYMBOL(__arm_ioremap);
|
|
|
|
void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
|
|
|
|
void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
|
|
unsigned int mtype, void *caller)
|
|
{
|
|
return __arm_ioremap(phys_addr, size, mtype);
|
|
}
|
|
|
|
void (*arch_iounmap)(volatile void __iomem *);
|
|
|
|
void __arm_iounmap(volatile void __iomem *addr)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL(__arm_iounmap);
|