linux/drivers/net/dm9000.c
Ben Dooks bb44fb70e0 DM9000: Add platform flag for no attached EEPROM
Allow the platform data to specify to the DM9000 driver
that there is no posibility of an attached EEPROM on the
device, so default all reads to 0xff and ignore any
write operations.

Signed-off-by: Ben Dooks <ben-linux@fluff.org>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2008-02-11 11:06:35 -05:00

1399 lines
31 KiB
C

/*
* Davicom DM9000 Fast Ethernet driver for Linux.
* Copyright (C) 1997 Sten Wang
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
*
* Additional updates, Copyright:
* Ben Dooks <ben@simtec.co.uk>
* Sascha Hauer <s.hauer@pengutronix.de>
*/
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/dm9000.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/irq.h>
#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/io.h>
#include "dm9000.h"
/* Board/System/Debug information/definition ---------------- */
#define DM9000_PHY 0x40 /* PHY address 0x01 */
#define CARDNAME "dm9000"
#define PFX CARDNAME ": "
#define DRV_VERSION "1.30"
#ifdef CONFIG_BLACKFIN
#define readsb insb
#define readsw insw
#define readsl insl
#define writesb outsb
#define writesw outsw
#define writesl outsl
#define DEFAULT_TRIGGER IRQF_TRIGGER_HIGH
#else
#define DEFAULT_TRIGGER (0)
#endif
/*
* Transmit timeout, default 5 seconds.
*/
static int watchdog = 5000;
module_param(watchdog, int, 0400);
MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
/* DM9000 register address locking.
*
* The DM9000 uses an address register to control where data written
* to the data register goes. This means that the address register
* must be preserved over interrupts or similar calls.
*
* During interrupt and other critical calls, a spinlock is used to
* protect the system, but the calls themselves save the address
* in the address register in case they are interrupting another
* access to the device.
*
* For general accesses a lock is provided so that calls which are
* allowed to sleep are serialised so that the address register does
* not need to be saved. This lock also serves to serialise access
* to the EEPROM and PHY access registers which are shared between
* these two devices.
*/
/* Structure/enum declaration ------------------------------- */
typedef struct board_info {
void __iomem *io_addr; /* Register I/O base address */
void __iomem *io_data; /* Data I/O address */
u16 irq; /* IRQ */
u16 tx_pkt_cnt;
u16 queue_pkt_len;
u16 queue_start_addr;
u16 dbug_cnt;
u8 io_mode; /* 0:word, 2:byte */
u8 phy_addr;
unsigned int flags;
unsigned int in_suspend :1;
int debug_level;
void (*inblk)(void __iomem *port, void *data, int length);
void (*outblk)(void __iomem *port, void *data, int length);
void (*dumpblk)(void __iomem *port, int length);
struct device *dev; /* parent device */
struct resource *addr_res; /* resources found */
struct resource *data_res;
struct resource *addr_req; /* resources requested */
struct resource *data_req;
struct resource *irq_res;
struct mutex addr_lock; /* phy and eeprom access lock */
spinlock_t lock;
struct mii_if_info mii;
u32 msg_enable;
} board_info_t;
/* debug code */
#define dm9000_dbg(db, lev, msg...) do { \
if ((lev) < CONFIG_DM9000_DEBUGLEVEL && \
(lev) < db->debug_level) { \
dev_dbg(db->dev, msg); \
} \
} while (0)
static inline board_info_t *to_dm9000_board(struct net_device *dev)
{
return dev->priv;
}
/* function declaration ------------------------------------- */
static int dm9000_probe(struct platform_device *);
static int dm9000_open(struct net_device *);
static int dm9000_start_xmit(struct sk_buff *, struct net_device *);
static int dm9000_stop(struct net_device *);
static void dm9000_init_dm9000(struct net_device *);
static irqreturn_t dm9000_interrupt(int, void *);
static int dm9000_phy_read(struct net_device *dev, int phyaddr_unsused, int reg);
static void dm9000_phy_write(struct net_device *dev, int phyaddr_unused, int reg,
int value);
static void dm9000_read_eeprom(board_info_t *, int addr, u8 *to);
static void dm9000_write_eeprom(board_info_t *, int addr, u8 *dp);
static void dm9000_rx(struct net_device *);
static void dm9000_hash_table(struct net_device *);
/* DM9000 network board routine ---------------------------- */
static void
dm9000_reset(board_info_t * db)
{
dev_dbg(db->dev, "resetting device\n");
/* RESET device */
writeb(DM9000_NCR, db->io_addr);
udelay(200);
writeb(NCR_RST, db->io_data);
udelay(200);
}
/*
* Read a byte from I/O port
*/
static u8
ior(board_info_t * db, int reg)
{
writeb(reg, db->io_addr);
return readb(db->io_data);
}
/*
* Write a byte to I/O port
*/
static void
iow(board_info_t * db, int reg, int value)
{
writeb(reg, db->io_addr);
writeb(value, db->io_data);
}
/* routines for sending block to chip */
static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
{
writesb(reg, data, count);
}
static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
{
writesw(reg, data, (count+1) >> 1);
}
static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
{
writesl(reg, data, (count+3) >> 2);
}
/* input block from chip to memory */
static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
{
readsb(reg, data, count);
}
static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
{
readsw(reg, data, (count+1) >> 1);
}
static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
{
readsl(reg, data, (count+3) >> 2);
}
/* dump block from chip to null */
static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
{
int i;
int tmp;
for (i = 0; i < count; i++)
tmp = readb(reg);
}
static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
{
int i;
int tmp;
count = (count + 1) >> 1;
for (i = 0; i < count; i++)
tmp = readw(reg);
}
static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
{
int i;
int tmp;
count = (count + 3) >> 2;
for (i = 0; i < count; i++)
tmp = readl(reg);
}
/* dm9000_set_io
*
* select the specified set of io routines to use with the
* device
*/
static void dm9000_set_io(struct board_info *db, int byte_width)
{
/* use the size of the data resource to work out what IO
* routines we want to use
*/
switch (byte_width) {
case 1:
db->dumpblk = dm9000_dumpblk_8bit;
db->outblk = dm9000_outblk_8bit;
db->inblk = dm9000_inblk_8bit;
break;
case 3:
dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
case 2:
db->dumpblk = dm9000_dumpblk_16bit;
db->outblk = dm9000_outblk_16bit;
db->inblk = dm9000_inblk_16bit;
break;
case 4:
default:
db->dumpblk = dm9000_dumpblk_32bit;
db->outblk = dm9000_outblk_32bit;
db->inblk = dm9000_inblk_32bit;
break;
}
}
/* Our watchdog timed out. Called by the networking layer */
static void dm9000_timeout(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
u8 reg_save;
unsigned long flags;
/* Save previous register address */
reg_save = readb(db->io_addr);
spin_lock_irqsave(&db->lock,flags);
netif_stop_queue(dev);
dm9000_reset(db);
dm9000_init_dm9000(dev);
/* We can accept TX packets again */
dev->trans_start = jiffies;
netif_wake_queue(dev);
/* Restore previous register address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock,flags);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
*Used by netconsole
*/
static void dm9000_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
dm9000_interrupt(dev->irq,dev);
enable_irq(dev->irq);
}
#endif
/* ethtool ops */
static void dm9000_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
board_info_t *dm = to_dm9000_board(dev);
strcpy(info->driver, CARDNAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, to_platform_device(dm->dev)->name);
}
static u32 dm9000_get_msglevel(struct net_device *dev)
{
board_info_t *dm = to_dm9000_board(dev);
return dm->msg_enable;
}
static void dm9000_set_msglevel(struct net_device *dev, u32 value)
{
board_info_t *dm = to_dm9000_board(dev);
dm->msg_enable = value;
}
static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
board_info_t *dm = to_dm9000_board(dev);
mii_ethtool_gset(&dm->mii, cmd);
return 0;
}
static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
board_info_t *dm = to_dm9000_board(dev);
return mii_ethtool_sset(&dm->mii, cmd);
}
static int dm9000_nway_reset(struct net_device *dev)
{
board_info_t *dm = to_dm9000_board(dev);
return mii_nway_restart(&dm->mii);
}
static u32 dm9000_get_link(struct net_device *dev)
{
board_info_t *dm = to_dm9000_board(dev);
return mii_link_ok(&dm->mii);
}
#define DM_EEPROM_MAGIC (0x444D394B)
static int dm9000_get_eeprom_len(struct net_device *dev)
{
return 128;
}
static int dm9000_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *ee, u8 *data)
{
board_info_t *dm = to_dm9000_board(dev);
int offset = ee->offset;
int len = ee->len;
int i;
/* EEPROM access is aligned to two bytes */
if ((len & 1) != 0 || (offset & 1) != 0)
return -EINVAL;
if (dm->flags & DM9000_PLATF_NO_EEPROM)
return -ENOENT;
ee->magic = DM_EEPROM_MAGIC;
for (i = 0; i < len; i += 2)
dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
return 0;
}
static int dm9000_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *ee, u8 *data)
{
board_info_t *dm = to_dm9000_board(dev);
int offset = ee->offset;
int len = ee->len;
int i;
/* EEPROM access is aligned to two bytes */
if ((len & 1) != 0 || (offset & 1) != 0)
return -EINVAL;
if (dm->flags & DM9000_PLATF_NO_EEPROM)
return -ENOENT;
if (ee->magic != DM_EEPROM_MAGIC)
return -EINVAL;
for (i = 0; i < len; i += 2)
dm9000_write_eeprom(dm, (offset + i) / 2, data + i);
return 0;
}
static const struct ethtool_ops dm9000_ethtool_ops = {
.get_drvinfo = dm9000_get_drvinfo,
.get_settings = dm9000_get_settings,
.set_settings = dm9000_set_settings,
.get_msglevel = dm9000_get_msglevel,
.set_msglevel = dm9000_set_msglevel,
.nway_reset = dm9000_nway_reset,
.get_link = dm9000_get_link,
.get_eeprom_len = dm9000_get_eeprom_len,
.get_eeprom = dm9000_get_eeprom,
.set_eeprom = dm9000_set_eeprom,
};
/* dm9000_release_board
*
* release a board, and any mapped resources
*/
static void
dm9000_release_board(struct platform_device *pdev, struct board_info *db)
{
if (db->data_res == NULL) {
if (db->addr_res != NULL)
release_mem_region((unsigned long)db->io_addr, 4);
return;
}
/* unmap our resources */
iounmap(db->io_addr);
iounmap(db->io_data);
/* release the resources */
if (db->data_req != NULL) {
release_resource(db->data_req);
kfree(db->data_req);
}
if (db->addr_req != NULL) {
release_resource(db->addr_req);
kfree(db->addr_req);
}
}
#define res_size(_r) (((_r)->end - (_r)->start) + 1)
/*
* Search DM9000 board, allocate space and register it
*/
static int
dm9000_probe(struct platform_device *pdev)
{
struct dm9000_plat_data *pdata = pdev->dev.platform_data;
struct board_info *db; /* Point a board information structure */
struct net_device *ndev;
unsigned long base;
int ret = 0;
int iosize;
int i;
u32 id_val;
/* Init network device */
ndev = alloc_etherdev(sizeof (struct board_info));
if (!ndev) {
dev_err(&pdev->dev, "could not allocate device.\n");
return -ENOMEM;
}
SET_NETDEV_DEV(ndev, &pdev->dev);
dev_dbg(&pdev->dev, "dm9000_probe()");
/* setup board info structure */
db = (struct board_info *) ndev->priv;
memset(db, 0, sizeof (*db));
db->dev = &pdev->dev;
spin_lock_init(&db->lock);
mutex_init(&db->addr_lock);
if (pdev->num_resources < 2) {
ret = -ENODEV;
goto out;
} else if (pdev->num_resources == 2) {
base = pdev->resource[0].start;
if (!request_mem_region(base, 4, ndev->name)) {
ret = -EBUSY;
goto out;
}
ndev->base_addr = base;
ndev->irq = pdev->resource[1].start;
db->io_addr = (void __iomem *)base;
db->io_data = (void __iomem *)(base + 4);
/* ensure at least we have a default set of IO routines */
dm9000_set_io(db, 2);
} else {
db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (db->addr_res == NULL || db->data_res == NULL ||
db->irq_res == NULL) {
dev_err(db->dev, "insufficient resources\n");
ret = -ENOENT;
goto out;
}
i = res_size(db->addr_res);
db->addr_req = request_mem_region(db->addr_res->start, i,
pdev->name);
if (db->addr_req == NULL) {
dev_err(db->dev, "cannot claim address reg area\n");
ret = -EIO;
goto out;
}
db->io_addr = ioremap(db->addr_res->start, i);
if (db->io_addr == NULL) {
dev_err(db->dev, "failed to ioremap address reg\n");
ret = -EINVAL;
goto out;
}
iosize = res_size(db->data_res);
db->data_req = request_mem_region(db->data_res->start, iosize,
pdev->name);
if (db->data_req == NULL) {
dev_err(db->dev, "cannot claim data reg area\n");
ret = -EIO;
goto out;
}
db->io_data = ioremap(db->data_res->start, iosize);
if (db->io_data == NULL) {
dev_err(db->dev,"failed to ioremap data reg\n");
ret = -EINVAL;
goto out;
}
/* fill in parameters for net-dev structure */
ndev->base_addr = (unsigned long)db->io_addr;
ndev->irq = db->irq_res->start;
/* ensure at least we have a default set of IO routines */
dm9000_set_io(db, iosize);
}
/* check to see if anything is being over-ridden */
if (pdata != NULL) {
/* check to see if the driver wants to over-ride the
* default IO width */
if (pdata->flags & DM9000_PLATF_8BITONLY)
dm9000_set_io(db, 1);
if (pdata->flags & DM9000_PLATF_16BITONLY)
dm9000_set_io(db, 2);
if (pdata->flags & DM9000_PLATF_32BITONLY)
dm9000_set_io(db, 4);
/* check to see if there are any IO routine
* over-rides */
if (pdata->inblk != NULL)
db->inblk = pdata->inblk;
if (pdata->outblk != NULL)
db->outblk = pdata->outblk;
if (pdata->dumpblk != NULL)
db->dumpblk = pdata->dumpblk;
db->flags = pdata->flags;
}
dm9000_reset(db);
/* try two times, DM9000 sometimes gets the first read wrong */
for (i = 0; i < 2; i++) {
id_val = ior(db, DM9000_VIDL);
id_val |= (u32)ior(db, DM9000_VIDH) << 8;
id_val |= (u32)ior(db, DM9000_PIDL) << 16;
id_val |= (u32)ior(db, DM9000_PIDH) << 24;
if (id_val == DM9000_ID)
break;
dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
}
if (id_val != DM9000_ID) {
dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
ret = -ENODEV;
goto out;
}
/* from this point we assume that we have found a DM9000 */
/* driver system function */
ether_setup(ndev);
ndev->open = &dm9000_open;
ndev->hard_start_xmit = &dm9000_start_xmit;
ndev->tx_timeout = &dm9000_timeout;
ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
ndev->stop = &dm9000_stop;
ndev->set_multicast_list = &dm9000_hash_table;
ndev->ethtool_ops = &dm9000_ethtool_ops;
#ifdef CONFIG_NET_POLL_CONTROLLER
ndev->poll_controller = &dm9000_poll_controller;
#endif
db->msg_enable = NETIF_MSG_LINK;
db->mii.phy_id_mask = 0x1f;
db->mii.reg_num_mask = 0x1f;
db->mii.force_media = 0;
db->mii.full_duplex = 0;
db->mii.dev = ndev;
db->mii.mdio_read = dm9000_phy_read;
db->mii.mdio_write = dm9000_phy_write;
/* try reading the node address from the attached EEPROM */
for (i = 0; i < 6; i += 2)
dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
if (!is_valid_ether_addr(ndev->dev_addr)) {
/* try reading from mac */
for (i = 0; i < 6; i++)
ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
}
if (!is_valid_ether_addr(ndev->dev_addr))
dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
"set using ifconfig\n", ndev->name);
platform_set_drvdata(pdev, ndev);
ret = register_netdev(ndev);
if (ret == 0) {
DECLARE_MAC_BUF(mac);
printk("%s: dm9000 at %p,%p IRQ %d MAC: %s\n",
ndev->name, db->io_addr, db->io_data, ndev->irq,
print_mac(mac, ndev->dev_addr));
}
return 0;
out:
dev_err(db->dev, "not found (%d).\n", ret);
dm9000_release_board(pdev, db);
free_netdev(ndev);
return ret;
}
/*
* Open the interface.
* The interface is opened whenever "ifconfig" actives it.
*/
static int
dm9000_open(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
if (netif_msg_ifup(db))
dev_dbg(db->dev, "enabling %s\n", dev->name);
/* If there is no IRQ type specified, default to something that
* may work, and tell the user that this is a problem */
if (irqflags == IRQF_TRIGGER_NONE) {
dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
irqflags = DEFAULT_TRIGGER;
}
irqflags |= IRQF_SHARED;
if (request_irq(dev->irq, &dm9000_interrupt, irqflags, dev->name, dev))
return -EAGAIN;
/* Initialize DM9000 board */
dm9000_reset(db);
dm9000_init_dm9000(dev);
/* Init driver variable */
db->dbug_cnt = 0;
mii_check_media(&db->mii, netif_msg_link(db), 1);
netif_start_queue(dev);
return 0;
}
/*
* Initilize dm9000 board
*/
static void
dm9000_init_dm9000(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
dm9000_dbg(db, 1, "entering %s\n", __func__);
/* I/O mode */
db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
/* GPIO0 on pre-activate PHY */
iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
iow(db, DM9000_GPR, 0); /* Enable PHY */
if (db->flags & DM9000_PLATF_EXT_PHY)
iow(db, DM9000_NCR, NCR_EXT_PHY);
/* Program operating register */
iow(db, DM9000_TCR, 0); /* TX Polling clear */
iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
iow(db, DM9000_FCR, 0xff); /* Flow Control */
iow(db, DM9000_SMCR, 0); /* Special Mode */
/* clear TX status */
iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
/* Set address filter table */
dm9000_hash_table(dev);
/* Activate DM9000 */
iow(db, DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN);
/* Enable TX/RX interrupt mask */
iow(db, DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
/* Init Driver variable */
db->tx_pkt_cnt = 0;
db->queue_pkt_len = 0;
dev->trans_start = 0;
}
/*
* Hardware start transmission.
* Send a packet to media from the upper layer.
*/
static int
dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned long flags;
board_info_t *db = (board_info_t *) dev->priv;
dm9000_dbg(db, 3, "%s:\n", __func__);
if (db->tx_pkt_cnt > 1)
return 1;
spin_lock_irqsave(&db->lock, flags);
/* Move data to DM9000 TX RAM */
writeb(DM9000_MWCMD, db->io_addr);
(db->outblk)(db->io_data, skb->data, skb->len);
dev->stats.tx_bytes += skb->len;
db->tx_pkt_cnt++;
/* TX control: First packet immediately send, second packet queue */
if (db->tx_pkt_cnt == 1) {
/* Set TX length to DM9000 */
iow(db, DM9000_TXPLL, skb->len);
iow(db, DM9000_TXPLH, skb->len >> 8);
/* Issue TX polling command */
iow(db, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
dev->trans_start = jiffies; /* save the time stamp */
} else {
/* Second packet */
db->queue_pkt_len = skb->len;
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&db->lock, flags);
/* free this SKB */
dev_kfree_skb(skb);
return 0;
}
static void
dm9000_shutdown(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
/* RESET device */
dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
iow(db, DM9000_RCR, 0x00); /* Disable RX */
}
/*
* Stop the interface.
* The interface is stopped when it is brought.
*/
static int
dm9000_stop(struct net_device *ndev)
{
board_info_t *db = (board_info_t *) ndev->priv;
if (netif_msg_ifdown(db))
dev_dbg(db->dev, "shutting down %s\n", ndev->name);
netif_stop_queue(ndev);
netif_carrier_off(ndev);
/* free interrupt */
free_irq(ndev->irq, ndev);
dm9000_shutdown(ndev);
return 0;
}
/*
* DM9000 interrupt handler
* receive the packet to upper layer, free the transmitted packet
*/
static void
dm9000_tx_done(struct net_device *dev, board_info_t * db)
{
int tx_status = ior(db, DM9000_NSR); /* Got TX status */
if (tx_status & (NSR_TX2END | NSR_TX1END)) {
/* One packet sent complete */
db->tx_pkt_cnt--;
dev->stats.tx_packets++;
if (netif_msg_tx_done(db))
dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
/* Queue packet check & send */
if (db->tx_pkt_cnt > 0) {
iow(db, DM9000_TXPLL, db->queue_pkt_len);
iow(db, DM9000_TXPLH, db->queue_pkt_len >> 8);
iow(db, DM9000_TCR, TCR_TXREQ);
dev->trans_start = jiffies;
}
netif_wake_queue(dev);
}
}
static irqreturn_t
dm9000_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
board_info_t *db = (board_info_t *) dev->priv;
int int_status;
u8 reg_save;
dm9000_dbg(db, 3, "entering %s\n", __func__);
/* A real interrupt coming */
spin_lock(&db->lock);
/* Save previous register address */
reg_save = readb(db->io_addr);
/* Disable all interrupts */
iow(db, DM9000_IMR, IMR_PAR);
/* Got DM9000 interrupt status */
int_status = ior(db, DM9000_ISR); /* Got ISR */
iow(db, DM9000_ISR, int_status); /* Clear ISR status */
if (netif_msg_intr(db))
dev_dbg(db->dev, "interrupt status %02x\n", int_status);
/* Received the coming packet */
if (int_status & ISR_PRS)
dm9000_rx(dev);
/* Trnasmit Interrupt check */
if (int_status & ISR_PTS)
dm9000_tx_done(dev, db);
/* Re-enable interrupt mask */
iow(db, DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
/* Restore previous register address */
writeb(reg_save, db->io_addr);
spin_unlock(&db->lock);
return IRQ_HANDLED;
}
struct dm9000_rxhdr {
u8 RxPktReady;
u8 RxStatus;
u16 RxLen;
} __attribute__((__packed__));
/*
* Received a packet and pass to upper layer
*/
static void
dm9000_rx(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
struct dm9000_rxhdr rxhdr;
struct sk_buff *skb;
u8 rxbyte, *rdptr;
bool GoodPacket;
int RxLen;
/* Check packet ready or not */
do {
ior(db, DM9000_MRCMDX); /* Dummy read */
/* Get most updated data */
rxbyte = readb(db->io_data);
/* Status check: this byte must be 0 or 1 */
if (rxbyte > DM9000_PKT_RDY) {
dev_warn(db->dev, "status check fail: %d\n", rxbyte);
iow(db, DM9000_RCR, 0x00); /* Stop Device */
iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
return;
}
if (rxbyte != DM9000_PKT_RDY)
return;
/* A packet ready now & Get status/length */
GoodPacket = true;
writeb(DM9000_MRCMD, db->io_addr);
(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
RxLen = le16_to_cpu(rxhdr.RxLen);
if (netif_msg_rx_status(db))
dev_dbg(db->dev, "RX: status %02x, length %04x\n",
rxhdr.RxStatus, RxLen);
/* Packet Status check */
if (RxLen < 0x40) {
GoodPacket = false;
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
}
if (RxLen > DM9000_PKT_MAX) {
dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
}
if (rxhdr.RxStatus & 0xbf) {
GoodPacket = false;
if (rxhdr.RxStatus & 0x01) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "fifo error\n");
dev->stats.rx_fifo_errors++;
}
if (rxhdr.RxStatus & 0x02) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "crc error\n");
dev->stats.rx_crc_errors++;
}
if (rxhdr.RxStatus & 0x80) {
if (netif_msg_rx_err(db))
dev_dbg(db->dev, "length error\n");
dev->stats.rx_length_errors++;
}
}
/* Move data from DM9000 */
if (GoodPacket
&& ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
skb_reserve(skb, 2);
rdptr = (u8 *) skb_put(skb, RxLen - 4);
/* Read received packet from RX SRAM */
(db->inblk)(db->io_data, rdptr, RxLen);
dev->stats.rx_bytes += RxLen;
/* Pass to upper layer */
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->stats.rx_packets++;
} else {
/* need to dump the packet's data */
(db->dumpblk)(db->io_data, RxLen);
}
} while (rxbyte == DM9000_PKT_RDY);
}
static unsigned int
dm9000_read_locked(board_info_t *db, int reg)
{
unsigned long flags;
unsigned int ret;
spin_lock_irqsave(&db->lock, flags);
ret = ior(db, reg);
spin_unlock_irqrestore(&db->lock, flags);
return ret;
}
static int dm9000_wait_eeprom(board_info_t *db)
{
unsigned int status;
int timeout = 8; /* wait max 8msec */
/* The DM9000 data sheets say we should be able to
* poll the ERRE bit in EPCR to wait for the EEPROM
* operation. From testing several chips, this bit
* does not seem to work.
*
* We attempt to use the bit, but fall back to the
* timeout (which is why we do not return an error
* on expiry) to say that the EEPROM operation has
* completed.
*/
while (1) {
status = dm9000_read_locked(db, DM9000_EPCR);
if ((status & EPCR_ERRE) == 0)
break;
if (timeout-- < 0) {
dev_dbg(db->dev, "timeout waiting EEPROM\n");
break;
}
}
return 0;
}
/*
* Read a word data from EEPROM
*/
static void
dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
{
unsigned long flags;
if (db->flags & DM9000_PLATF_NO_EEPROM) {
to[0] = 0xff;
to[1] = 0xff;
return;
}
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPAR, offset);
iow(db, DM9000_EPCR, EPCR_ERPRR);
spin_unlock_irqrestore(&db->lock, flags);
dm9000_wait_eeprom(db);
/* delay for at-least 150uS */
msleep(1);
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPCR, 0x0);
to[0] = ior(db, DM9000_EPDRL);
to[1] = ior(db, DM9000_EPDRH);
spin_unlock_irqrestore(&db->lock, flags);
mutex_unlock(&db->addr_lock);
}
/*
* Write a word data to SROM
*/
static void
dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
{
unsigned long flags;
if (db->flags & DM9000_PLATF_NO_EEPROM)
return;
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPAR, offset);
iow(db, DM9000_EPDRH, data[1]);
iow(db, DM9000_EPDRL, data[0]);
iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
spin_unlock_irqrestore(&db->lock, flags);
dm9000_wait_eeprom(db);
mdelay(1); /* wait at least 150uS to clear */
spin_lock_irqsave(&db->lock, flags);
iow(db, DM9000_EPCR, 0);
spin_unlock_irqrestore(&db->lock, flags);
mutex_unlock(&db->addr_lock);
}
/*
* Set DM9000 multicast address
*/
static void
dm9000_hash_table(struct net_device *dev)
{
board_info_t *db = (board_info_t *) dev->priv;
struct dev_mc_list *mcptr = dev->mc_list;
int mc_cnt = dev->mc_count;
int i, oft;
u32 hash_val;
u16 hash_table[4];
unsigned long flags;
dm9000_dbg(db, 1, "entering %s\n", __func__);
spin_lock_irqsave(&db->lock, flags);
for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
iow(db, oft, dev->dev_addr[i]);
/* Clear Hash Table */
for (i = 0; i < 4; i++)
hash_table[i] = 0x0;
/* broadcast address */
hash_table[3] = 0x8000;
/* the multicast address in Hash Table : 64 bits */
for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
hash_val = ether_crc_le(6, mcptr->dmi_addr) & 0x3f;
hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
}
/* Write the hash table to MAC MD table */
for (i = 0, oft = DM9000_MAR; i < 4; i++) {
iow(db, oft++, hash_table[i]);
iow(db, oft++, hash_table[i] >> 8);
}
spin_unlock_irqrestore(&db->lock, flags);
}
/*
* Sleep, either by using msleep() or if we are suspending, then
* use mdelay() to sleep.
*/
static void dm9000_msleep(board_info_t *db, unsigned int ms)
{
if (db->in_suspend)
mdelay(ms);
else
msleep(ms);
}
/*
* Read a word from phyxcer
*/
static int
dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
{
board_info_t *db = (board_info_t *) dev->priv;
unsigned long flags;
unsigned int reg_save;
int ret;
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock,flags);
/* Save previous register address */
reg_save = readb(db->io_addr);
/* Fill the phyxcer register into REG_0C */
iow(db, DM9000_EPAR, DM9000_PHY | reg);
iow(db, DM9000_EPCR, 0xc); /* Issue phyxcer read command */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock,flags);
dm9000_msleep(db, 1); /* Wait read complete */
spin_lock_irqsave(&db->lock,flags);
reg_save = readb(db->io_addr);
iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
/* The read data keeps on REG_0D & REG_0E */
ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
/* restore the previous address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock,flags);
mutex_unlock(&db->addr_lock);
return ret;
}
/*
* Write a word to phyxcer
*/
static void
dm9000_phy_write(struct net_device *dev, int phyaddr_unused, int reg, int value)
{
board_info_t *db = (board_info_t *) dev->priv;
unsigned long flags;
unsigned long reg_save;
mutex_lock(&db->addr_lock);
spin_lock_irqsave(&db->lock,flags);
/* Save previous register address */
reg_save = readb(db->io_addr);
/* Fill the phyxcer register into REG_0C */
iow(db, DM9000_EPAR, DM9000_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
iow(db, DM9000_EPDRL, value);
iow(db, DM9000_EPDRH, value >> 8);
iow(db, DM9000_EPCR, 0xa); /* Issue phyxcer write command */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
dm9000_msleep(db, 1); /* Wait write complete */
spin_lock_irqsave(&db->lock,flags);
reg_save = readb(db->io_addr);
iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
/* restore the previous address */
writeb(reg_save, db->io_addr);
spin_unlock_irqrestore(&db->lock, flags);
mutex_unlock(&db->addr_lock);
}
static int
dm9000_drv_suspend(struct platform_device *dev, pm_message_t state)
{
struct net_device *ndev = platform_get_drvdata(dev);
board_info_t *db;
if (ndev) {
db = (board_info_t *) ndev->priv;
db->in_suspend = 1;
if (netif_running(ndev)) {
netif_device_detach(ndev);
dm9000_shutdown(ndev);
}
}
return 0;
}
static int
dm9000_drv_resume(struct platform_device *dev)
{
struct net_device *ndev = platform_get_drvdata(dev);
board_info_t *db = (board_info_t *) ndev->priv;
if (ndev) {
if (netif_running(ndev)) {
dm9000_reset(db);
dm9000_init_dm9000(ndev);
netif_device_attach(ndev);
}
db->in_suspend = 0;
}
return 0;
}
static int
dm9000_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
unregister_netdev(ndev);
dm9000_release_board(pdev, (board_info_t *) ndev->priv);
free_netdev(ndev); /* free device structure */
dev_dbg(&pdev->dev, "released and freed device\n");
return 0;
}
static struct platform_driver dm9000_driver = {
.driver = {
.name = "dm9000",
.owner = THIS_MODULE,
},
.probe = dm9000_probe,
.remove = dm9000_drv_remove,
.suspend = dm9000_drv_suspend,
.resume = dm9000_drv_resume,
};
static int __init
dm9000_init(void)
{
printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
return platform_driver_register(&dm9000_driver); /* search board and register */
}
static void __exit
dm9000_cleanup(void)
{
platform_driver_unregister(&dm9000_driver);
}
module_init(dm9000_init);
module_exit(dm9000_cleanup);
MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
MODULE_DESCRIPTION("Davicom DM9000 network driver");
MODULE_LICENSE("GPL");