linux/drivers/mtd/nand/raw/vf610_nfc.c
YueHaibing f7721e4bfe mtd: rawnand: vf610: Remove unused function vf610_nfc_transfer_size()
commit ecc40b8df5 ("mtd: rawnand: vf610_nfc: remove old hooks")
left behind this, remove it.

Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200909134318.36340-1-yuehaibing@huawei.com
2020-09-30 16:44:17 +02:00

968 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2009-2015 Freescale Semiconductor, Inc. and others
*
* Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
* Jason ported to M54418TWR and MVFA5 (VF610).
* Authors: Stefan Agner <stefan.agner@toradex.com>
* Bill Pringlemeir <bpringlemeir@nbsps.com>
* Shaohui Xie <b21989@freescale.com>
* Jason Jin <Jason.jin@freescale.com>
*
* Based on original driver mpc5121_nfc.c.
*
* Limitations:
* - Untested on MPC5125 and M54418.
* - DMA and pipelining not used.
* - 2K pages or less.
* - HW ECC: Only 2K page with 64+ OOB.
* - HW ECC: Only 24 and 32-bit error correction implemented.
*/
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/swab.h>
#define DRV_NAME "vf610_nfc"
/* Register Offsets */
#define NFC_FLASH_CMD1 0x3F00
#define NFC_FLASH_CMD2 0x3F04
#define NFC_COL_ADDR 0x3F08
#define NFC_ROW_ADDR 0x3F0c
#define NFC_ROW_ADDR_INC 0x3F14
#define NFC_FLASH_STATUS1 0x3F18
#define NFC_FLASH_STATUS2 0x3F1c
#define NFC_CACHE_SWAP 0x3F28
#define NFC_SECTOR_SIZE 0x3F2c
#define NFC_FLASH_CONFIG 0x3F30
#define NFC_IRQ_STATUS 0x3F38
/* Addresses for NFC MAIN RAM BUFFER areas */
#define NFC_MAIN_AREA(n) ((n) * 0x1000)
#define PAGE_2K 0x0800
#define OOB_64 0x0040
#define OOB_MAX 0x0100
/* NFC_CMD2[CODE] controller cycle bit masks */
#define COMMAND_CMD_BYTE1 BIT(14)
#define COMMAND_CAR_BYTE1 BIT(13)
#define COMMAND_CAR_BYTE2 BIT(12)
#define COMMAND_RAR_BYTE1 BIT(11)
#define COMMAND_RAR_BYTE2 BIT(10)
#define COMMAND_RAR_BYTE3 BIT(9)
#define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1)
#define COMMAND_WRITE_DATA BIT(8)
#define COMMAND_CMD_BYTE2 BIT(7)
#define COMMAND_RB_HANDSHAKE BIT(6)
#define COMMAND_READ_DATA BIT(5)
#define COMMAND_CMD_BYTE3 BIT(4)
#define COMMAND_READ_STATUS BIT(3)
#define COMMAND_READ_ID BIT(2)
/* NFC ECC mode define */
#define ECC_BYPASS 0
#define ECC_45_BYTE 6
#define ECC_60_BYTE 7
/*** Register Mask and bit definitions */
/* NFC_FLASH_CMD1 Field */
#define CMD_BYTE2_MASK 0xFF000000
#define CMD_BYTE2_SHIFT 24
/* NFC_FLASH_CM2 Field */
#define CMD_BYTE1_MASK 0xFF000000
#define CMD_BYTE1_SHIFT 24
#define CMD_CODE_MASK 0x00FFFF00
#define CMD_CODE_SHIFT 8
#define BUFNO_MASK 0x00000006
#define BUFNO_SHIFT 1
#define START_BIT BIT(0)
/* NFC_COL_ADDR Field */
#define COL_ADDR_MASK 0x0000FFFF
#define COL_ADDR_SHIFT 0
#define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
/* NFC_ROW_ADDR Field */
#define ROW_ADDR_MASK 0x00FFFFFF
#define ROW_ADDR_SHIFT 0
#define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
#define ROW_ADDR_CHIP_SEL_SHIFT 24
/* NFC_FLASH_STATUS2 Field */
#define STATUS_BYTE1_MASK 0x000000FF
/* NFC_FLASH_CONFIG Field */
#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
#define CONFIG_ECC_SRAM_REQ_BIT BIT(21)
#define CONFIG_DMA_REQ_BIT BIT(20)
#define CONFIG_ECC_MODE_MASK 0x000E0000
#define CONFIG_ECC_MODE_SHIFT 17
#define CONFIG_FAST_FLASH_BIT BIT(16)
#define CONFIG_16BIT BIT(7)
#define CONFIG_BOOT_MODE_BIT BIT(6)
#define CONFIG_ADDR_AUTO_INCR_BIT BIT(5)
#define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4)
#define CONFIG_PAGE_CNT_MASK 0xF
#define CONFIG_PAGE_CNT_SHIFT 0
/* NFC_IRQ_STATUS Field */
#define IDLE_IRQ_BIT BIT(29)
#define IDLE_EN_BIT BIT(20)
#define CMD_DONE_CLEAR_BIT BIT(18)
#define IDLE_CLEAR_BIT BIT(17)
/*
* ECC status - seems to consume 8 bytes (double word). The documented
* status byte is located in the lowest byte of the second word (which is
* the 4th or 7th byte depending on endianness).
* Calculate an offset to store the ECC status at the end of the buffer.
*/
#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
#define ECC_STATUS 0x4
#define ECC_STATUS_MASK 0x80
#define ECC_STATUS_ERR_COUNT 0x3F
enum vf610_nfc_variant {
NFC_VFC610 = 1,
};
struct vf610_nfc {
struct nand_controller base;
struct nand_chip chip;
struct device *dev;
void __iomem *regs;
struct completion cmd_done;
/* Status and ID are in alternate locations. */
enum vf610_nfc_variant variant;
struct clk *clk;
/*
* Indicate that user data is accessed (full page/oob). This is
* useful to indicate the driver whether to swap byte endianness.
* See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
*/
bool data_access;
u32 ecc_mode;
};
static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
{
return container_of(chip, struct vf610_nfc, chip);
}
static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
{
return readl(nfc->regs + reg);
}
static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
{
writel(val, nfc->regs + reg);
}
static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
{
vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
}
static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
{
vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
}
static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
u32 mask, u32 shift, u32 val)
{
vf610_nfc_write(nfc, reg,
(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
}
static inline bool vf610_nfc_kernel_is_little_endian(void)
{
#ifdef __LITTLE_ENDIAN
return true;
#else
return false;
#endif
}
/**
* Read accessor for internal SRAM buffer
* @dst: destination address in regular memory
* @src: source address in SRAM buffer
* @len: bytes to copy
* @fix_endian: Fix endianness if required
*
* Use this accessor for the internal SRAM buffers. On the ARM
* Freescale Vybrid SoC it's known that the driver can treat
* the SRAM buffer as if it's memory. Other platform might need
* to treat the buffers differently.
*
* The controller stores bytes from the NAND chip internally in big
* endianness. On little endian platforms such as Vybrid this leads
* to reversed byte order.
* For performance reason (and earlier probably due to unawareness)
* the driver avoids correcting endianness where it has control over
* write and read side (e.g. page wise data access).
*/
static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
size_t len, bool fix_endian)
{
if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
unsigned int i;
for (i = 0; i < len; i += 4) {
u32 val = swab32(__raw_readl(src + i));
memcpy(dst + i, &val, min(sizeof(val), len - i));
}
} else {
memcpy_fromio(dst, src, len);
}
}
/**
* Write accessor for internal SRAM buffer
* @dst: destination address in SRAM buffer
* @src: source address in regular memory
* @len: bytes to copy
* @fix_endian: Fix endianness if required
*
* Use this accessor for the internal SRAM buffers. On the ARM
* Freescale Vybrid SoC it's known that the driver can treat
* the SRAM buffer as if it's memory. Other platform might need
* to treat the buffers differently.
*
* The controller stores bytes from the NAND chip internally in big
* endianness. On little endian platforms such as Vybrid this leads
* to reversed byte order.
* For performance reason (and earlier probably due to unawareness)
* the driver avoids correcting endianness where it has control over
* write and read side (e.g. page wise data access).
*/
static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
size_t len, bool fix_endian)
{
if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
unsigned int i;
for (i = 0; i < len; i += 4) {
u32 val;
memcpy(&val, src + i, min(sizeof(val), len - i));
__raw_writel(swab32(val), dst + i);
}
} else {
memcpy_toio(dst, src, len);
}
}
/* Clear flags for upcoming command */
static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
{
u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
}
static void vf610_nfc_done(struct vf610_nfc *nfc)
{
unsigned long timeout = msecs_to_jiffies(100);
/*
* Barrier is needed after this write. This write need
* to be done before reading the next register the first
* time.
* vf610_nfc_set implicates such a barrier by using writel
* to write to the register.
*/
vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
vf610_nfc_clear_status(nfc);
}
static irqreturn_t vf610_nfc_irq(int irq, void *data)
{
struct vf610_nfc *nfc = data;
vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
complete(&nfc->cmd_done);
return IRQ_HANDLED;
}
static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
{
vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
CONFIG_ECC_MODE_MASK,
CONFIG_ECC_MODE_SHIFT, ecc_mode);
}
static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
u32 cmd1, u32 cmd2, u32 trfr_sz)
{
vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
COL_ADDR_SHIFT, col);
vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
ROW_ADDR_SHIFT, row);
vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
dev_dbg(nfc->dev,
"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
col, row, cmd1, cmd2, trfr_sz);
vf610_nfc_done(nfc);
}
static inline const struct nand_op_instr *
vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
{
if (*op_id + 1 >= subop->ninstrs)
return NULL;
(*op_id)++;
return &subop->instrs[*op_id];
}
static int vf610_nfc_cmd(struct nand_chip *chip,
const struct nand_subop *subop)
{
const struct nand_op_instr *instr;
struct vf610_nfc *nfc = chip_to_nfc(chip);
int op_id = -1, trfr_sz = 0, offset = 0;
u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
bool force8bit = false;
/*
* Some ops are optional, but the hardware requires the operations
* to be in this exact order.
* The op parser enforces the order and makes sure that there isn't
* a read and write element in a single operation.
*/
instr = vf610_get_next_instr(subop, &op_id);
if (!instr)
return -EINVAL;
if (instr && instr->type == NAND_OP_CMD_INSTR) {
cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
code |= COMMAND_CMD_BYTE1;
instr = vf610_get_next_instr(subop, &op_id);
}
if (instr && instr->type == NAND_OP_ADDR_INSTR) {
int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
int i = nand_subop_get_addr_start_off(subop, op_id);
for (; i < naddrs; i++) {
u8 val = instr->ctx.addr.addrs[i];
if (i < 2)
col |= COL_ADDR(i, val);
else
row |= ROW_ADDR(i - 2, val);
}
code |= COMMAND_NADDR_BYTES(naddrs);
instr = vf610_get_next_instr(subop, &op_id);
}
if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
trfr_sz = nand_subop_get_data_len(subop, op_id);
offset = nand_subop_get_data_start_off(subop, op_id);
force8bit = instr->ctx.data.force_8bit;
/*
* Don't fix endianness on page access for historical reasons.
* See comment in vf610_nfc_wr_to_sram
*/
vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
instr->ctx.data.buf.out + offset,
trfr_sz, !nfc->data_access);
code |= COMMAND_WRITE_DATA;
instr = vf610_get_next_instr(subop, &op_id);
}
if (instr && instr->type == NAND_OP_CMD_INSTR) {
cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
code |= COMMAND_CMD_BYTE2;
instr = vf610_get_next_instr(subop, &op_id);
}
if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
code |= COMMAND_RB_HANDSHAKE;
instr = vf610_get_next_instr(subop, &op_id);
}
if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
trfr_sz = nand_subop_get_data_len(subop, op_id);
offset = nand_subop_get_data_start_off(subop, op_id);
force8bit = instr->ctx.data.force_8bit;
code |= COMMAND_READ_DATA;
}
if (force8bit && (chip->options & NAND_BUSWIDTH_16))
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
cmd2 |= code << CMD_CODE_SHIFT;
vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
/*
* Don't fix endianness on page access for historical reasons.
* See comment in vf610_nfc_rd_from_sram
*/
vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
nfc->regs + NFC_MAIN_AREA(0) + offset,
trfr_sz, !nfc->data_access);
}
if (force8bit && (chip->options & NAND_BUSWIDTH_16))
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
return 0;
}
static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
);
/*
* This function supports Vybrid only (MPC5125 would have full RB and four CS)
*/
static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
{
struct vf610_nfc *nfc = chip_to_nfc(chip);
u32 tmp;
/* Vybrid only (MPC5125 would have full RB and four CS) */
if (nfc->variant != NFC_VFC610)
return;
tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
}
static int vf610_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
if (!check_only)
vf610_nfc_select_target(chip, op->cs);
return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
check_only);
}
static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
uint8_t *oob, int page)
{
struct vf610_nfc *nfc = chip_to_nfc(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
u8 ecc_status;
u8 ecc_count;
int flips_threshold = nfc->chip.ecc.strength / 2;
ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
if (!(ecc_status & ECC_STATUS_MASK))
return ecc_count;
nfc->data_access = true;
nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
nfc->data_access = false;
/*
* On an erased page, bit count (including OOB) should be zero or
* at least less then half of the ECC strength.
*/
return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
mtd->oobsize, NULL, 0,
flips_threshold);
}
static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
u32 *row)
{
*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
if (chip->options & NAND_ROW_ADDR_3) {
*row |= ROW_ADDR(2, page >> 16);
*code |= COMMAND_RAR_BYTE3;
}
}
static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct vf610_nfc *nfc = chip_to_nfc(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int trfr_sz = mtd->writesize + mtd->oobsize;
u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
int stat;
vf610_nfc_select_target(chip, chip->cur_cs);
cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
vf610_nfc_fill_row(chip, page, &code, &row);
cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
cmd2 |= code << CMD_CODE_SHIFT;
vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
/*
* Don't fix endianness on page access for historical reasons.
* See comment in vf610_nfc_rd_from_sram
*/
vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
mtd->writesize, false);
if (oob_required)
vf610_nfc_rd_from_sram(chip->oob_poi,
nfc->regs + NFC_MAIN_AREA(0) +
mtd->writesize,
mtd->oobsize, false);
stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
if (stat < 0) {
mtd->ecc_stats.failed++;
return 0;
} else {
mtd->ecc_stats.corrected += stat;
return stat;
}
}
static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct vf610_nfc *nfc = chip_to_nfc(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int trfr_sz = mtd->writesize + mtd->oobsize;
u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
u8 status;
int ret;
vf610_nfc_select_target(chip, chip->cur_cs);
cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
vf610_nfc_fill_row(chip, page, &code, &row);
cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
/*
* Don't fix endianness on page access for historical reasons.
* See comment in vf610_nfc_wr_to_sram
*/
vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
mtd->writesize, false);
code |= COMMAND_RB_HANDSHAKE;
cmd2 |= code << CMD_CODE_SHIFT;
vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
ret = nand_status_op(chip, &status);
if (ret)
return ret;
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct vf610_nfc *nfc = chip_to_nfc(chip);
int ret;
nfc->data_access = true;
ret = nand_read_page_raw(chip, buf, oob_required, page);
nfc->data_access = false;
return ret;
}
static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
struct vf610_nfc *nfc = chip_to_nfc(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
nfc->data_access = true;
ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
if (!ret && oob_required)
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
false);
nfc->data_access = false;
if (ret)
return ret;
return nand_prog_page_end_op(chip);
}
static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
{
struct vf610_nfc *nfc = chip_to_nfc(chip);
int ret;
nfc->data_access = true;
ret = nand_read_oob_std(chip, page);
nfc->data_access = false;
return ret;
}
static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct vf610_nfc *nfc = chip_to_nfc(chip);
int ret;
nfc->data_access = true;
ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
chip->oob_poi, mtd->oobsize);
nfc->data_access = false;
if (ret)
return ret;
return nand_prog_page_end_op(chip);
}
static const struct of_device_id vf610_nfc_dt_ids[] = {
{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
{
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
/* Disable virtual pages, only one elementary transfer unit */
vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
CONFIG_PAGE_CNT_SHIFT, 1);
}
static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
{
if (nfc->chip.options & NAND_BUSWIDTH_16)
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
else
vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
if (nfc->chip.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
/* Set ECC status offset in SRAM */
vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
CONFIG_ECC_SRAM_ADDR_MASK,
CONFIG_ECC_SRAM_ADDR_SHIFT,
ECC_SRAM_ADDR >> 3);
/* Enable ECC status in SRAM */
vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
}
}
static int vf610_nfc_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct vf610_nfc *nfc = chip_to_nfc(chip);
vf610_nfc_init_controller(nfc);
/* Bad block options. */
if (chip->bbt_options & NAND_BBT_USE_FLASH)
chip->bbt_options |= NAND_BBT_NO_OOB;
/* Single buffer only, max 256 OOB minus ECC status */
if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
dev_err(nfc->dev, "Unsupported flash page size\n");
return -ENXIO;
}
if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
return 0;
if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
dev_err(nfc->dev, "Unsupported flash with hwecc\n");
return -ENXIO;
}
if (chip->ecc.size != mtd->writesize) {
dev_err(nfc->dev, "Step size needs to be page size\n");
return -ENXIO;
}
/* Only 64 byte ECC layouts known */
if (mtd->oobsize > 64)
mtd->oobsize = 64;
/* Use default large page ECC layout defined in NAND core */
mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
if (chip->ecc.strength == 32) {
nfc->ecc_mode = ECC_60_BYTE;
chip->ecc.bytes = 60;
} else if (chip->ecc.strength == 24) {
nfc->ecc_mode = ECC_45_BYTE;
chip->ecc.bytes = 45;
} else {
dev_err(nfc->dev, "Unsupported ECC strength\n");
return -ENXIO;
}
chip->ecc.read_page = vf610_nfc_read_page;
chip->ecc.write_page = vf610_nfc_write_page;
chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
chip->ecc.read_oob = vf610_nfc_read_oob;
chip->ecc.write_oob = vf610_nfc_write_oob;
chip->ecc.size = PAGE_2K;
return 0;
}
static const struct nand_controller_ops vf610_nfc_controller_ops = {
.attach_chip = vf610_nfc_attach_chip,
.exec_op = vf610_nfc_exec_op,
};
static int vf610_nfc_probe(struct platform_device *pdev)
{
struct vf610_nfc *nfc;
struct resource *res;
struct mtd_info *mtd;
struct nand_chip *chip;
struct device_node *child;
const struct of_device_id *of_id;
int err;
int irq;
nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->dev = &pdev->dev;
chip = &nfc->chip;
mtd = nand_to_mtd(chip);
mtd->owner = THIS_MODULE;
mtd->dev.parent = nfc->dev;
mtd->name = DRV_NAME;
irq = platform_get_irq(pdev, 0);
if (irq <= 0)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nfc->regs = devm_ioremap_resource(nfc->dev, res);
if (IS_ERR(nfc->regs))
return PTR_ERR(nfc->regs);
nfc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(nfc->clk))
return PTR_ERR(nfc->clk);
err = clk_prepare_enable(nfc->clk);
if (err) {
dev_err(nfc->dev, "Unable to enable clock!\n");
return err;
}
of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
if (!of_id) {
err = -ENODEV;
goto err_disable_clk;
}
nfc->variant = (enum vf610_nfc_variant)of_id->data;
for_each_available_child_of_node(nfc->dev->of_node, child) {
if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
if (nand_get_flash_node(chip)) {
dev_err(nfc->dev,
"Only one NAND chip supported!\n");
err = -EINVAL;
of_node_put(child);
goto err_disable_clk;
}
nand_set_flash_node(chip, child);
}
}
if (!nand_get_flash_node(chip)) {
dev_err(nfc->dev, "NAND chip sub-node missing!\n");
err = -ENODEV;
goto err_disable_clk;
}
chip->options |= NAND_NO_SUBPAGE_WRITE;
init_completion(&nfc->cmd_done);
err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
if (err) {
dev_err(nfc->dev, "Error requesting IRQ!\n");
goto err_disable_clk;
}
vf610_nfc_preinit_controller(nfc);
nand_controller_init(&nfc->base);
nfc->base.ops = &vf610_nfc_controller_ops;
chip->controller = &nfc->base;
/* Scan the NAND chip */
err = nand_scan(chip, 1);
if (err)
goto err_disable_clk;
platform_set_drvdata(pdev, nfc);
/* Register device in MTD */
err = mtd_device_register(mtd, NULL, 0);
if (err)
goto err_cleanup_nand;
return 0;
err_cleanup_nand:
nand_cleanup(chip);
err_disable_clk:
clk_disable_unprepare(nfc->clk);
return err;
}
static int vf610_nfc_remove(struct platform_device *pdev)
{
struct vf610_nfc *nfc = platform_get_drvdata(pdev);
struct nand_chip *chip = &nfc->chip;
int ret;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
clk_disable_unprepare(nfc->clk);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int vf610_nfc_suspend(struct device *dev)
{
struct vf610_nfc *nfc = dev_get_drvdata(dev);
clk_disable_unprepare(nfc->clk);
return 0;
}
static int vf610_nfc_resume(struct device *dev)
{
struct vf610_nfc *nfc = dev_get_drvdata(dev);
int err;
err = clk_prepare_enable(nfc->clk);
if (err)
return err;
vf610_nfc_preinit_controller(nfc);
vf610_nfc_init_controller(nfc);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
static struct platform_driver vf610_nfc_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = vf610_nfc_dt_ids,
.pm = &vf610_nfc_pm_ops,
},
.probe = vf610_nfc_probe,
.remove = vf610_nfc_remove,
};
module_platform_driver(vf610_nfc_driver);
MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
MODULE_LICENSE("GPL");