linux/drivers/mtd/nand/raw/mxic_nand.c
Miquel Raynal e5acf9c862 mtd: nand: ecc-hamming: Move Hamming code to the generic NAND layer
Hamming ECC code might be later re-used by the SPI NAND layer.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200929230124.31491-12-miquel.raynal@bootlin.com
2020-12-10 22:37:29 +01:00

589 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Macronix International Co., Ltd.
*
* Author:
* Mason Yang <masonccyang@mxic.com.tw>
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand-ecc-sw-hamming.h>
#include <linux/mtd/rawnand.h>
#include <linux/platform_device.h>
#include "internals.h"
#define HC_CFG 0x0
#define HC_CFG_IF_CFG(x) ((x) << 27)
#define HC_CFG_DUAL_SLAVE BIT(31)
#define HC_CFG_INDIVIDUAL BIT(30)
#define HC_CFG_NIO(x) (((x) / 4) << 27)
#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
#define HC_CFG_TYPE_SPI_NOR 0
#define HC_CFG_TYPE_SPI_NAND 1
#define HC_CFG_TYPE_SPI_RAM 2
#define HC_CFG_TYPE_RAW_NAND 3
#define HC_CFG_SLV_ACT(x) ((x) << 21)
#define HC_CFG_CLK_PH_EN BIT(20)
#define HC_CFG_CLK_POL_INV BIT(19)
#define HC_CFG_BIG_ENDIAN BIT(18)
#define HC_CFG_DATA_PASS BIT(17)
#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
#define HC_CFG_MAN_START_EN BIT(3)
#define HC_CFG_MAN_START BIT(2)
#define HC_CFG_MAN_CS_EN BIT(1)
#define HC_CFG_MAN_CS_ASSERT BIT(0)
#define INT_STS 0x4
#define INT_STS_EN 0x8
#define INT_SIG_EN 0xc
#define INT_STS_ALL GENMASK(31, 0)
#define INT_RDY_PIN BIT(26)
#define INT_RDY_SR BIT(25)
#define INT_LNR_SUSP BIT(24)
#define INT_ECC_ERR BIT(17)
#define INT_CRC_ERR BIT(16)
#define INT_LWR_DIS BIT(12)
#define INT_LRD_DIS BIT(11)
#define INT_SDMA_INT BIT(10)
#define INT_DMA_FINISH BIT(9)
#define INT_RX_NOT_FULL BIT(3)
#define INT_RX_NOT_EMPTY BIT(2)
#define INT_TX_NOT_FULL BIT(1)
#define INT_TX_EMPTY BIT(0)
#define HC_EN 0x10
#define HC_EN_BIT BIT(0)
#define TXD(x) (0x14 + ((x) * 4))
#define RXD 0x24
#define SS_CTRL(s) (0x30 + ((s) * 4))
#define LRD_CFG 0x44
#define LWR_CFG 0x80
#define RWW_CFG 0x70
#define OP_READ BIT(23)
#define OP_DUMMY_CYC(x) ((x) << 17)
#define OP_ADDR_BYTES(x) ((x) << 14)
#define OP_CMD_BYTES(x) (((x) - 1) << 13)
#define OP_OCTA_CRC_EN BIT(12)
#define OP_DQS_EN BIT(11)
#define OP_ENHC_EN BIT(10)
#define OP_PREAMBLE_EN BIT(9)
#define OP_DATA_DDR BIT(8)
#define OP_DATA_BUSW(x) ((x) << 6)
#define OP_ADDR_DDR BIT(5)
#define OP_ADDR_BUSW(x) ((x) << 3)
#define OP_CMD_DDR BIT(2)
#define OP_CMD_BUSW(x) (x)
#define OP_BUSW_1 0
#define OP_BUSW_2 1
#define OP_BUSW_4 2
#define OP_BUSW_8 3
#define OCTA_CRC 0x38
#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
#define ONFI_DIN_CNT(s) (0x3c + (s))
#define LRD_CTRL 0x48
#define RWW_CTRL 0x74
#define LWR_CTRL 0x84
#define LMODE_EN BIT(31)
#define LMODE_SLV_ACT(x) ((x) << 21)
#define LMODE_CMD1(x) ((x) << 8)
#define LMODE_CMD0(x) (x)
#define LRD_ADDR 0x4c
#define LWR_ADDR 0x88
#define LRD_RANGE 0x50
#define LWR_RANGE 0x8c
#define AXI_SLV_ADDR 0x54
#define DMAC_RD_CFG 0x58
#define DMAC_WR_CFG 0x94
#define DMAC_CFG_PERIPH_EN BIT(31)
#define DMAC_CFG_ALLFLUSH_EN BIT(30)
#define DMAC_CFG_LASTFLUSH_EN BIT(29)
#define DMAC_CFG_QE(x) (((x) + 1) << 16)
#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
#define DMAC_CFG_DIR_READ BIT(1)
#define DMAC_CFG_START BIT(0)
#define DMAC_RD_CNT 0x5c
#define DMAC_WR_CNT 0x98
#define SDMA_ADDR 0x60
#define DMAM_CFG 0x64
#define DMAM_CFG_START BIT(31)
#define DMAM_CFG_CONT BIT(30)
#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
#define DMAM_CFG_DIR_READ BIT(1)
#define DMAM_CFG_EN BIT(0)
#define DMAM_CNT 0x68
#define LNR_TIMER_TH 0x6c
#define RDM_CFG0 0x78
#define RDM_CFG0_POLY(x) (x)
#define RDM_CFG1 0x7c
#define RDM_CFG1_RDM_EN BIT(31)
#define RDM_CFG1_SEED(x) (x)
#define LWR_SUSP_CTRL 0x90
#define LWR_SUSP_CTRL_EN BIT(31)
#define DMAS_CTRL 0x9c
#define DMAS_CTRL_EN BIT(31)
#define DMAS_CTRL_DIR_READ BIT(30)
#define DATA_STROB 0xa0
#define DATA_STROB_EDO_EN BIT(2)
#define DATA_STROB_INV_POL BIT(1)
#define DATA_STROB_DELAY_2CYC BIT(0)
#define IDLY_CODE(x) (0xa4 + ((x) * 4))
#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
#define GPIO 0xc4
#define GPIO_PT(x) BIT(3 + ((x) * 16))
#define GPIO_RESET(x) BIT(2 + ((x) * 16))
#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
#define GPIO_WPB(x) BIT((x) * 16)
#define HC_VER 0xd0
#define HW_TEST(x) (0xe0 + ((x) * 4))
#define MXIC_NFC_MAX_CLK_HZ 50000000
#define IRQ_TIMEOUT 1000
struct mxic_nand_ctlr {
struct clk *ps_clk;
struct clk *send_clk;
struct clk *send_dly_clk;
struct completion complete;
void __iomem *regs;
struct nand_controller controller;
struct device *dev;
struct nand_chip chip;
};
static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc)
{
int ret;
ret = clk_prepare_enable(nfc->ps_clk);
if (ret)
return ret;
ret = clk_prepare_enable(nfc->send_clk);
if (ret)
goto err_ps_clk;
ret = clk_prepare_enable(nfc->send_dly_clk);
if (ret)
goto err_send_dly_clk;
return ret;
err_send_dly_clk:
clk_disable_unprepare(nfc->send_clk);
err_ps_clk:
clk_disable_unprepare(nfc->ps_clk);
return ret;
}
static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc)
{
clk_disable_unprepare(nfc->send_clk);
clk_disable_unprepare(nfc->send_dly_clk);
clk_disable_unprepare(nfc->ps_clk);
}
static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code)
{
writel(IDLY_CODE_VAL(0, idly_code) |
IDLY_CODE_VAL(1, idly_code) |
IDLY_CODE_VAL(2, idly_code) |
IDLY_CODE_VAL(3, idly_code),
nfc->regs + IDLY_CODE(0));
writel(IDLY_CODE_VAL(4, idly_code) |
IDLY_CODE_VAL(5, idly_code) |
IDLY_CODE_VAL(6, idly_code) |
IDLY_CODE_VAL(7, idly_code),
nfc->regs + IDLY_CODE(1));
}
static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq)
{
int ret;
ret = clk_set_rate(nfc->send_clk, freq);
if (ret)
return ret;
ret = clk_set_rate(nfc->send_dly_clk, freq);
if (ret)
return ret;
/*
* A constant delay range from 0x0 ~ 0x1F for input delay,
* the unit is 78 ps, the max input delay is 2.418 ns.
*/
mxic_nfc_set_input_delay(nfc, 0xf);
/*
* Phase degree = 360 * freq * output-delay
* where output-delay is a constant value 1 ns in FPGA.
*
* Get Phase degree = 360 * freq * 1 ns
* = 360 * freq * 1 sec / 1000000000
* = 9 * freq / 25000000
*/
ret = clk_set_phase(nfc->send_dly_clk, 9 * freq / 25000000);
if (ret)
return ret;
return 0;
}
static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq)
{
int ret;
if (freq > MXIC_NFC_MAX_CLK_HZ)
freq = MXIC_NFC_MAX_CLK_HZ;
mxic_nfc_clk_disable(nfc);
ret = mxic_nfc_clk_setup(nfc, freq);
if (ret)
return ret;
ret = mxic_nfc_clk_enable(nfc);
if (ret)
return ret;
return 0;
}
static irqreturn_t mxic_nfc_isr(int irq, void *dev_id)
{
struct mxic_nand_ctlr *nfc = dev_id;
u32 sts;
sts = readl(nfc->regs + INT_STS);
if (sts & INT_RDY_PIN)
complete(&nfc->complete);
else
return IRQ_NONE;
return IRQ_HANDLED;
}
static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc)
{
writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
writel(0, nfc->regs + LRD_CFG);
writel(0, nfc->regs + LRD_CTRL);
writel(0x0, nfc->regs + HC_EN);
}
static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc)
{
writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
nfc->regs + HC_CFG);
writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
nfc->regs + HC_CFG);
}
static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc)
{
writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
nfc->regs + HC_CFG);
}
static int mxic_nfc_wait_ready(struct nand_chip *chip)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
int ret;
ret = wait_for_completion_timeout(&nfc->complete,
msecs_to_jiffies(IRQ_TIMEOUT));
if (!ret) {
dev_err(nfc->dev, "nand device timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf,
void *rxbuf, unsigned int len)
{
unsigned int pos = 0;
while (pos < len) {
unsigned int nbytes = len - pos;
u32 data = 0xffffffff;
u32 sts;
int ret;
if (nbytes > 4)
nbytes = 4;
if (txbuf)
memcpy(&data, txbuf + pos, nbytes);
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
writel(data, nfc->regs + TXD(nbytes % 4));
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_RX_NOT_EMPTY, 0,
USEC_PER_SEC);
if (ret)
return ret;
data = readl(nfc->regs + RXD);
if (rxbuf) {
data >>= (8 * (4 - nbytes));
memcpy(rxbuf + pos, &data, nbytes);
}
if (readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY)
dev_warn(nfc->dev, "RX FIFO not empty\n");
pos += nbytes;
}
return 0;
}
static int mxic_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op, bool check_only)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
const struct nand_op_instr *instr = NULL;
int ret = 0;
unsigned int op_id;
if (check_only)
return 0;
mxic_nfc_cs_enable(nfc);
init_completion(&nfc->complete);
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writel(0, nfc->regs + HC_EN);
writel(HC_EN_BIT, nfc->regs + HC_EN);
writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
&instr->ctx.cmd.opcode,
NULL, 1);
break;
case NAND_OP_ADDR_INSTR:
writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_ADDR_BYTES(instr->ctx.addr.naddrs),
nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
instr->ctx.addr.addrs, NULL,
instr->ctx.addr.naddrs);
break;
case NAND_OP_DATA_IN_INSTR:
writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_READ, nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc, NULL,
instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
writel(instr->ctx.data.len,
nfc->regs + ONFI_DIN_CNT(0));
writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
instr->ctx.data.buf.out, NULL,
instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
ret = mxic_nfc_wait_ready(chip);
break;
}
}
mxic_nfc_cs_disable(nfc);
return ret;
}
static int mxic_nfc_setup_interface(struct nand_chip *chip, int chipnr,
const struct nand_interface_config *conf)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
const struct nand_sdr_timings *sdr;
unsigned long freq;
int ret;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
freq = NSEC_PER_SEC / (sdr->tRC_min / 1000);
ret = mxic_nfc_set_freq(nfc, freq);
if (ret)
dev_err(nfc->dev, "set freq:%ld failed\n", freq);
if (sdr->tRC_min < 30000)
writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
return 0;
}
static const struct nand_controller_ops mxic_nand_controller_ops = {
.exec_op = mxic_nfc_exec_op,
.setup_interface = mxic_nfc_setup_interface,
};
static int mxic_nfc_probe(struct platform_device *pdev)
{
struct device_node *nand_np, *np = pdev->dev.of_node;
struct mtd_info *mtd;
struct mxic_nand_ctlr *nfc;
struct nand_chip *nand_chip;
int err;
int irq;
nfc = devm_kzalloc(&pdev->dev, sizeof(struct mxic_nand_ctlr),
GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->ps_clk = devm_clk_get(&pdev->dev, "ps");
if (IS_ERR(nfc->ps_clk))
return PTR_ERR(nfc->ps_clk);
nfc->send_clk = devm_clk_get(&pdev->dev, "send");
if (IS_ERR(nfc->send_clk))
return PTR_ERR(nfc->send_clk);
nfc->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly");
if (IS_ERR(nfc->send_dly_clk))
return PTR_ERR(nfc->send_dly_clk);
nfc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nfc->regs))
return PTR_ERR(nfc->regs);
nand_chip = &nfc->chip;
mtd = nand_to_mtd(nand_chip);
mtd->dev.parent = &pdev->dev;
for_each_child_of_node(np, nand_np)
nand_set_flash_node(nand_chip, nand_np);
nand_chip->priv = nfc;
nfc->dev = &pdev->dev;
nfc->controller.ops = &mxic_nand_controller_ops;
nand_controller_init(&nfc->controller);
nand_chip->controller = &nfc->controller;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
mxic_nfc_hw_init(nfc);
err = devm_request_irq(&pdev->dev, irq, mxic_nfc_isr,
0, "mxic-nfc", nfc);
if (err)
goto fail;
err = nand_scan(nand_chip, 1);
if (err)
goto fail;
err = mtd_device_register(mtd, NULL, 0);
if (err)
goto fail;
platform_set_drvdata(pdev, nfc);
return 0;
fail:
mxic_nfc_clk_disable(nfc);
return err;
}
static int mxic_nfc_remove(struct platform_device *pdev)
{
struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev);
struct nand_chip *chip = &nfc->chip;
int ret;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
mxic_nfc_clk_disable(nfc);
return 0;
}
static const struct of_device_id mxic_nfc_of_ids[] = {
{ .compatible = "mxic,multi-itfc-v009-nand-controller", },
{},
};
MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids);
static struct platform_driver mxic_nfc_driver = {
.probe = mxic_nfc_probe,
.remove = mxic_nfc_remove,
.driver = {
.name = "mxic-nfc",
.of_match_table = mxic_nfc_of_ids,
},
};
module_platform_driver(mxic_nfc_driver);
MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
MODULE_DESCRIPTION("Macronix raw NAND controller driver");
MODULE_LICENSE("GPL v2");