forked from Minki/linux
2903381fce
Add a new superblock version, and consolidate related defines. Signed-off-by: Gabriel de Perthuis <g2p.code+bcache@gmail.com> Signed-off-by: Kent Overstreet <koverstreet@google.com>
1412 lines
34 KiB
C
1412 lines
34 KiB
C
/*
|
|
* Main bcache entry point - handle a read or a write request and decide what to
|
|
* do with it; the make_request functions are called by the block layer.
|
|
*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "btree.h"
|
|
#include "debug.h"
|
|
#include "request.h"
|
|
|
|
#include <linux/cgroup.h>
|
|
#include <linux/module.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/random.h>
|
|
#include "blk-cgroup.h"
|
|
|
|
#include <trace/events/bcache.h>
|
|
|
|
#define CUTOFF_CACHE_ADD 95
|
|
#define CUTOFF_CACHE_READA 90
|
|
#define CUTOFF_WRITEBACK 50
|
|
#define CUTOFF_WRITEBACK_SYNC 75
|
|
|
|
struct kmem_cache *bch_search_cache;
|
|
|
|
static void check_should_skip(struct cached_dev *, struct search *);
|
|
|
|
/* Cgroup interface */
|
|
|
|
#ifdef CONFIG_CGROUP_BCACHE
|
|
static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
|
|
|
|
static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
|
|
{
|
|
struct cgroup_subsys_state *css;
|
|
return cgroup &&
|
|
(css = cgroup_subsys_state(cgroup, bcache_subsys_id))
|
|
? container_of(css, struct bch_cgroup, css)
|
|
: &bcache_default_cgroup;
|
|
}
|
|
|
|
struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
|
|
{
|
|
struct cgroup_subsys_state *css = bio->bi_css
|
|
? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
|
|
: task_subsys_state(current, bcache_subsys_id);
|
|
|
|
return css
|
|
? container_of(css, struct bch_cgroup, css)
|
|
: &bcache_default_cgroup;
|
|
}
|
|
|
|
static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
|
|
struct file *file,
|
|
char __user *buf, size_t nbytes, loff_t *ppos)
|
|
{
|
|
char tmp[1024];
|
|
int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
|
|
cgroup_to_bcache(cgrp)->cache_mode + 1);
|
|
|
|
if (len < 0)
|
|
return len;
|
|
|
|
return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
|
|
}
|
|
|
|
static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
|
|
const char *buf)
|
|
{
|
|
int v = bch_read_string_list(buf, bch_cache_modes);
|
|
if (v < 0)
|
|
return v;
|
|
|
|
cgroup_to_bcache(cgrp)->cache_mode = v - 1;
|
|
return 0;
|
|
}
|
|
|
|
static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
|
|
{
|
|
return cgroup_to_bcache(cgrp)->verify;
|
|
}
|
|
|
|
static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
|
|
{
|
|
cgroup_to_bcache(cgrp)->verify = val;
|
|
return 0;
|
|
}
|
|
|
|
static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
|
|
{
|
|
struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
|
|
return atomic_read(&bcachecg->stats.cache_hits);
|
|
}
|
|
|
|
static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
|
|
{
|
|
struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
|
|
return atomic_read(&bcachecg->stats.cache_misses);
|
|
}
|
|
|
|
static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
|
|
struct cftype *cft)
|
|
{
|
|
struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
|
|
return atomic_read(&bcachecg->stats.cache_bypass_hits);
|
|
}
|
|
|
|
static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
|
|
struct cftype *cft)
|
|
{
|
|
struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
|
|
return atomic_read(&bcachecg->stats.cache_bypass_misses);
|
|
}
|
|
|
|
static struct cftype bch_files[] = {
|
|
{
|
|
.name = "cache_mode",
|
|
.read = cache_mode_read,
|
|
.write_string = cache_mode_write,
|
|
},
|
|
{
|
|
.name = "verify",
|
|
.read_u64 = bch_verify_read,
|
|
.write_u64 = bch_verify_write,
|
|
},
|
|
{
|
|
.name = "cache_hits",
|
|
.read_u64 = bch_cache_hits_read,
|
|
},
|
|
{
|
|
.name = "cache_misses",
|
|
.read_u64 = bch_cache_misses_read,
|
|
},
|
|
{
|
|
.name = "cache_bypass_hits",
|
|
.read_u64 = bch_cache_bypass_hits_read,
|
|
},
|
|
{
|
|
.name = "cache_bypass_misses",
|
|
.read_u64 = bch_cache_bypass_misses_read,
|
|
},
|
|
{ } /* terminate */
|
|
};
|
|
|
|
static void init_bch_cgroup(struct bch_cgroup *cg)
|
|
{
|
|
cg->cache_mode = -1;
|
|
}
|
|
|
|
static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
|
|
{
|
|
struct bch_cgroup *cg;
|
|
|
|
cg = kzalloc(sizeof(*cg), GFP_KERNEL);
|
|
if (!cg)
|
|
return ERR_PTR(-ENOMEM);
|
|
init_bch_cgroup(cg);
|
|
return &cg->css;
|
|
}
|
|
|
|
static void bcachecg_destroy(struct cgroup *cgroup)
|
|
{
|
|
struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
|
|
free_css_id(&bcache_subsys, &cg->css);
|
|
kfree(cg);
|
|
}
|
|
|
|
struct cgroup_subsys bcache_subsys = {
|
|
.create = bcachecg_create,
|
|
.destroy = bcachecg_destroy,
|
|
.subsys_id = bcache_subsys_id,
|
|
.name = "bcache",
|
|
.module = THIS_MODULE,
|
|
};
|
|
EXPORT_SYMBOL_GPL(bcache_subsys);
|
|
#endif
|
|
|
|
static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
|
|
{
|
|
#ifdef CONFIG_CGROUP_BCACHE
|
|
int r = bch_bio_to_cgroup(bio)->cache_mode;
|
|
if (r >= 0)
|
|
return r;
|
|
#endif
|
|
return BDEV_CACHE_MODE(&dc->sb);
|
|
}
|
|
|
|
static bool verify(struct cached_dev *dc, struct bio *bio)
|
|
{
|
|
#ifdef CONFIG_CGROUP_BCACHE
|
|
if (bch_bio_to_cgroup(bio)->verify)
|
|
return true;
|
|
#endif
|
|
return dc->verify;
|
|
}
|
|
|
|
static void bio_csum(struct bio *bio, struct bkey *k)
|
|
{
|
|
struct bio_vec *bv;
|
|
uint64_t csum = 0;
|
|
int i;
|
|
|
|
bio_for_each_segment(bv, bio, i) {
|
|
void *d = kmap(bv->bv_page) + bv->bv_offset;
|
|
csum = bch_crc64_update(csum, d, bv->bv_len);
|
|
kunmap(bv->bv_page);
|
|
}
|
|
|
|
k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
|
|
}
|
|
|
|
/* Insert data into cache */
|
|
|
|
static void bio_invalidate(struct closure *cl)
|
|
{
|
|
struct btree_op *op = container_of(cl, struct btree_op, cl);
|
|
struct bio *bio = op->cache_bio;
|
|
|
|
pr_debug("invalidating %i sectors from %llu",
|
|
bio_sectors(bio), (uint64_t) bio->bi_sector);
|
|
|
|
while (bio_sectors(bio)) {
|
|
unsigned len = min(bio_sectors(bio), 1U << 14);
|
|
|
|
if (bch_keylist_realloc(&op->keys, 0, op->c))
|
|
goto out;
|
|
|
|
bio->bi_sector += len;
|
|
bio->bi_size -= len << 9;
|
|
|
|
bch_keylist_add(&op->keys,
|
|
&KEY(op->inode, bio->bi_sector, len));
|
|
}
|
|
|
|
op->insert_data_done = true;
|
|
bio_put(bio);
|
|
out:
|
|
continue_at(cl, bch_journal, bcache_wq);
|
|
}
|
|
|
|
struct open_bucket {
|
|
struct list_head list;
|
|
struct task_struct *last;
|
|
unsigned sectors_free;
|
|
BKEY_PADDED(key);
|
|
};
|
|
|
|
void bch_open_buckets_free(struct cache_set *c)
|
|
{
|
|
struct open_bucket *b;
|
|
|
|
while (!list_empty(&c->data_buckets)) {
|
|
b = list_first_entry(&c->data_buckets,
|
|
struct open_bucket, list);
|
|
list_del(&b->list);
|
|
kfree(b);
|
|
}
|
|
}
|
|
|
|
int bch_open_buckets_alloc(struct cache_set *c)
|
|
{
|
|
int i;
|
|
|
|
spin_lock_init(&c->data_bucket_lock);
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
|
|
if (!b)
|
|
return -ENOMEM;
|
|
|
|
list_add(&b->list, &c->data_buckets);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We keep multiple buckets open for writes, and try to segregate different
|
|
* write streams for better cache utilization: first we look for a bucket where
|
|
* the last write to it was sequential with the current write, and failing that
|
|
* we look for a bucket that was last used by the same task.
|
|
*
|
|
* The ideas is if you've got multiple tasks pulling data into the cache at the
|
|
* same time, you'll get better cache utilization if you try to segregate their
|
|
* data and preserve locality.
|
|
*
|
|
* For example, say you've starting Firefox at the same time you're copying a
|
|
* bunch of files. Firefox will likely end up being fairly hot and stay in the
|
|
* cache awhile, but the data you copied might not be; if you wrote all that
|
|
* data to the same buckets it'd get invalidated at the same time.
|
|
*
|
|
* Both of those tasks will be doing fairly random IO so we can't rely on
|
|
* detecting sequential IO to segregate their data, but going off of the task
|
|
* should be a sane heuristic.
|
|
*/
|
|
static struct open_bucket *pick_data_bucket(struct cache_set *c,
|
|
const struct bkey *search,
|
|
struct task_struct *task,
|
|
struct bkey *alloc)
|
|
{
|
|
struct open_bucket *ret, *ret_task = NULL;
|
|
|
|
list_for_each_entry_reverse(ret, &c->data_buckets, list)
|
|
if (!bkey_cmp(&ret->key, search))
|
|
goto found;
|
|
else if (ret->last == task)
|
|
ret_task = ret;
|
|
|
|
ret = ret_task ?: list_first_entry(&c->data_buckets,
|
|
struct open_bucket, list);
|
|
found:
|
|
if (!ret->sectors_free && KEY_PTRS(alloc)) {
|
|
ret->sectors_free = c->sb.bucket_size;
|
|
bkey_copy(&ret->key, alloc);
|
|
bkey_init(alloc);
|
|
}
|
|
|
|
if (!ret->sectors_free)
|
|
ret = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Allocates some space in the cache to write to, and k to point to the newly
|
|
* allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
|
|
* end of the newly allocated space).
|
|
*
|
|
* May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
|
|
* sectors were actually allocated.
|
|
*
|
|
* If s->writeback is true, will not fail.
|
|
*/
|
|
static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
|
|
struct search *s)
|
|
{
|
|
struct cache_set *c = s->op.c;
|
|
struct open_bucket *b;
|
|
BKEY_PADDED(key) alloc;
|
|
struct closure cl, *w = NULL;
|
|
unsigned i;
|
|
|
|
if (s->writeback) {
|
|
closure_init_stack(&cl);
|
|
w = &cl;
|
|
}
|
|
|
|
/*
|
|
* We might have to allocate a new bucket, which we can't do with a
|
|
* spinlock held. So if we have to allocate, we drop the lock, allocate
|
|
* and then retry. KEY_PTRS() indicates whether alloc points to
|
|
* allocated bucket(s).
|
|
*/
|
|
|
|
bkey_init(&alloc.key);
|
|
spin_lock(&c->data_bucket_lock);
|
|
|
|
while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
|
|
unsigned watermark = s->op.write_prio
|
|
? WATERMARK_MOVINGGC
|
|
: WATERMARK_NONE;
|
|
|
|
spin_unlock(&c->data_bucket_lock);
|
|
|
|
if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
|
|
return false;
|
|
|
|
spin_lock(&c->data_bucket_lock);
|
|
}
|
|
|
|
/*
|
|
* If we had to allocate, we might race and not need to allocate the
|
|
* second time we call find_data_bucket(). If we allocated a bucket but
|
|
* didn't use it, drop the refcount bch_bucket_alloc_set() took:
|
|
*/
|
|
if (KEY_PTRS(&alloc.key))
|
|
__bkey_put(c, &alloc.key);
|
|
|
|
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
|
EBUG_ON(ptr_stale(c, &b->key, i));
|
|
|
|
/* Set up the pointer to the space we're allocating: */
|
|
|
|
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
|
k->ptr[i] = b->key.ptr[i];
|
|
|
|
sectors = min(sectors, b->sectors_free);
|
|
|
|
SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
|
|
SET_KEY_SIZE(k, sectors);
|
|
SET_KEY_PTRS(k, KEY_PTRS(&b->key));
|
|
|
|
/*
|
|
* Move b to the end of the lru, and keep track of what this bucket was
|
|
* last used for:
|
|
*/
|
|
list_move_tail(&b->list, &c->data_buckets);
|
|
bkey_copy_key(&b->key, k);
|
|
b->last = s->task;
|
|
|
|
b->sectors_free -= sectors;
|
|
|
|
for (i = 0; i < KEY_PTRS(&b->key); i++) {
|
|
SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
|
|
|
|
atomic_long_add(sectors,
|
|
&PTR_CACHE(c, &b->key, i)->sectors_written);
|
|
}
|
|
|
|
if (b->sectors_free < c->sb.block_size)
|
|
b->sectors_free = 0;
|
|
|
|
/*
|
|
* k takes refcounts on the buckets it points to until it's inserted
|
|
* into the btree, but if we're done with this bucket we just transfer
|
|
* get_data_bucket()'s refcount.
|
|
*/
|
|
if (b->sectors_free)
|
|
for (i = 0; i < KEY_PTRS(&b->key); i++)
|
|
atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
|
|
|
|
spin_unlock(&c->data_bucket_lock);
|
|
return true;
|
|
}
|
|
|
|
static void bch_insert_data_error(struct closure *cl)
|
|
{
|
|
struct btree_op *op = container_of(cl, struct btree_op, cl);
|
|
|
|
/*
|
|
* Our data write just errored, which means we've got a bunch of keys to
|
|
* insert that point to data that wasn't succesfully written.
|
|
*
|
|
* We don't have to insert those keys but we still have to invalidate
|
|
* that region of the cache - so, if we just strip off all the pointers
|
|
* from the keys we'll accomplish just that.
|
|
*/
|
|
|
|
struct bkey *src = op->keys.bottom, *dst = op->keys.bottom;
|
|
|
|
while (src != op->keys.top) {
|
|
struct bkey *n = bkey_next(src);
|
|
|
|
SET_KEY_PTRS(src, 0);
|
|
bkey_copy(dst, src);
|
|
|
|
dst = bkey_next(dst);
|
|
src = n;
|
|
}
|
|
|
|
op->keys.top = dst;
|
|
|
|
bch_journal(cl);
|
|
}
|
|
|
|
static void bch_insert_data_endio(struct bio *bio, int error)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
struct btree_op *op = container_of(cl, struct btree_op, cl);
|
|
struct search *s = container_of(op, struct search, op);
|
|
|
|
if (error) {
|
|
/* TODO: We could try to recover from this. */
|
|
if (s->writeback)
|
|
s->error = error;
|
|
else if (s->write)
|
|
set_closure_fn(cl, bch_insert_data_error, bcache_wq);
|
|
else
|
|
set_closure_fn(cl, NULL, NULL);
|
|
}
|
|
|
|
bch_bbio_endio(op->c, bio, error, "writing data to cache");
|
|
}
|
|
|
|
static void bch_insert_data_loop(struct closure *cl)
|
|
{
|
|
struct btree_op *op = container_of(cl, struct btree_op, cl);
|
|
struct search *s = container_of(op, struct search, op);
|
|
struct bio *bio = op->cache_bio, *n;
|
|
|
|
if (op->skip)
|
|
return bio_invalidate(cl);
|
|
|
|
if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
|
|
set_gc_sectors(op->c);
|
|
bch_queue_gc(op->c);
|
|
}
|
|
|
|
do {
|
|
unsigned i;
|
|
struct bkey *k;
|
|
struct bio_set *split = s->d
|
|
? s->d->bio_split : op->c->bio_split;
|
|
|
|
/* 1 for the device pointer and 1 for the chksum */
|
|
if (bch_keylist_realloc(&op->keys,
|
|
1 + (op->csum ? 1 : 0),
|
|
op->c))
|
|
continue_at(cl, bch_journal, bcache_wq);
|
|
|
|
k = op->keys.top;
|
|
bkey_init(k);
|
|
SET_KEY_INODE(k, op->inode);
|
|
SET_KEY_OFFSET(k, bio->bi_sector);
|
|
|
|
if (!bch_alloc_sectors(k, bio_sectors(bio), s))
|
|
goto err;
|
|
|
|
n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
|
|
if (!n) {
|
|
__bkey_put(op->c, k);
|
|
continue_at(cl, bch_insert_data_loop, bcache_wq);
|
|
}
|
|
|
|
n->bi_end_io = bch_insert_data_endio;
|
|
n->bi_private = cl;
|
|
|
|
if (s->writeback) {
|
|
SET_KEY_DIRTY(k, true);
|
|
|
|
for (i = 0; i < KEY_PTRS(k); i++)
|
|
SET_GC_MARK(PTR_BUCKET(op->c, k, i),
|
|
GC_MARK_DIRTY);
|
|
}
|
|
|
|
SET_KEY_CSUM(k, op->csum);
|
|
if (KEY_CSUM(k))
|
|
bio_csum(n, k);
|
|
|
|
pr_debug("%s", pkey(k));
|
|
bch_keylist_push(&op->keys);
|
|
|
|
trace_bcache_cache_insert(n, n->bi_sector, n->bi_bdev);
|
|
n->bi_rw |= REQ_WRITE;
|
|
bch_submit_bbio(n, op->c, k, 0);
|
|
} while (n != bio);
|
|
|
|
op->insert_data_done = true;
|
|
continue_at(cl, bch_journal, bcache_wq);
|
|
err:
|
|
/* bch_alloc_sectors() blocks if s->writeback = true */
|
|
BUG_ON(s->writeback);
|
|
|
|
/*
|
|
* But if it's not a writeback write we'd rather just bail out if
|
|
* there aren't any buckets ready to write to - it might take awhile and
|
|
* we might be starving btree writes for gc or something.
|
|
*/
|
|
|
|
if (s->write) {
|
|
/*
|
|
* Writethrough write: We can't complete the write until we've
|
|
* updated the index. But we don't want to delay the write while
|
|
* we wait for buckets to be freed up, so just invalidate the
|
|
* rest of the write.
|
|
*/
|
|
op->skip = true;
|
|
return bio_invalidate(cl);
|
|
} else {
|
|
/*
|
|
* From a cache miss, we can just insert the keys for the data
|
|
* we have written or bail out if we didn't do anything.
|
|
*/
|
|
op->insert_data_done = true;
|
|
bio_put(bio);
|
|
|
|
if (!bch_keylist_empty(&op->keys))
|
|
continue_at(cl, bch_journal, bcache_wq);
|
|
else
|
|
closure_return(cl);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bch_insert_data - stick some data in the cache
|
|
*
|
|
* This is the starting point for any data to end up in a cache device; it could
|
|
* be from a normal write, or a writeback write, or a write to a flash only
|
|
* volume - it's also used by the moving garbage collector to compact data in
|
|
* mostly empty buckets.
|
|
*
|
|
* It first writes the data to the cache, creating a list of keys to be inserted
|
|
* (if the data had to be fragmented there will be multiple keys); after the
|
|
* data is written it calls bch_journal, and after the keys have been added to
|
|
* the next journal write they're inserted into the btree.
|
|
*
|
|
* It inserts the data in op->cache_bio; bi_sector is used for the key offset,
|
|
* and op->inode is used for the key inode.
|
|
*
|
|
* If op->skip is true, instead of inserting the data it invalidates the region
|
|
* of the cache represented by op->cache_bio and op->inode.
|
|
*/
|
|
void bch_insert_data(struct closure *cl)
|
|
{
|
|
struct btree_op *op = container_of(cl, struct btree_op, cl);
|
|
|
|
bch_keylist_init(&op->keys);
|
|
bio_get(op->cache_bio);
|
|
bch_insert_data_loop(cl);
|
|
}
|
|
|
|
void bch_btree_insert_async(struct closure *cl)
|
|
{
|
|
struct btree_op *op = container_of(cl, struct btree_op, cl);
|
|
struct search *s = container_of(op, struct search, op);
|
|
|
|
if (bch_btree_insert(op, op->c)) {
|
|
s->error = -ENOMEM;
|
|
op->insert_data_done = true;
|
|
}
|
|
|
|
if (op->insert_data_done) {
|
|
bch_keylist_free(&op->keys);
|
|
closure_return(cl);
|
|
} else
|
|
continue_at(cl, bch_insert_data_loop, bcache_wq);
|
|
}
|
|
|
|
/* Common code for the make_request functions */
|
|
|
|
static void request_endio(struct bio *bio, int error)
|
|
{
|
|
struct closure *cl = bio->bi_private;
|
|
|
|
if (error) {
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
s->error = error;
|
|
/* Only cache read errors are recoverable */
|
|
s->recoverable = false;
|
|
}
|
|
|
|
bio_put(bio);
|
|
closure_put(cl);
|
|
}
|
|
|
|
void bch_cache_read_endio(struct bio *bio, int error)
|
|
{
|
|
struct bbio *b = container_of(bio, struct bbio, bio);
|
|
struct closure *cl = bio->bi_private;
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
|
|
/*
|
|
* If the bucket was reused while our bio was in flight, we might have
|
|
* read the wrong data. Set s->error but not error so it doesn't get
|
|
* counted against the cache device, but we'll still reread the data
|
|
* from the backing device.
|
|
*/
|
|
|
|
if (error)
|
|
s->error = error;
|
|
else if (ptr_stale(s->op.c, &b->key, 0)) {
|
|
atomic_long_inc(&s->op.c->cache_read_races);
|
|
s->error = -EINTR;
|
|
}
|
|
|
|
bch_bbio_endio(s->op.c, bio, error, "reading from cache");
|
|
}
|
|
|
|
static void bio_complete(struct search *s)
|
|
{
|
|
if (s->orig_bio) {
|
|
int cpu, rw = bio_data_dir(s->orig_bio);
|
|
unsigned long duration = jiffies - s->start_time;
|
|
|
|
cpu = part_stat_lock();
|
|
part_round_stats(cpu, &s->d->disk->part0);
|
|
part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
|
|
part_stat_unlock();
|
|
|
|
trace_bcache_request_end(s, s->orig_bio);
|
|
bio_endio(s->orig_bio, s->error);
|
|
s->orig_bio = NULL;
|
|
}
|
|
}
|
|
|
|
static void do_bio_hook(struct search *s)
|
|
{
|
|
struct bio *bio = &s->bio.bio;
|
|
memcpy(bio, s->orig_bio, sizeof(struct bio));
|
|
|
|
bio->bi_end_io = request_endio;
|
|
bio->bi_private = &s->cl;
|
|
atomic_set(&bio->bi_cnt, 3);
|
|
}
|
|
|
|
static void search_free(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
bio_complete(s);
|
|
|
|
if (s->op.cache_bio)
|
|
bio_put(s->op.cache_bio);
|
|
|
|
if (s->unaligned_bvec)
|
|
mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
|
|
|
|
closure_debug_destroy(cl);
|
|
mempool_free(s, s->d->c->search);
|
|
}
|
|
|
|
static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
|
|
{
|
|
struct bio_vec *bv;
|
|
struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
|
|
memset(s, 0, offsetof(struct search, op.keys));
|
|
|
|
__closure_init(&s->cl, NULL);
|
|
|
|
s->op.inode = d->id;
|
|
s->op.c = d->c;
|
|
s->d = d;
|
|
s->op.lock = -1;
|
|
s->task = current;
|
|
s->orig_bio = bio;
|
|
s->write = (bio->bi_rw & REQ_WRITE) != 0;
|
|
s->op.flush_journal = (bio->bi_rw & REQ_FLUSH) != 0;
|
|
s->op.skip = (bio->bi_rw & REQ_DISCARD) != 0;
|
|
s->recoverable = 1;
|
|
s->start_time = jiffies;
|
|
do_bio_hook(s);
|
|
|
|
if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
|
|
bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
|
|
memcpy(bv, bio_iovec(bio),
|
|
sizeof(struct bio_vec) * bio_segments(bio));
|
|
|
|
s->bio.bio.bi_io_vec = bv;
|
|
s->unaligned_bvec = 1;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
static void btree_read_async(struct closure *cl)
|
|
{
|
|
struct btree_op *op = container_of(cl, struct btree_op, cl);
|
|
|
|
int ret = btree_root(search_recurse, op->c, op);
|
|
|
|
if (ret == -EAGAIN)
|
|
continue_at(cl, btree_read_async, bcache_wq);
|
|
|
|
closure_return(cl);
|
|
}
|
|
|
|
/* Cached devices */
|
|
|
|
static void cached_dev_bio_complete(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
|
|
|
|
search_free(cl);
|
|
cached_dev_put(dc);
|
|
}
|
|
|
|
/* Process reads */
|
|
|
|
static void cached_dev_read_complete(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
|
|
if (s->op.insert_collision)
|
|
bch_mark_cache_miss_collision(s);
|
|
|
|
if (s->op.cache_bio) {
|
|
int i;
|
|
struct bio_vec *bv;
|
|
|
|
__bio_for_each_segment(bv, s->op.cache_bio, i, 0)
|
|
__free_page(bv->bv_page);
|
|
}
|
|
|
|
cached_dev_bio_complete(cl);
|
|
}
|
|
|
|
static void request_read_error(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
struct bio_vec *bv;
|
|
int i;
|
|
|
|
if (s->recoverable) {
|
|
/* The cache read failed, but we can retry from the backing
|
|
* device.
|
|
*/
|
|
pr_debug("recovering at sector %llu",
|
|
(uint64_t) s->orig_bio->bi_sector);
|
|
|
|
s->error = 0;
|
|
bv = s->bio.bio.bi_io_vec;
|
|
do_bio_hook(s);
|
|
s->bio.bio.bi_io_vec = bv;
|
|
|
|
if (!s->unaligned_bvec)
|
|
bio_for_each_segment(bv, s->orig_bio, i)
|
|
bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
|
|
else
|
|
memcpy(s->bio.bio.bi_io_vec,
|
|
bio_iovec(s->orig_bio),
|
|
sizeof(struct bio_vec) *
|
|
bio_segments(s->orig_bio));
|
|
|
|
/* XXX: invalidate cache */
|
|
|
|
trace_bcache_read_retry(&s->bio.bio);
|
|
closure_bio_submit(&s->bio.bio, &s->cl, s->d);
|
|
}
|
|
|
|
continue_at(cl, cached_dev_read_complete, NULL);
|
|
}
|
|
|
|
static void request_read_done(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
|
|
|
|
/*
|
|
* s->cache_bio != NULL implies that we had a cache miss; cache_bio now
|
|
* contains data ready to be inserted into the cache.
|
|
*
|
|
* First, we copy the data we just read from cache_bio's bounce buffers
|
|
* to the buffers the original bio pointed to:
|
|
*/
|
|
|
|
if (s->op.cache_bio) {
|
|
struct bio_vec *src, *dst;
|
|
unsigned src_offset, dst_offset, bytes;
|
|
void *dst_ptr;
|
|
|
|
bio_reset(s->op.cache_bio);
|
|
s->op.cache_bio->bi_sector = s->cache_miss->bi_sector;
|
|
s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev;
|
|
s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
|
|
bch_bio_map(s->op.cache_bio, NULL);
|
|
|
|
src = bio_iovec(s->op.cache_bio);
|
|
dst = bio_iovec(s->cache_miss);
|
|
src_offset = src->bv_offset;
|
|
dst_offset = dst->bv_offset;
|
|
dst_ptr = kmap(dst->bv_page);
|
|
|
|
while (1) {
|
|
if (dst_offset == dst->bv_offset + dst->bv_len) {
|
|
kunmap(dst->bv_page);
|
|
dst++;
|
|
if (dst == bio_iovec_idx(s->cache_miss,
|
|
s->cache_miss->bi_vcnt))
|
|
break;
|
|
|
|
dst_offset = dst->bv_offset;
|
|
dst_ptr = kmap(dst->bv_page);
|
|
}
|
|
|
|
if (src_offset == src->bv_offset + src->bv_len) {
|
|
src++;
|
|
if (src == bio_iovec_idx(s->op.cache_bio,
|
|
s->op.cache_bio->bi_vcnt))
|
|
BUG();
|
|
|
|
src_offset = src->bv_offset;
|
|
}
|
|
|
|
bytes = min(dst->bv_offset + dst->bv_len - dst_offset,
|
|
src->bv_offset + src->bv_len - src_offset);
|
|
|
|
memcpy(dst_ptr + dst_offset,
|
|
page_address(src->bv_page) + src_offset,
|
|
bytes);
|
|
|
|
src_offset += bytes;
|
|
dst_offset += bytes;
|
|
}
|
|
|
|
bio_put(s->cache_miss);
|
|
s->cache_miss = NULL;
|
|
}
|
|
|
|
if (verify(dc, &s->bio.bio) && s->recoverable)
|
|
bch_data_verify(s);
|
|
|
|
bio_complete(s);
|
|
|
|
if (s->op.cache_bio &&
|
|
!test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
|
|
s->op.type = BTREE_REPLACE;
|
|
closure_call(&s->op.cl, bch_insert_data, NULL, cl);
|
|
}
|
|
|
|
continue_at(cl, cached_dev_read_complete, NULL);
|
|
}
|
|
|
|
static void request_read_done_bh(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
|
|
|
|
bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip);
|
|
|
|
if (s->error)
|
|
continue_at_nobarrier(cl, request_read_error, bcache_wq);
|
|
else if (s->op.cache_bio || verify(dc, &s->bio.bio))
|
|
continue_at_nobarrier(cl, request_read_done, bcache_wq);
|
|
else
|
|
continue_at_nobarrier(cl, cached_dev_read_complete, NULL);
|
|
}
|
|
|
|
static int cached_dev_cache_miss(struct btree *b, struct search *s,
|
|
struct bio *bio, unsigned sectors)
|
|
{
|
|
int ret = 0;
|
|
unsigned reada;
|
|
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
|
|
struct bio *miss;
|
|
|
|
miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
|
|
if (!miss)
|
|
return -EAGAIN;
|
|
|
|
if (miss == bio)
|
|
s->op.lookup_done = true;
|
|
|
|
miss->bi_end_io = request_endio;
|
|
miss->bi_private = &s->cl;
|
|
|
|
if (s->cache_miss || s->op.skip)
|
|
goto out_submit;
|
|
|
|
if (miss != bio ||
|
|
(bio->bi_rw & REQ_RAHEAD) ||
|
|
(bio->bi_rw & REQ_META) ||
|
|
s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA)
|
|
reada = 0;
|
|
else {
|
|
reada = min(dc->readahead >> 9,
|
|
sectors - bio_sectors(miss));
|
|
|
|
if (bio_end(miss) + reada > bdev_sectors(miss->bi_bdev))
|
|
reada = bdev_sectors(miss->bi_bdev) - bio_end(miss);
|
|
}
|
|
|
|
s->cache_bio_sectors = bio_sectors(miss) + reada;
|
|
s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT,
|
|
DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
|
|
dc->disk.bio_split);
|
|
|
|
if (!s->op.cache_bio)
|
|
goto out_submit;
|
|
|
|
s->op.cache_bio->bi_sector = miss->bi_sector;
|
|
s->op.cache_bio->bi_bdev = miss->bi_bdev;
|
|
s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
|
|
|
|
s->op.cache_bio->bi_end_io = request_endio;
|
|
s->op.cache_bio->bi_private = &s->cl;
|
|
|
|
/* btree_search_recurse()'s btree iterator is no good anymore */
|
|
ret = -EINTR;
|
|
if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio))
|
|
goto out_put;
|
|
|
|
bch_bio_map(s->op.cache_bio, NULL);
|
|
if (bch_bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO))
|
|
goto out_put;
|
|
|
|
s->cache_miss = miss;
|
|
bio_get(s->op.cache_bio);
|
|
|
|
trace_bcache_cache_miss(s->orig_bio);
|
|
closure_bio_submit(s->op.cache_bio, &s->cl, s->d);
|
|
|
|
return ret;
|
|
out_put:
|
|
bio_put(s->op.cache_bio);
|
|
s->op.cache_bio = NULL;
|
|
out_submit:
|
|
closure_bio_submit(miss, &s->cl, s->d);
|
|
return ret;
|
|
}
|
|
|
|
static void request_read(struct cached_dev *dc, struct search *s)
|
|
{
|
|
struct closure *cl = &s->cl;
|
|
|
|
check_should_skip(dc, s);
|
|
closure_call(&s->op.cl, btree_read_async, NULL, cl);
|
|
|
|
continue_at(cl, request_read_done_bh, NULL);
|
|
}
|
|
|
|
/* Process writes */
|
|
|
|
static void cached_dev_write_complete(struct closure *cl)
|
|
{
|
|
struct search *s = container_of(cl, struct search, cl);
|
|
struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
|
|
|
|
up_read_non_owner(&dc->writeback_lock);
|
|
cached_dev_bio_complete(cl);
|
|
}
|
|
|
|
static bool should_writeback(struct cached_dev *dc, struct bio *bio)
|
|
{
|
|
unsigned threshold = (bio->bi_rw & REQ_SYNC)
|
|
? CUTOFF_WRITEBACK_SYNC
|
|
: CUTOFF_WRITEBACK;
|
|
|
|
return !atomic_read(&dc->disk.detaching) &&
|
|
cache_mode(dc, bio) == CACHE_MODE_WRITEBACK &&
|
|
dc->disk.c->gc_stats.in_use < threshold;
|
|
}
|
|
|
|
static void request_write(struct cached_dev *dc, struct search *s)
|
|
{
|
|
struct closure *cl = &s->cl;
|
|
struct bio *bio = &s->bio.bio;
|
|
struct bkey start, end;
|
|
start = KEY(dc->disk.id, bio->bi_sector, 0);
|
|
end = KEY(dc->disk.id, bio_end(bio), 0);
|
|
|
|
bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
|
|
|
|
check_should_skip(dc, s);
|
|
down_read_non_owner(&dc->writeback_lock);
|
|
|
|
if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
|
|
s->op.skip = false;
|
|
s->writeback = true;
|
|
}
|
|
|
|
if (bio->bi_rw & REQ_DISCARD)
|
|
goto skip;
|
|
|
|
if (s->op.skip)
|
|
goto skip;
|
|
|
|
if (should_writeback(dc, s->orig_bio))
|
|
s->writeback = true;
|
|
|
|
if (!s->writeback) {
|
|
s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
|
|
dc->disk.bio_split);
|
|
|
|
trace_bcache_writethrough(s->orig_bio);
|
|
closure_bio_submit(bio, cl, s->d);
|
|
} else {
|
|
s->op.cache_bio = bio;
|
|
trace_bcache_writeback(s->orig_bio);
|
|
bch_writeback_add(dc, bio_sectors(bio));
|
|
}
|
|
out:
|
|
closure_call(&s->op.cl, bch_insert_data, NULL, cl);
|
|
continue_at(cl, cached_dev_write_complete, NULL);
|
|
skip:
|
|
s->op.skip = true;
|
|
s->op.cache_bio = s->orig_bio;
|
|
bio_get(s->op.cache_bio);
|
|
trace_bcache_write_skip(s->orig_bio);
|
|
|
|
if ((bio->bi_rw & REQ_DISCARD) &&
|
|
!blk_queue_discard(bdev_get_queue(dc->bdev)))
|
|
goto out;
|
|
|
|
closure_bio_submit(bio, cl, s->d);
|
|
goto out;
|
|
}
|
|
|
|
static void request_nodata(struct cached_dev *dc, struct search *s)
|
|
{
|
|
struct closure *cl = &s->cl;
|
|
struct bio *bio = &s->bio.bio;
|
|
|
|
if (bio->bi_rw & REQ_DISCARD) {
|
|
request_write(dc, s);
|
|
return;
|
|
}
|
|
|
|
if (s->op.flush_journal)
|
|
bch_journal_meta(s->op.c, cl);
|
|
|
|
closure_bio_submit(bio, cl, s->d);
|
|
|
|
continue_at(cl, cached_dev_bio_complete, NULL);
|
|
}
|
|
|
|
/* Cached devices - read & write stuff */
|
|
|
|
int bch_get_congested(struct cache_set *c)
|
|
{
|
|
int i;
|
|
|
|
if (!c->congested_read_threshold_us &&
|
|
!c->congested_write_threshold_us)
|
|
return 0;
|
|
|
|
i = (local_clock_us() - c->congested_last_us) / 1024;
|
|
if (i < 0)
|
|
return 0;
|
|
|
|
i += atomic_read(&c->congested);
|
|
if (i >= 0)
|
|
return 0;
|
|
|
|
i += CONGESTED_MAX;
|
|
|
|
return i <= 0 ? 1 : fract_exp_two(i, 6);
|
|
}
|
|
|
|
static void add_sequential(struct task_struct *t)
|
|
{
|
|
ewma_add(t->sequential_io_avg,
|
|
t->sequential_io, 8, 0);
|
|
|
|
t->sequential_io = 0;
|
|
}
|
|
|
|
static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
|
|
{
|
|
return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
|
|
}
|
|
|
|
static void check_should_skip(struct cached_dev *dc, struct search *s)
|
|
{
|
|
struct cache_set *c = s->op.c;
|
|
struct bio *bio = &s->bio.bio;
|
|
|
|
long rand;
|
|
int cutoff = bch_get_congested(c);
|
|
unsigned mode = cache_mode(dc, bio);
|
|
|
|
if (atomic_read(&dc->disk.detaching) ||
|
|
c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
|
|
(bio->bi_rw & REQ_DISCARD))
|
|
goto skip;
|
|
|
|
if (mode == CACHE_MODE_NONE ||
|
|
(mode == CACHE_MODE_WRITEAROUND &&
|
|
(bio->bi_rw & REQ_WRITE)))
|
|
goto skip;
|
|
|
|
if (bio->bi_sector & (c->sb.block_size - 1) ||
|
|
bio_sectors(bio) & (c->sb.block_size - 1)) {
|
|
pr_debug("skipping unaligned io");
|
|
goto skip;
|
|
}
|
|
|
|
if (!cutoff) {
|
|
cutoff = dc->sequential_cutoff >> 9;
|
|
|
|
if (!cutoff)
|
|
goto rescale;
|
|
|
|
if (mode == CACHE_MODE_WRITEBACK &&
|
|
(bio->bi_rw & REQ_WRITE) &&
|
|
(bio->bi_rw & REQ_SYNC))
|
|
goto rescale;
|
|
}
|
|
|
|
if (dc->sequential_merge) {
|
|
struct io *i;
|
|
|
|
spin_lock(&dc->io_lock);
|
|
|
|
hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
|
|
if (i->last == bio->bi_sector &&
|
|
time_before(jiffies, i->jiffies))
|
|
goto found;
|
|
|
|
i = list_first_entry(&dc->io_lru, struct io, lru);
|
|
|
|
add_sequential(s->task);
|
|
i->sequential = 0;
|
|
found:
|
|
if (i->sequential + bio->bi_size > i->sequential)
|
|
i->sequential += bio->bi_size;
|
|
|
|
i->last = bio_end(bio);
|
|
i->jiffies = jiffies + msecs_to_jiffies(5000);
|
|
s->task->sequential_io = i->sequential;
|
|
|
|
hlist_del(&i->hash);
|
|
hlist_add_head(&i->hash, iohash(dc, i->last));
|
|
list_move_tail(&i->lru, &dc->io_lru);
|
|
|
|
spin_unlock(&dc->io_lock);
|
|
} else {
|
|
s->task->sequential_io = bio->bi_size;
|
|
|
|
add_sequential(s->task);
|
|
}
|
|
|
|
rand = get_random_int();
|
|
cutoff -= bitmap_weight(&rand, BITS_PER_LONG);
|
|
|
|
if (cutoff <= (int) (max(s->task->sequential_io,
|
|
s->task->sequential_io_avg) >> 9))
|
|
goto skip;
|
|
|
|
rescale:
|
|
bch_rescale_priorities(c, bio_sectors(bio));
|
|
return;
|
|
skip:
|
|
bch_mark_sectors_bypassed(s, bio_sectors(bio));
|
|
s->op.skip = true;
|
|
}
|
|
|
|
static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
|
|
{
|
|
struct search *s;
|
|
struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
|
|
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
|
|
int cpu, rw = bio_data_dir(bio);
|
|
|
|
cpu = part_stat_lock();
|
|
part_stat_inc(cpu, &d->disk->part0, ios[rw]);
|
|
part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
|
|
part_stat_unlock();
|
|
|
|
bio->bi_bdev = dc->bdev;
|
|
bio->bi_sector += dc->sb.data_offset;
|
|
|
|
if (cached_dev_get(dc)) {
|
|
s = search_alloc(bio, d);
|
|
trace_bcache_request_start(s, bio);
|
|
|
|
if (!bio_has_data(bio))
|
|
request_nodata(dc, s);
|
|
else if (rw)
|
|
request_write(dc, s);
|
|
else
|
|
request_read(dc, s);
|
|
} else {
|
|
if ((bio->bi_rw & REQ_DISCARD) &&
|
|
!blk_queue_discard(bdev_get_queue(dc->bdev)))
|
|
bio_endio(bio, 0);
|
|
else
|
|
bch_generic_make_request(bio, &d->bio_split_hook);
|
|
}
|
|
}
|
|
|
|
static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
|
|
return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
|
|
}
|
|
|
|
static int cached_dev_congested(void *data, int bits)
|
|
{
|
|
struct bcache_device *d = data;
|
|
struct cached_dev *dc = container_of(d, struct cached_dev, disk);
|
|
struct request_queue *q = bdev_get_queue(dc->bdev);
|
|
int ret = 0;
|
|
|
|
if (bdi_congested(&q->backing_dev_info, bits))
|
|
return 1;
|
|
|
|
if (cached_dev_get(dc)) {
|
|
unsigned i;
|
|
struct cache *ca;
|
|
|
|
for_each_cache(ca, d->c, i) {
|
|
q = bdev_get_queue(ca->bdev);
|
|
ret |= bdi_congested(&q->backing_dev_info, bits);
|
|
}
|
|
|
|
cached_dev_put(dc);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch_cached_dev_request_init(struct cached_dev *dc)
|
|
{
|
|
struct gendisk *g = dc->disk.disk;
|
|
|
|
g->queue->make_request_fn = cached_dev_make_request;
|
|
g->queue->backing_dev_info.congested_fn = cached_dev_congested;
|
|
dc->disk.cache_miss = cached_dev_cache_miss;
|
|
dc->disk.ioctl = cached_dev_ioctl;
|
|
}
|
|
|
|
/* Flash backed devices */
|
|
|
|
static int flash_dev_cache_miss(struct btree *b, struct search *s,
|
|
struct bio *bio, unsigned sectors)
|
|
{
|
|
/* Zero fill bio */
|
|
|
|
while (bio->bi_idx != bio->bi_vcnt) {
|
|
struct bio_vec *bv = bio_iovec(bio);
|
|
unsigned j = min(bv->bv_len >> 9, sectors);
|
|
|
|
void *p = kmap(bv->bv_page);
|
|
memset(p + bv->bv_offset, 0, j << 9);
|
|
kunmap(bv->bv_page);
|
|
|
|
bv->bv_len -= j << 9;
|
|
bv->bv_offset += j << 9;
|
|
|
|
if (bv->bv_len)
|
|
return 0;
|
|
|
|
bio->bi_sector += j;
|
|
bio->bi_size -= j << 9;
|
|
|
|
bio->bi_idx++;
|
|
sectors -= j;
|
|
}
|
|
|
|
s->op.lookup_done = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
|
|
{
|
|
struct search *s;
|
|
struct closure *cl;
|
|
struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
|
|
int cpu, rw = bio_data_dir(bio);
|
|
|
|
cpu = part_stat_lock();
|
|
part_stat_inc(cpu, &d->disk->part0, ios[rw]);
|
|
part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
|
|
part_stat_unlock();
|
|
|
|
s = search_alloc(bio, d);
|
|
cl = &s->cl;
|
|
bio = &s->bio.bio;
|
|
|
|
trace_bcache_request_start(s, bio);
|
|
|
|
if (bio_has_data(bio) && !rw) {
|
|
closure_call(&s->op.cl, btree_read_async, NULL, cl);
|
|
} else if (bio_has_data(bio) || s->op.skip) {
|
|
bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
|
|
&KEY(d->id, bio->bi_sector, 0),
|
|
&KEY(d->id, bio_end(bio), 0));
|
|
|
|
s->writeback = true;
|
|
s->op.cache_bio = bio;
|
|
|
|
closure_call(&s->op.cl, bch_insert_data, NULL, cl);
|
|
} else {
|
|
/* No data - probably a cache flush */
|
|
if (s->op.flush_journal)
|
|
bch_journal_meta(s->op.c, cl);
|
|
}
|
|
|
|
continue_at(cl, search_free, NULL);
|
|
}
|
|
|
|
static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
return -ENOTTY;
|
|
}
|
|
|
|
static int flash_dev_congested(void *data, int bits)
|
|
{
|
|
struct bcache_device *d = data;
|
|
struct request_queue *q;
|
|
struct cache *ca;
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
for_each_cache(ca, d->c, i) {
|
|
q = bdev_get_queue(ca->bdev);
|
|
ret |= bdi_congested(&q->backing_dev_info, bits);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch_flash_dev_request_init(struct bcache_device *d)
|
|
{
|
|
struct gendisk *g = d->disk;
|
|
|
|
g->queue->make_request_fn = flash_dev_make_request;
|
|
g->queue->backing_dev_info.congested_fn = flash_dev_congested;
|
|
d->cache_miss = flash_dev_cache_miss;
|
|
d->ioctl = flash_dev_ioctl;
|
|
}
|
|
|
|
void bch_request_exit(void)
|
|
{
|
|
#ifdef CONFIG_CGROUP_BCACHE
|
|
cgroup_unload_subsys(&bcache_subsys);
|
|
#endif
|
|
if (bch_search_cache)
|
|
kmem_cache_destroy(bch_search_cache);
|
|
}
|
|
|
|
int __init bch_request_init(void)
|
|
{
|
|
bch_search_cache = KMEM_CACHE(search, 0);
|
|
if (!bch_search_cache)
|
|
return -ENOMEM;
|
|
|
|
#ifdef CONFIG_CGROUP_BCACHE
|
|
cgroup_load_subsys(&bcache_subsys);
|
|
init_bch_cgroup(&bcache_default_cgroup);
|
|
|
|
cgroup_add_cftypes(&bcache_subsys, bch_files);
|
|
#endif
|
|
return 0;
|
|
}
|