linux/drivers/iio/frequency/adf4371.c
Stefan Popa def914a4c3 iio: frequency: adf4371: Add support for output stage mute
Another feature of the ADF4371/ADF4372 is that the supply current to the
RF8P and RF8N output stage can shut down until the ADF4371 achieves lock
as measured by the digital lock detect circuitry. The mute to lock
detect bit (MUTE_LD) in REG25 enables this function.

Signed-off-by: Stefan Popa <stefan.popa@analog.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2019-06-26 21:24:21 +01:00

633 lines
16 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0
/*
* Analog Devices ADF4371 SPI Wideband Synthesizer driver
*
* Copyright 2019 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gcd.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>
#include <linux/iio/iio.h>
/* Registers address macro */
#define ADF4371_REG(x) (x)
/* ADF4371_REG0 */
#define ADF4371_ADDR_ASC_MSK BIT(2)
#define ADF4371_ADDR_ASC(x) FIELD_PREP(ADF4371_ADDR_ASC_MSK, x)
#define ADF4371_ADDR_ASC_R_MSK BIT(5)
#define ADF4371_ADDR_ASC_R(x) FIELD_PREP(ADF4371_ADDR_ASC_R_MSK, x)
#define ADF4371_RESET_CMD 0x81
/* ADF4371_REG17 */
#define ADF4371_FRAC2WORD_L_MSK GENMASK(7, 1)
#define ADF4371_FRAC2WORD_L(x) FIELD_PREP(ADF4371_FRAC2WORD_L_MSK, x)
#define ADF4371_FRAC1WORD_MSK BIT(0)
#define ADF4371_FRAC1WORD(x) FIELD_PREP(ADF4371_FRAC1WORD_MSK, x)
/* ADF4371_REG18 */
#define ADF4371_FRAC2WORD_H_MSK GENMASK(6, 0)
#define ADF4371_FRAC2WORD_H(x) FIELD_PREP(ADF4371_FRAC2WORD_H_MSK, x)
/* ADF4371_REG1A */
#define ADF4371_MOD2WORD_MSK GENMASK(5, 0)
#define ADF4371_MOD2WORD(x) FIELD_PREP(ADF4371_MOD2WORD_MSK, x)
/* ADF4371_REG24 */
#define ADF4371_RF_DIV_SEL_MSK GENMASK(6, 4)
#define ADF4371_RF_DIV_SEL(x) FIELD_PREP(ADF4371_RF_DIV_SEL_MSK, x)
/* ADF4371_REG25 */
#define ADF4371_MUTE_LD_MSK BIT(7)
#define ADF4371_MUTE_LD(x) FIELD_PREP(ADF4371_MUTE_LD_MSK, x)
/* ADF4371_REG32 */
#define ADF4371_TIMEOUT_MSK GENMASK(1, 0)
#define ADF4371_TIMEOUT(x) FIELD_PREP(ADF4371_TIMEOUT_MSK, x)
/* ADF4371_REG34 */
#define ADF4371_VCO_ALC_TOUT_MSK GENMASK(4, 0)
#define ADF4371_VCO_ALC_TOUT(x) FIELD_PREP(ADF4371_VCO_ALC_TOUT_MSK, x)
/* Specifications */
#define ADF4371_MIN_VCO_FREQ 4000000000ULL /* 4000 MHz */
#define ADF4371_MAX_VCO_FREQ 8000000000ULL /* 8000 MHz */
#define ADF4371_MAX_OUT_RF8_FREQ ADF4371_MAX_VCO_FREQ /* Hz */
#define ADF4371_MIN_OUT_RF8_FREQ (ADF4371_MIN_VCO_FREQ / 64) /* Hz */
#define ADF4371_MAX_OUT_RF16_FREQ (ADF4371_MAX_VCO_FREQ * 2) /* Hz */
#define ADF4371_MIN_OUT_RF16_FREQ (ADF4371_MIN_VCO_FREQ * 2) /* Hz */
#define ADF4371_MAX_OUT_RF32_FREQ (ADF4371_MAX_VCO_FREQ * 4) /* Hz */
#define ADF4371_MIN_OUT_RF32_FREQ (ADF4371_MIN_VCO_FREQ * 4) /* Hz */
#define ADF4371_MAX_FREQ_PFD 250000000UL /* Hz */
#define ADF4371_MAX_FREQ_REFIN 600000000UL /* Hz */
/* MOD1 is a 24-bit primary modulus with fixed value of 2^25 */
#define ADF4371_MODULUS1 33554432ULL
/* MOD2 is the programmable, 14-bit auxiliary fractional modulus */
#define ADF4371_MAX_MODULUS2 BIT(14)
#define ADF4371_CHECK_RANGE(freq, range) \
((freq > ADF4371_MAX_ ## range) || (freq < ADF4371_MIN_ ## range))
enum {
ADF4371_FREQ,
ADF4371_POWER_DOWN,
ADF4371_CHANNEL_NAME
};
enum {
ADF4371_CH_RF8,
ADF4371_CH_RFAUX8,
ADF4371_CH_RF16,
ADF4371_CH_RF32
};
enum adf4371_variant {
ADF4371,
ADF4372
};
struct adf4371_pwrdown {
unsigned int reg;
unsigned int bit;
};
static const char * const adf4371_ch_names[] = {
"RF8x", "RFAUX8x", "RF16x", "RF32x"
};
static const struct adf4371_pwrdown adf4371_pwrdown_ch[4] = {
[ADF4371_CH_RF8] = { ADF4371_REG(0x25), 2 },
[ADF4371_CH_RFAUX8] = { ADF4371_REG(0x72), 3 },
[ADF4371_CH_RF16] = { ADF4371_REG(0x25), 3 },
[ADF4371_CH_RF32] = { ADF4371_REG(0x25), 4 },
};
static const struct reg_sequence adf4371_reg_defaults[] = {
{ ADF4371_REG(0x0), 0x18 },
{ ADF4371_REG(0x12), 0x40 },
{ ADF4371_REG(0x1E), 0x48 },
{ ADF4371_REG(0x20), 0x14 },
{ ADF4371_REG(0x22), 0x00 },
{ ADF4371_REG(0x23), 0x00 },
{ ADF4371_REG(0x24), 0x80 },
{ ADF4371_REG(0x25), 0x07 },
{ ADF4371_REG(0x27), 0xC5 },
{ ADF4371_REG(0x28), 0x83 },
{ ADF4371_REG(0x2C), 0x44 },
{ ADF4371_REG(0x2D), 0x11 },
{ ADF4371_REG(0x2E), 0x12 },
{ ADF4371_REG(0x2F), 0x94 },
{ ADF4371_REG(0x32), 0x04 },
{ ADF4371_REG(0x35), 0xFA },
{ ADF4371_REG(0x36), 0x30 },
{ ADF4371_REG(0x39), 0x07 },
{ ADF4371_REG(0x3A), 0x55 },
{ ADF4371_REG(0x3E), 0x0C },
{ ADF4371_REG(0x3F), 0x80 },
{ ADF4371_REG(0x40), 0x50 },
{ ADF4371_REG(0x41), 0x28 },
{ ADF4371_REG(0x47), 0xC0 },
{ ADF4371_REG(0x52), 0xF4 },
{ ADF4371_REG(0x70), 0x03 },
{ ADF4371_REG(0x71), 0x60 },
{ ADF4371_REG(0x72), 0x32 },
};
static const struct regmap_config adf4371_regmap_config = {
.reg_bits = 16,
.val_bits = 8,
.read_flag_mask = BIT(7),
};
struct adf4371_chip_info {
unsigned int num_channels;
const struct iio_chan_spec *channels;
};
struct adf4371_state {
struct spi_device *spi;
struct regmap *regmap;
struct clk *clkin;
/*
* Lock for accessing device registers. Some operations require
* multiple consecutive R/W operations, during which the device
* shouldn't be interrupted. The buffers are also shared across
* all operations so need to be protected on stand alone reads and
* writes.
*/
struct mutex lock;
const struct adf4371_chip_info *chip_info;
unsigned long clkin_freq;
unsigned long fpfd;
unsigned int integer;
unsigned int fract1;
unsigned int fract2;
unsigned int mod2;
unsigned int rf_div_sel;
unsigned int ref_div_factor;
u8 buf[10] ____cacheline_aligned;
};
static unsigned long long adf4371_pll_fract_n_get_rate(struct adf4371_state *st,
u32 channel)
{
unsigned long long val, tmp;
unsigned int ref_div_sel;
val = (((u64)st->integer * ADF4371_MODULUS1) + st->fract1) * st->fpfd;
tmp = (u64)st->fract2 * st->fpfd;
do_div(tmp, st->mod2);
val += tmp + ADF4371_MODULUS1 / 2;
if (channel == ADF4371_CH_RF8 || channel == ADF4371_CH_RFAUX8)
ref_div_sel = st->rf_div_sel;
else
ref_div_sel = 0;
do_div(val, ADF4371_MODULUS1 * (1 << ref_div_sel));
if (channel == ADF4371_CH_RF16)
val <<= 1;
else if (channel == ADF4371_CH_RF32)
val <<= 2;
return val;
}
static void adf4371_pll_fract_n_compute(unsigned long long vco,
unsigned long long pfd,
unsigned int *integer,
unsigned int *fract1,
unsigned int *fract2,
unsigned int *mod2)
{
unsigned long long tmp;
u32 gcd_div;
tmp = do_div(vco, pfd);
tmp = tmp * ADF4371_MODULUS1;
*fract2 = do_div(tmp, pfd);
*integer = vco;
*fract1 = tmp;
*mod2 = pfd;
while (*mod2 > ADF4371_MAX_MODULUS2) {
*mod2 >>= 1;
*fract2 >>= 1;
}
gcd_div = gcd(*fract2, *mod2);
*mod2 /= gcd_div;
*fract2 /= gcd_div;
}
static int adf4371_set_freq(struct adf4371_state *st, unsigned long long freq,
unsigned int channel)
{
u32 cp_bleed;
u8 int_mode = 0;
int ret;
switch (channel) {
case ADF4371_CH_RF8:
case ADF4371_CH_RFAUX8:
if (ADF4371_CHECK_RANGE(freq, OUT_RF8_FREQ))
return -EINVAL;
st->rf_div_sel = 0;
while (freq < ADF4371_MIN_VCO_FREQ) {
freq <<= 1;
st->rf_div_sel++;
}
break;
case ADF4371_CH_RF16:
/* ADF4371 RF16 8000...16000 MHz */
if (ADF4371_CHECK_RANGE(freq, OUT_RF16_FREQ))
return -EINVAL;
freq >>= 1;
break;
case ADF4371_CH_RF32:
/* ADF4371 RF32 16000...32000 MHz */
if (ADF4371_CHECK_RANGE(freq, OUT_RF32_FREQ))
return -EINVAL;
freq >>= 2;
break;
default:
return -EINVAL;
}
adf4371_pll_fract_n_compute(freq, st->fpfd, &st->integer, &st->fract1,
&st->fract2, &st->mod2);
st->buf[0] = st->integer >> 8;
st->buf[1] = 0x40; /* REG12 default */
st->buf[2] = 0x00;
st->buf[3] = st->fract2 & 0xFF;
st->buf[4] = st->fract2 >> 7;
st->buf[5] = st->fract2 >> 15;
st->buf[6] = ADF4371_FRAC2WORD_L(st->fract2 & 0x7F) |
ADF4371_FRAC1WORD(st->fract1 >> 23);
st->buf[7] = ADF4371_FRAC2WORD_H(st->fract2 >> 7);
st->buf[8] = st->mod2 & 0xFF;
st->buf[9] = ADF4371_MOD2WORD(st->mod2 >> 8);
ret = regmap_bulk_write(st->regmap, ADF4371_REG(0x11), st->buf, 10);
if (ret < 0)
return ret;
/*
* The R counter allows the input reference frequency to be
* divided down to produce the reference clock to the PFD
*/
ret = regmap_write(st->regmap, ADF4371_REG(0x1F), st->ref_div_factor);
if (ret < 0)
return ret;
ret = regmap_update_bits(st->regmap, ADF4371_REG(0x24),
ADF4371_RF_DIV_SEL_MSK,
ADF4371_RF_DIV_SEL(st->rf_div_sel));
if (ret < 0)
return ret;
cp_bleed = DIV_ROUND_UP(400 * 1750, st->integer * 375);
cp_bleed = clamp(cp_bleed, 1U, 255U);
ret = regmap_write(st->regmap, ADF4371_REG(0x26), cp_bleed);
if (ret < 0)
return ret;
/*
* Set to 1 when in INT mode (when FRAC1 = FRAC2 = 0),
* and set to 0 when in FRAC mode.
*/
if (st->fract1 == 0 && st->fract2 == 0)
int_mode = 0x01;
ret = regmap_write(st->regmap, ADF4371_REG(0x2B), int_mode);
if (ret < 0)
return ret;
return regmap_write(st->regmap, ADF4371_REG(0x10), st->integer & 0xFF);
}
static ssize_t adf4371_read(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
struct adf4371_state *st = iio_priv(indio_dev);
unsigned long long val = 0;
unsigned int readval, reg, bit;
int ret;
switch ((u32)private) {
case ADF4371_FREQ:
val = adf4371_pll_fract_n_get_rate(st, chan->channel);
ret = regmap_read(st->regmap, ADF4371_REG(0x7C), &readval);
if (ret < 0)
break;
if (readval == 0x00) {
dev_dbg(&st->spi->dev, "PLL un-locked\n");
ret = -EBUSY;
}
break;
case ADF4371_POWER_DOWN:
reg = adf4371_pwrdown_ch[chan->channel].reg;
bit = adf4371_pwrdown_ch[chan->channel].bit;
ret = regmap_read(st->regmap, reg, &readval);
if (ret < 0)
break;
val = !(readval & BIT(bit));
break;
case ADF4371_CHANNEL_NAME:
return sprintf(buf, "%s\n", adf4371_ch_names[chan->channel]);
default:
ret = -EINVAL;
val = 0;
break;
}
return ret < 0 ? ret : sprintf(buf, "%llu\n", val);
}
static ssize_t adf4371_write(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct adf4371_state *st = iio_priv(indio_dev);
unsigned long long freq;
bool power_down;
unsigned int bit, readval, reg;
int ret;
mutex_lock(&st->lock);
switch ((u32)private) {
case ADF4371_FREQ:
ret = kstrtoull(buf, 10, &freq);
if (ret)
break;
ret = adf4371_set_freq(st, freq, chan->channel);
break;
case ADF4371_POWER_DOWN:
ret = kstrtobool(buf, &power_down);
if (ret)
break;
reg = adf4371_pwrdown_ch[chan->channel].reg;
bit = adf4371_pwrdown_ch[chan->channel].bit;
ret = regmap_read(st->regmap, reg, &readval);
if (ret < 0)
break;
readval &= ~BIT(bit);
readval |= (!power_down << bit);
ret = regmap_write(st->regmap, reg, readval);
break;
default:
ret = -EINVAL;
break;
}
mutex_unlock(&st->lock);
return ret ? ret : len;
}
#define _ADF4371_EXT_INFO(_name, _ident) { \
.name = _name, \
.read = adf4371_read, \
.write = adf4371_write, \
.private = _ident, \
.shared = IIO_SEPARATE, \
}
static const struct iio_chan_spec_ext_info adf4371_ext_info[] = {
/*
* Ideally we use IIO_CHAN_INFO_FREQUENCY, but there are
* values > 2^32 in order to support the entire frequency range
* in Hz. Using scale is a bit ugly.
*/
_ADF4371_EXT_INFO("frequency", ADF4371_FREQ),
_ADF4371_EXT_INFO("powerdown", ADF4371_POWER_DOWN),
_ADF4371_EXT_INFO("name", ADF4371_CHANNEL_NAME),
{ },
};
#define ADF4371_CHANNEL(index) { \
.type = IIO_ALTVOLTAGE, \
.output = 1, \
.channel = index, \
.ext_info = adf4371_ext_info, \
.indexed = 1, \
}
static const struct iio_chan_spec adf4371_chan[] = {
ADF4371_CHANNEL(ADF4371_CH_RF8),
ADF4371_CHANNEL(ADF4371_CH_RFAUX8),
ADF4371_CHANNEL(ADF4371_CH_RF16),
ADF4371_CHANNEL(ADF4371_CH_RF32),
};
static const struct adf4371_chip_info adf4371_chip_info[] = {
[ADF4371] = {
.channels = adf4371_chan,
.num_channels = 4,
},
[ADF4372] = {
.channels = adf4371_chan,
.num_channels = 3,
}
};
static int adf4371_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int writeval,
unsigned int *readval)
{
struct adf4371_state *st = iio_priv(indio_dev);
if (readval)
return regmap_read(st->regmap, reg, readval);
else
return regmap_write(st->regmap, reg, writeval);
}
static const struct iio_info adf4371_info = {
.debugfs_reg_access = &adf4371_reg_access,
};
static int adf4371_setup(struct adf4371_state *st)
{
unsigned int synth_timeout = 2, timeout = 1, vco_alc_timeout = 1;
unsigned int vco_band_div, tmp;
int ret;
/* Perform a software reset */
ret = regmap_write(st->regmap, ADF4371_REG(0x0), ADF4371_RESET_CMD);
if (ret < 0)
return ret;
ret = regmap_multi_reg_write(st->regmap, adf4371_reg_defaults,
ARRAY_SIZE(adf4371_reg_defaults));
if (ret < 0)
return ret;
/* Mute to Lock Detect */
if (device_property_read_bool(&st->spi->dev, "adi,mute-till-lock-en")) {
ret = regmap_update_bits(st->regmap, ADF4371_REG(0x25),
ADF4371_MUTE_LD_MSK,
ADF4371_MUTE_LD(1));
if (ret < 0)
return ret;
}
/* Set address in ascending order, so the bulk_write() will work */
ret = regmap_update_bits(st->regmap, ADF4371_REG(0x0),
ADF4371_ADDR_ASC_MSK | ADF4371_ADDR_ASC_R_MSK,
ADF4371_ADDR_ASC(1) | ADF4371_ADDR_ASC_R(1));
if (ret < 0)
return ret;
/*
* Calculate and maximize PFD frequency
* fPFD = REFIN × ((1 + D)/(R × (1 + T)))
* Where D is the REFIN doubler bit, T is the reference divide by 2,
* R is the reference division factor
* TODO: it is assumed D and T equal 0.
*/
do {
st->ref_div_factor++;
st->fpfd = st->clkin_freq / st->ref_div_factor;
} while (st->fpfd > ADF4371_MAX_FREQ_PFD);
/* Calculate Timeouts */
vco_band_div = DIV_ROUND_UP(st->fpfd, 2400000U);
tmp = DIV_ROUND_CLOSEST(st->fpfd, 1000000U);
do {
timeout++;
if (timeout > 1023) {
timeout = 2;
synth_timeout++;
}
} while (synth_timeout * 1024 + timeout <= 20 * tmp);
do {
vco_alc_timeout++;
} while (vco_alc_timeout * 1024 - timeout <= 50 * tmp);
st->buf[0] = vco_band_div;
st->buf[1] = timeout & 0xFF;
st->buf[2] = ADF4371_TIMEOUT(timeout >> 8) | 0x04;
st->buf[3] = synth_timeout;
st->buf[4] = ADF4371_VCO_ALC_TOUT(vco_alc_timeout);
return regmap_bulk_write(st->regmap, ADF4371_REG(0x30), st->buf, 5);
}
static void adf4371_clk_disable(void *data)
{
struct adf4371_state *st = data;
clk_disable_unprepare(st->clkin);
}
static int adf4371_probe(struct spi_device *spi)
{
const struct spi_device_id *id = spi_get_device_id(spi);
struct iio_dev *indio_dev;
struct adf4371_state *st;
struct regmap *regmap;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
regmap = devm_regmap_init_spi(spi, &adf4371_regmap_config);
if (IS_ERR(regmap)) {
dev_err(&spi->dev, "Error initializing spi regmap: %ld\n",
PTR_ERR(regmap));
return PTR_ERR(regmap);
}
st = iio_priv(indio_dev);
spi_set_drvdata(spi, indio_dev);
st->spi = spi;
st->regmap = regmap;
mutex_init(&st->lock);
st->chip_info = &adf4371_chip_info[id->driver_data];
indio_dev->dev.parent = &spi->dev;
indio_dev->name = id->name;
indio_dev->info = &adf4371_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = st->chip_info->channels;
indio_dev->num_channels = st->chip_info->num_channels;
st->clkin = devm_clk_get(&spi->dev, "clkin");
if (IS_ERR(st->clkin))
return PTR_ERR(st->clkin);
ret = clk_prepare_enable(st->clkin);
if (ret < 0)
return ret;
ret = devm_add_action_or_reset(&spi->dev, adf4371_clk_disable, st);
if (ret)
return ret;
st->clkin_freq = clk_get_rate(st->clkin);
ret = adf4371_setup(st);
if (ret < 0) {
dev_err(&spi->dev, "ADF4371 setup failed\n");
return ret;
}
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct spi_device_id adf4371_id_table[] = {
{ "adf4371", ADF4371 },
{ "adf4372", ADF4372 },
{}
};
MODULE_DEVICE_TABLE(spi, adf4371_id_table);
static const struct of_device_id adf4371_of_match[] = {
{ .compatible = "adi,adf4371" },
{ .compatible = "adi,adf4372" },
{ },
};
MODULE_DEVICE_TABLE(of, adf4371_of_match);
static struct spi_driver adf4371_driver = {
.driver = {
.name = "adf4371",
.of_match_table = adf4371_of_match,
},
.probe = adf4371_probe,
.id_table = adf4371_id_table,
};
module_spi_driver(adf4371_driver);
MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
MODULE_DESCRIPTION("Analog Devices ADF4371 SPI PLL");
MODULE_LICENSE("GPL");