linux/drivers/media/video/smiapp/smiapp-core.c
Sakari Ailus b8cc8d7a57 [media] smiapp: Add support for 8-bit uncompressed formats
Add support for uncompressed 8-bit raw bayer formats.

Signed-off-by: Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-05-20 12:47:38 -03:00

2900 lines
77 KiB
C

/*
* drivers/media/video/smiapp/smiapp-core.c
*
* Generic driver for SMIA/SMIA++ compliant camera modules
*
* Copyright (C) 2010--2012 Nokia Corporation
* Contact: Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>
*
* Based on smiapp driver by Vimarsh Zutshi
* Based on jt8ev1.c by Vimarsh Zutshi
* Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/module.h>
#include <linux/regulator/consumer.h>
#include <linux/v4l2-mediabus.h>
#include <media/v4l2-device.h>
#include "smiapp.h"
#define SMIAPP_ALIGN_DIM(dim, flags) \
((flags) & V4L2_SUBDEV_SEL_FLAG_SIZE_GE \
? ALIGN((dim), 2) \
: (dim) & ~1)
/*
* smiapp_module_idents - supported camera modules
*/
static const struct smiapp_module_ident smiapp_module_idents[] = {
SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
};
/*
*
* Dynamic Capability Identification
*
*/
static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
unsigned int i;
int rval;
int line_count = 0;
int embedded_start = -1, embedded_end = -1;
int image_start = 0;
rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
&fmt_model_type);
if (rval)
return rval;
rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
&fmt_model_subtype);
if (rval)
return rval;
ncol_desc = (fmt_model_subtype
& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
>> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
nrow_desc = fmt_model_subtype
& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
dev_dbg(&client->dev, "format_model_type %s\n",
fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
? "2 byte" :
fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
? "4 byte" : "is simply bad");
for (i = 0; i < ncol_desc + nrow_desc; i++) {
u32 desc;
u32 pixelcode;
u32 pixels;
char *which;
char *what;
if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
rval = smiapp_read(
sensor,
SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i),
&desc);
if (rval)
return rval;
pixelcode =
(desc
& SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
>> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
} else if (fmt_model_type
== SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
rval = smiapp_read(
sensor,
SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i),
&desc);
if (rval)
return rval;
pixelcode =
(desc
& SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
>> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
} else {
dev_dbg(&client->dev,
"invalid frame format model type %d\n",
fmt_model_type);
return -EINVAL;
}
if (i < ncol_desc)
which = "columns";
else
which = "rows";
switch (pixelcode) {
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
what = "embedded";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
what = "dummy";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
what = "black";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
what = "dark";
break;
case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
what = "visible";
break;
default:
what = "invalid";
dev_dbg(&client->dev, "pixelcode %d\n", pixelcode);
break;
}
dev_dbg(&client->dev, "%s pixels: %d %s\n",
what, pixels, which);
if (i < ncol_desc)
continue;
/* Handle row descriptors */
if (pixelcode
== SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) {
embedded_start = line_count;
} else {
if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE
|| pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2)
image_start = line_count;
if (embedded_start != -1 && embedded_end == -1)
embedded_end = line_count;
}
line_count += pixels;
}
if (embedded_start == -1 || embedded_end == -1) {
embedded_start = 0;
embedded_end = 0;
}
dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
embedded_start, embedded_end);
dev_dbg(&client->dev, "image data starts at line %d\n", image_start);
return 0;
}
static int smiapp_pll_configure(struct smiapp_sensor *sensor)
{
struct smiapp_pll *pll = &sensor->pll;
int rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div);
if (rval < 0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div);
if (rval < 0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
if (rval < 0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
if (rval < 0)
return rval;
/* Lane op clock ratio does not apply here. */
rval = smiapp_write(
sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256));
if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
return rval;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div);
if (rval < 0)
return rval;
return smiapp_write(
sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div);
}
static int smiapp_pll_update(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct smiapp_pll_limits lim = {
.min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
.max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
.min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
.max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
.min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
.max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
.min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
.max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],
.min_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
.max_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
.min_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
.max_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
.min_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
.max_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
.min_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
.max_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],
.min_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
.max_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
.min_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
.max_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
.min_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
.max_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
.min_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
.max_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],
.min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
.min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
};
struct smiapp_pll *pll = &sensor->pll;
int rval;
memset(&sensor->pll, 0, sizeof(sensor->pll));
pll->lanes = sensor->platform_data->lanes;
pll->ext_clk_freq_hz = sensor->platform_data->ext_clk;
if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) {
/*
* Fill in operational clock divisors limits from the
* video timing ones. On profile 0 sensors the
* requirements regarding them are essentially the
* same as on VT ones.
*/
lim.min_op_sys_clk_div = lim.min_vt_sys_clk_div;
lim.max_op_sys_clk_div = lim.max_vt_sys_clk_div;
lim.min_op_pix_clk_div = lim.min_vt_pix_clk_div;
lim.max_op_pix_clk_div = lim.max_vt_pix_clk_div;
lim.min_op_sys_clk_freq_hz = lim.min_vt_sys_clk_freq_hz;
lim.max_op_sys_clk_freq_hz = lim.max_vt_sys_clk_freq_hz;
lim.min_op_pix_clk_freq_hz = lim.min_vt_pix_clk_freq_hz;
lim.max_op_pix_clk_freq_hz = lim.max_vt_pix_clk_freq_hz;
/* Profile 0 sensors have no separate OP clock branch. */
pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
}
if (smiapp_needs_quirk(sensor,
SMIAPP_QUIRK_FLAG_OP_PIX_CLOCK_PER_LANE))
pll->flags |= SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE;
pll->binning_horizontal = sensor->binning_horizontal;
pll->binning_vertical = sensor->binning_vertical;
pll->link_freq =
sensor->link_freq->qmenu_int[sensor->link_freq->val];
pll->scale_m = sensor->scale_m;
pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
pll->bits_per_pixel = sensor->csi_format->compressed;
rval = smiapp_pll_calculate(&client->dev, &lim, pll);
if (rval < 0)
return rval;
sensor->pixel_rate_parray->cur.val64 = pll->vt_pix_clk_freq_hz;
sensor->pixel_rate_csi->cur.val64 = pll->pixel_rate_csi;
return 0;
}
/*
*
* V4L2 Controls handling
*
*/
static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
{
struct v4l2_ctrl *ctrl = sensor->exposure;
int max;
max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
+ sensor->vblank->val
- sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];
ctrl->maximum = max;
if (ctrl->default_value > max)
ctrl->default_value = max;
if (ctrl->val > max)
ctrl->val = max;
if (ctrl->cur.val > max)
ctrl->cur.val = max;
}
/*
* Order matters.
*
* 1. Bits-per-pixel, descending.
* 2. Bits-per-pixel compressed, descending.
* 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
* orders must be defined.
*/
static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
{ V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
{ V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
{ V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
{ V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
{ V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
{ V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
{ V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
{ V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
{ V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
{ V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
{ V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
{ V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
{ V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
{ V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
{ V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
{ V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
};
const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
#define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
- (unsigned long)smiapp_csi_data_formats) \
/ sizeof(*smiapp_csi_data_formats))
static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int flip = 0;
if (sensor->hflip) {
if (sensor->hflip->val)
flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
if (sensor->vflip->val)
flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
}
flip ^= sensor->hvflip_inv_mask;
dev_dbg(&client->dev, "flip %d\n", flip);
return sensor->default_pixel_order ^ flip;
}
static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int csi_format_idx =
to_csi_format_idx(sensor->csi_format) & ~3;
unsigned int internal_csi_format_idx =
to_csi_format_idx(sensor->internal_csi_format) & ~3;
unsigned int pixel_order = smiapp_pixel_order(sensor);
sensor->mbus_frame_fmts =
sensor->default_mbus_frame_fmts << pixel_order;
sensor->csi_format =
&smiapp_csi_data_formats[csi_format_idx + pixel_order];
sensor->internal_csi_format =
&smiapp_csi_data_formats[internal_csi_format_idx
+ pixel_order];
BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
>= ARRAY_SIZE(smiapp_csi_data_formats));
BUG_ON(min(internal_csi_format_idx, csi_format_idx) < 0);
dev_dbg(&client->dev, "new pixel order %s\n",
pixel_order_str[pixel_order]);
}
static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct smiapp_sensor *sensor =
container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
->sensor;
u32 orient = 0;
int exposure;
int rval;
switch (ctrl->id) {
case V4L2_CID_ANALOGUE_GAIN:
return smiapp_write(
sensor,
SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
case V4L2_CID_EXPOSURE:
return smiapp_write(
sensor,
SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
case V4L2_CID_HFLIP:
case V4L2_CID_VFLIP:
if (sensor->streaming)
return -EBUSY;
if (sensor->hflip->val)
orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
if (sensor->vflip->val)
orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
orient ^= sensor->hvflip_inv_mask;
rval = smiapp_write(sensor,
SMIAPP_REG_U8_IMAGE_ORIENTATION,
orient);
if (rval < 0)
return rval;
smiapp_update_mbus_formats(sensor);
return 0;
case V4L2_CID_VBLANK:
exposure = sensor->exposure->val;
__smiapp_update_exposure_limits(sensor);
if (exposure > sensor->exposure->maximum) {
sensor->exposure->val =
sensor->exposure->maximum;
rval = smiapp_set_ctrl(
sensor->exposure);
if (rval < 0)
return rval;
}
return smiapp_write(
sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
+ ctrl->val);
case V4L2_CID_HBLANK:
return smiapp_write(
sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
+ ctrl->val);
case V4L2_CID_LINK_FREQ:
if (sensor->streaming)
return -EBUSY;
return smiapp_pll_update(sensor);
default:
return -EINVAL;
}
}
static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
.s_ctrl = smiapp_set_ctrl,
};
static int smiapp_init_controls(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
struct v4l2_ctrl_config cfg;
int rval;
rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 7);
if (rval)
return rval;
sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
sensor->analog_gain = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN,
sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);
/* Exposure limits will be updated soon, use just something here. */
sensor->exposure = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_EXPOSURE, 0, 0, 1, 0);
sensor->hflip = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
sensor->vflip = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
sensor->vblank = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_VBLANK, 0, 1, 1, 0);
if (sensor->vblank)
sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
sensor->hblank = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_HBLANK, 0, 1, 1, 0);
if (sensor->hblank)
sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
sensor->pixel_rate_parray = v4l2_ctrl_new_std(
&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
if (sensor->pixel_array->ctrl_handler.error) {
dev_err(&client->dev,
"pixel array controls initialization failed (%d)\n",
sensor->pixel_array->ctrl_handler.error);
rval = sensor->pixel_array->ctrl_handler.error;
goto error;
}
sensor->pixel_array->sd.ctrl_handler =
&sensor->pixel_array->ctrl_handler;
v4l2_ctrl_cluster(2, &sensor->hflip);
rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
if (rval)
goto error;
sensor->src->ctrl_handler.lock = &sensor->mutex;
memset(&cfg, 0, sizeof(cfg));
cfg.ops = &smiapp_ctrl_ops;
cfg.id = V4L2_CID_LINK_FREQ;
cfg.type = V4L2_CTRL_TYPE_INTEGER_MENU;
while (sensor->platform_data->op_sys_clock[cfg.max + 1])
cfg.max++;
cfg.qmenu_int = sensor->platform_data->op_sys_clock;
sensor->link_freq = v4l2_ctrl_new_custom(
&sensor->src->ctrl_handler, &cfg, NULL);
sensor->pixel_rate_csi = v4l2_ctrl_new_std(
&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
V4L2_CID_PIXEL_RATE, 0, 0, 1, 0);
if (sensor->src->ctrl_handler.error) {
dev_err(&client->dev,
"src controls initialization failed (%d)\n",
sensor->src->ctrl_handler.error);
rval = sensor->src->ctrl_handler.error;
goto error;
}
sensor->src->sd.ctrl_handler =
&sensor->src->ctrl_handler;
return 0;
error:
v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler);
v4l2_ctrl_handler_free(&sensor->src->ctrl_handler);
return rval;
}
static void smiapp_free_controls(struct smiapp_sensor *sensor)
{
unsigned int i;
for (i = 0; i < sensor->ssds_used; i++)
v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
}
static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
unsigned int n)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int i;
u32 val;
int rval;
for (i = 0; i < n; i++) {
rval = smiapp_read(
sensor, smiapp_reg_limits[limit[i]].addr, &val);
if (rval)
return rval;
sensor->limits[limit[i]] = val;
dev_dbg(&client->dev, "0x%8.8x \"%s\" = %d, 0x%x\n",
smiapp_reg_limits[limit[i]].addr,
smiapp_reg_limits[limit[i]].what, val, val);
}
return 0;
}
static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
{
unsigned int i;
int rval;
for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
rval = smiapp_get_limits(sensor, &i, 1);
if (rval < 0)
return rval;
}
if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
return 0;
}
static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
static u32 const limits[] = {
SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
};
static u32 const limits_replace[] = {
SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
};
unsigned int i;
int rval;
if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
SMIAPP_BINNING_CAPABILITY_NO) {
for (i = 0; i < ARRAY_SIZE(limits); i++)
sensor->limits[limits[i]] =
sensor->limits[limits_replace[i]];
return 0;
}
rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
if (rval < 0)
return rval;
/*
* Sanity check whether the binning limits are valid. If not,
* use the non-binning ones.
*/
if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
&& sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
&& sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
return 0;
for (i = 0; i < ARRAY_SIZE(limits); i++) {
dev_dbg(&client->dev,
"replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
smiapp_reg_limits[limits[i]].addr,
smiapp_reg_limits[limits[i]].what,
sensor->limits[limits_replace[i]],
sensor->limits[limits_replace[i]]);
sensor->limits[limits[i]] =
sensor->limits[limits_replace[i]];
}
return 0;
}
static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int type, n;
unsigned int i, pixel_order;
int rval;
rval = smiapp_read(
sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
if (rval)
return rval;
dev_dbg(&client->dev, "data_format_model_type %d\n", type);
rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
&pixel_order);
if (rval)
return rval;
if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
return -EINVAL;
}
dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
pixel_order_str[pixel_order]);
switch (type) {
case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
break;
case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
break;
default:
return -EINVAL;
}
sensor->default_pixel_order = pixel_order;
sensor->mbus_frame_fmts = 0;
for (i = 0; i < n; i++) {
unsigned int fmt, j;
rval = smiapp_read(
sensor,
SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
if (rval)
return rval;
dev_dbg(&client->dev, "bpp %d, compressed %d\n",
fmt >> 8, (u8)fmt);
for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
const struct smiapp_csi_data_format *f =
&smiapp_csi_data_formats[j];
if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
continue;
if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
continue;
dev_dbg(&client->dev, "jolly good! %d\n", j);
sensor->default_mbus_frame_fmts |= 1 << j;
if (!sensor->csi_format) {
sensor->csi_format = f;
sensor->internal_csi_format = f;
}
}
}
if (!sensor->csi_format) {
dev_err(&client->dev, "no supported mbus code found\n");
return -EINVAL;
}
smiapp_update_mbus_formats(sensor);
return 0;
}
static void smiapp_update_blanking(struct smiapp_sensor *sensor)
{
struct v4l2_ctrl *vblank = sensor->vblank;
struct v4l2_ctrl *hblank = sensor->hblank;
vblank->minimum =
max_t(int,
sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
vblank->maximum =
sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
vblank->val = clamp_t(int, vblank->val,
vblank->minimum, vblank->maximum);
vblank->default_value = vblank->minimum;
vblank->val = vblank->val;
vblank->cur.val = vblank->val;
hblank->minimum =
max_t(int,
sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
hblank->maximum =
sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
hblank->val = clamp_t(int, hblank->val,
hblank->minimum, hblank->maximum);
hblank->default_value = hblank->minimum;
hblank->val = hblank->val;
hblank->cur.val = hblank->val;
__smiapp_update_exposure_limits(sensor);
}
static int smiapp_update_mode(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int binning_mode;
int rval;
dev_dbg(&client->dev, "frame size: %dx%d\n",
sensor->src->crop[SMIAPP_PAD_SRC].width,
sensor->src->crop[SMIAPP_PAD_SRC].height);
dev_dbg(&client->dev, "csi format width: %d\n",
sensor->csi_format->width);
/* Binning has to be set up here; it affects limits */
if (sensor->binning_horizontal == 1 &&
sensor->binning_vertical == 1) {
binning_mode = 0;
} else {
u8 binning_type =
(sensor->binning_horizontal << 4)
| sensor->binning_vertical;
rval = smiapp_write(
sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
if (rval < 0)
return rval;
binning_mode = 1;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
if (rval < 0)
return rval;
/* Get updated limits due to binning */
rval = smiapp_get_limits_binning(sensor);
if (rval < 0)
return rval;
rval = smiapp_pll_update(sensor);
if (rval < 0)
return rval;
/* Output from pixel array, including blanking */
smiapp_update_blanking(sensor);
dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
sensor->pll.vt_pix_clk_freq_hz /
((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
+ sensor->hblank->val) *
(sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
+ sensor->vblank->val) / 100));
return 0;
}
/*
*
* SMIA++ NVM handling
*
*/
static int smiapp_read_nvm(struct smiapp_sensor *sensor,
unsigned char *nvm)
{
u32 i, s, p, np, v;
int rval = 0, rval2;
np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
for (p = 0; p < np; p++) {
rval = smiapp_write(
sensor,
SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
if (rval)
goto out;
rval = smiapp_write(sensor,
SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
if (rval)
goto out;
for (i = 0; i < 1000; i++) {
rval = smiapp_read(
sensor,
SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);
if (rval)
goto out;
if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
break;
if (--i == 0) {
rval = -ETIMEDOUT;
goto out;
}
}
for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
rval = smiapp_read(
sensor,
SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
&v);
if (rval)
goto out;
*nvm++ = v;
}
}
out:
rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
if (rval < 0)
return rval;
else
return rval2;
}
/*
*
* SMIA++ CCI address control
*
*/
static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
u32 val;
client->addr = sensor->platform_data->i2c_addr_dfl;
rval = smiapp_write(sensor,
SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
sensor->platform_data->i2c_addr_alt << 1);
if (rval)
return rval;
client->addr = sensor->platform_data->i2c_addr_alt;
/* verify addr change went ok */
rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
if (rval)
return rval;
if (val != sensor->platform_data->i2c_addr_alt << 1)
return -ENODEV;
return 0;
}
/*
*
* SMIA++ Mode Control
*
*/
static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
{
struct smiapp_flash_strobe_parms *strobe_setup;
unsigned int ext_freq = sensor->platform_data->ext_clk;
u32 tmp;
u32 strobe_adjustment;
u32 strobe_width_high_rs;
int rval;
strobe_setup = sensor->platform_data->strobe_setup;
/*
* How to calculate registers related to strobe length. Please
* do not change, or if you do at least know what you're
* doing. :-)
*
* Sakari Ailus <sakari.ailus@maxwell.research.nokia.com> 2010-10-25
*
* flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
* / EXTCLK freq [Hz]) * flash_strobe_adjustment
*
* tFlash_strobe_width_ctrl E N, [1 - 0xffff]
* flash_strobe_adjustment E N, [1 - 0xff]
*
* The formula above is written as below to keep it on one
* line:
*
* l / 10^6 = w / e * a
*
* Let's mark w * a by x:
*
* x = w * a
*
* Thus, we get:
*
* x = l * e / 10^6
*
* The strobe width must be at least as long as requested,
* thus rounding upwards is needed.
*
* x = (l * e + 10^6 - 1) / 10^6
* -----------------------------
*
* Maximum possible accuracy is wanted at all times. Thus keep
* a as small as possible.
*
* Calculate a, assuming maximum w, with rounding upwards:
*
* a = (x + (2^16 - 1) - 1) / (2^16 - 1)
* -------------------------------------
*
* Thus, we also get w, with that a, with rounding upwards:
*
* w = (x + a - 1) / a
* -------------------
*
* To get limits:
*
* x E [1, (2^16 - 1) * (2^8 - 1)]
*
* Substituting maximum x to the original formula (with rounding),
* the maximum l is thus
*
* (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
*
* l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
* --------------------------------------------------
*
* flash_strobe_length must be clamped between 1 and
* (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
*
* Then,
*
* flash_strobe_adjustment = ((flash_strobe_length *
* EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
*
* tFlash_strobe_width_ctrl = ((flash_strobe_length *
* EXTCLK freq + 10^6 - 1) / 10^6 +
* flash_strobe_adjustment - 1) / flash_strobe_adjustment
*/
tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1000000 + 1, ext_freq);
strobe_setup->strobe_width_high_us =
clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1000000 - 1), 1000000ULL);
strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
strobe_adjustment;
rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
strobe_setup->mode);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
strobe_adjustment);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
strobe_width_high_rs);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
strobe_setup->strobe_delay);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
strobe_setup->stobe_start_point);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
strobe_setup->trigger);
out:
sensor->platform_data->strobe_setup->trigger = 0;
return rval;
}
/* -----------------------------------------------------------------------------
* Power management
*/
static int smiapp_power_on(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
unsigned int sleep;
int rval;
rval = regulator_enable(sensor->vana);
if (rval) {
dev_err(&client->dev, "failed to enable vana regulator\n");
return rval;
}
usleep_range(1000, 1000);
if (sensor->platform_data->set_xclk)
rval = sensor->platform_data->set_xclk(
&sensor->src->sd, sensor->platform_data->ext_clk);
else
rval = clk_enable(sensor->ext_clk);
if (rval < 0) {
dev_dbg(&client->dev, "failed to set xclk\n");
goto out_xclk_fail;
}
usleep_range(1000, 1000);
if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
gpio_set_value(sensor->platform_data->xshutdown, 1);
sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk);
usleep_range(sleep, sleep);
/*
* Failures to respond to the address change command have been noticed.
* Those failures seem to be caused by the sensor requiring a longer
* boot time than advertised. An additional 10ms delay seems to work
* around the issue, but the SMIA++ I2C write retry hack makes the delay
* unnecessary. The failures need to be investigated to find a proper
* fix, and a delay will likely need to be added here if the I2C write
* retry hack is reverted before the root cause of the boot time issue
* is found.
*/
if (sensor->platform_data->i2c_addr_alt) {
rval = smiapp_change_cci_addr(sensor);
if (rval) {
dev_err(&client->dev, "cci address change error\n");
goto out_cci_addr_fail;
}
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
SMIAPP_SOFTWARE_RESET);
if (rval < 0) {
dev_err(&client->dev, "software reset failed\n");
goto out_cci_addr_fail;
}
if (sensor->platform_data->i2c_addr_alt) {
rval = smiapp_change_cci_addr(sensor);
if (rval) {
dev_err(&client->dev, "cci address change error\n");
goto out_cci_addr_fail;
}
}
rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
if (rval) {
dev_err(&client->dev, "compression mode set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(
sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
sensor->platform_data->ext_clk / (1000000 / (1 << 8)));
if (rval) {
dev_err(&client->dev, "extclk frequency set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
sensor->platform_data->lanes - 1);
if (rval) {
dev_err(&client->dev, "csi lane mode set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
if (rval) {
dev_err(&client->dev, "fast standby set failed\n");
goto out_cci_addr_fail;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
sensor->platform_data->csi_signalling_mode);
if (rval) {
dev_err(&client->dev, "csi signalling mode set failed\n");
goto out_cci_addr_fail;
}
/* DPHY control done by sensor based on requested link rate */
rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
SMIAPP_DPHY_CTRL_UI);
if (rval < 0)
return rval;
rval = smiapp_call_quirk(sensor, post_poweron);
if (rval) {
dev_err(&client->dev, "post_poweron quirks failed\n");
goto out_cci_addr_fail;
}
/* Are we still initialising...? If yes, return here. */
if (!sensor->pixel_array)
return 0;
rval = v4l2_ctrl_handler_setup(
&sensor->pixel_array->ctrl_handler);
if (rval)
goto out_cci_addr_fail;
rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
if (rval)
goto out_cci_addr_fail;
mutex_lock(&sensor->mutex);
rval = smiapp_update_mode(sensor);
mutex_unlock(&sensor->mutex);
if (rval < 0)
goto out_cci_addr_fail;
return 0;
out_cci_addr_fail:
if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
gpio_set_value(sensor->platform_data->xshutdown, 0);
if (sensor->platform_data->set_xclk)
sensor->platform_data->set_xclk(&sensor->src->sd, 0);
else
clk_disable(sensor->ext_clk);
out_xclk_fail:
regulator_disable(sensor->vana);
return rval;
}
static void smiapp_power_off(struct smiapp_sensor *sensor)
{
/*
* Currently power/clock to lens are enable/disabled separately
* but they are essentially the same signals. So if the sensor is
* powered off while the lens is powered on the sensor does not
* really see a power off and next time the cci address change
* will fail. So do a soft reset explicitly here.
*/
if (sensor->platform_data->i2c_addr_alt)
smiapp_write(sensor,
SMIAPP_REG_U8_SOFTWARE_RESET,
SMIAPP_SOFTWARE_RESET);
if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
gpio_set_value(sensor->platform_data->xshutdown, 0);
if (sensor->platform_data->set_xclk)
sensor->platform_data->set_xclk(&sensor->src->sd, 0);
else
clk_disable(sensor->ext_clk);
usleep_range(5000, 5000);
regulator_disable(sensor->vana);
sensor->streaming = 0;
}
static int smiapp_set_power(struct v4l2_subdev *subdev, int on)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int ret = 0;
mutex_lock(&sensor->power_mutex);
/*
* If the power count is modified from 0 to != 0 or from != 0
* to 0, update the power state.
*/
if (!sensor->power_count == !on)
goto out;
if (on) {
/* Power on and perform initialisation. */
ret = smiapp_power_on(sensor);
if (ret < 0)
goto out;
} else {
smiapp_power_off(sensor);
}
/* Update the power count. */
sensor->power_count += on ? 1 : -1;
WARN_ON(sensor->power_count < 0);
out:
mutex_unlock(&sensor->power_mutex);
return ret;
}
/* -----------------------------------------------------------------------------
* Video stream management
*/
static int smiapp_start_streaming(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
mutex_lock(&sensor->mutex);
rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
(sensor->csi_format->width << 8) |
sensor->csi_format->compressed);
if (rval)
goto out;
rval = smiapp_pll_configure(sensor);
if (rval)
goto out;
/* Analog crop start coordinates */
rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
if (rval < 0)
goto out;
/* Analog crop end coordinates */
rval = smiapp_write(
sensor, SMIAPP_REG_U16_X_ADDR_END,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_Y_ADDR_END,
sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
if (rval < 0)
goto out;
/*
* Output from pixel array, including blanking, is set using
* controls below. No need to set here.
*/
/* Digital crop */
if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
== SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
sensor->scaler->crop[SMIAPP_PAD_SINK].left);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
sensor->scaler->crop[SMIAPP_PAD_SINK].top);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
sensor->scaler->crop[SMIAPP_PAD_SINK].width);
if (rval < 0)
goto out;
rval = smiapp_write(
sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
sensor->scaler->crop[SMIAPP_PAD_SINK].height);
if (rval < 0)
goto out;
}
/* Scaling */
if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
!= SMIAPP_SCALING_CAPABILITY_NONE) {
rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
sensor->scaling_mode);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
sensor->scale_m);
if (rval < 0)
goto out;
}
/* Output size from sensor */
rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
sensor->src->crop[SMIAPP_PAD_SRC].width);
if (rval < 0)
goto out;
rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
sensor->src->crop[SMIAPP_PAD_SRC].height);
if (rval < 0)
goto out;
if ((sensor->flash_capability &
(SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
sensor->platform_data->strobe_setup != NULL &&
sensor->platform_data->strobe_setup->trigger != 0) {
rval = smiapp_setup_flash_strobe(sensor);
if (rval)
goto out;
}
rval = smiapp_call_quirk(sensor, pre_streamon);
if (rval) {
dev_err(&client->dev, "pre_streamon quirks failed\n");
goto out;
}
rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
SMIAPP_MODE_SELECT_STREAMING);
out:
mutex_unlock(&sensor->mutex);
return rval;
}
static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
int rval;
mutex_lock(&sensor->mutex);
rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
if (rval)
goto out;
rval = smiapp_call_quirk(sensor, post_streamoff);
if (rval)
dev_err(&client->dev, "post_streamoff quirks failed\n");
out:
mutex_unlock(&sensor->mutex);
return rval;
}
/* -----------------------------------------------------------------------------
* V4L2 subdev video operations
*/
static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
if (sensor->streaming == enable)
return 0;
if (enable) {
sensor->streaming = 1;
rval = smiapp_start_streaming(sensor);
if (rval < 0)
sensor->streaming = 0;
} else {
rval = smiapp_stop_streaming(sensor);
sensor->streaming = 0;
}
return rval;
}
static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_mbus_code_enum *code)
{
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int i;
int idx = -1;
int rval = -EINVAL;
mutex_lock(&sensor->mutex);
dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
subdev->name, code->pad, code->index);
if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
if (code->index)
goto out;
code->code = sensor->internal_csi_format->code;
rval = 0;
goto out;
}
for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
if (sensor->mbus_frame_fmts & (1 << i))
idx++;
if (idx == code->index) {
code->code = smiapp_csi_data_formats[i].code;
dev_err(&client->dev, "found index %d, i %d, code %x\n",
code->index, i, code->code);
rval = 0;
break;
}
}
out:
mutex_unlock(&sensor->mutex);
return rval;
}
static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
unsigned int pad)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
return sensor->csi_format->code;
else
return sensor->internal_csi_format->code;
}
static int __smiapp_get_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_format *fmt)
{
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad);
} else {
struct v4l2_rect *r;
if (fmt->pad == ssd->source_pad)
r = &ssd->crop[ssd->source_pad];
else
r = &ssd->sink_fmt;
fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
fmt->format.width = r->width;
fmt->format.height = r->height;
}
return 0;
}
static int smiapp_get_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_format *fmt)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
mutex_lock(&sensor->mutex);
rval = __smiapp_get_format(subdev, fh, fmt);
mutex_unlock(&sensor->mutex);
return rval;
}
static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_rect **crops,
struct v4l2_rect **comps, int which)
{
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
unsigned int i;
if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (crops)
for (i = 0; i < subdev->entity.num_pads; i++)
crops[i] = &ssd->crop[i];
if (comps)
*comps = &ssd->compose;
} else {
if (crops) {
for (i = 0; i < subdev->entity.num_pads; i++) {
crops[i] = v4l2_subdev_get_try_crop(fh, i);
BUG_ON(!crops[i]);
}
}
if (comps) {
*comps = v4l2_subdev_get_try_compose(fh,
SMIAPP_PAD_SINK);
BUG_ON(!*comps);
}
}
}
/* Changes require propagation only on sink pad. */
static void smiapp_propagate(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh, int which,
int target)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *comp, *crops[SMIAPP_PADS];
smiapp_get_crop_compose(subdev, fh, crops, &comp, which);
switch (target) {
case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
comp->width = crops[SMIAPP_PAD_SINK]->width;
comp->height = crops[SMIAPP_PAD_SINK]->height;
if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (ssd == sensor->scaler) {
sensor->scale_m =
sensor->limits[
SMIAPP_LIMIT_SCALER_N_MIN];
sensor->scaling_mode =
SMIAPP_SCALING_MODE_NONE;
} else if (ssd == sensor->binner) {
sensor->binning_horizontal = 1;
sensor->binning_vertical = 1;
}
}
/* Fall through */
case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
*crops[SMIAPP_PAD_SRC] = *comp;
break;
default:
BUG();
}
}
static const struct smiapp_csi_data_format
*smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
{
const struct smiapp_csi_data_format *csi_format = sensor->csi_format;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
if (sensor->mbus_frame_fmts & (1 << i)
&& smiapp_csi_data_formats[i].code == code)
return &smiapp_csi_data_formats[i];
}
return csi_format;
}
static int smiapp_set_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_format *fmt)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *crops[SMIAPP_PADS];
mutex_lock(&sensor->mutex);
/*
* Media bus code is changeable on src subdev's source pad. On
* other source pads we just get format here.
*/
if (fmt->pad == ssd->source_pad) {
u32 code = fmt->format.code;
int rval = __smiapp_get_format(subdev, fh, fmt);
if (!rval && subdev == &sensor->src->sd) {
const struct smiapp_csi_data_format *csi_format =
smiapp_validate_csi_data_format(sensor, code);
if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
sensor->csi_format = csi_format;
fmt->format.code = csi_format->code;
}
mutex_unlock(&sensor->mutex);
return rval;
}
/* Sink pad. Width and height are changeable here. */
fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
fmt->format.width &= ~1;
fmt->format.height &= ~1;
fmt->format.width =
clamp(fmt->format.width,
sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
fmt->format.height =
clamp(fmt->format.height,
sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);
smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which);
crops[ssd->sink_pad]->left = 0;
crops[ssd->sink_pad]->top = 0;
crops[ssd->sink_pad]->width = fmt->format.width;
crops[ssd->sink_pad]->height = fmt->format.height;
if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
ssd->sink_fmt = *crops[ssd->sink_pad];
smiapp_propagate(subdev, fh, fmt->which,
V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL);
mutex_unlock(&sensor->mutex);
return 0;
}
/*
* Calculate goodness of scaled image size compared to expected image
* size and flags provided.
*/
#define SCALING_GOODNESS 100000
#define SCALING_GOODNESS_EXTREME 100000000
static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
int h, int ask_h, u32 flags)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
int val = 0;
w &= ~1;
ask_w &= ~1;
h &= ~1;
ask_h &= ~1;
if (flags & V4L2_SUBDEV_SEL_FLAG_SIZE_GE) {
if (w < ask_w)
val -= SCALING_GOODNESS;
if (h < ask_h)
val -= SCALING_GOODNESS;
}
if (flags & V4L2_SUBDEV_SEL_FLAG_SIZE_LE) {
if (w > ask_w)
val -= SCALING_GOODNESS;
if (h > ask_h)
val -= SCALING_GOODNESS;
}
val -= abs(w - ask_w);
val -= abs(h - ask_h);
if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
val -= SCALING_GOODNESS_EXTREME;
dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
w, ask_h, h, ask_h, val);
return val;
}
static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel,
struct v4l2_rect **crops,
struct v4l2_rect *comp)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int i;
unsigned int binh = 1, binv = 1;
unsigned int best = scaling_goodness(
subdev,
crops[SMIAPP_PAD_SINK]->width, sel->r.width,
crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
for (i = 0; i < sensor->nbinning_subtypes; i++) {
int this = scaling_goodness(
subdev,
crops[SMIAPP_PAD_SINK]->width
/ sensor->binning_subtypes[i].horizontal,
sel->r.width,
crops[SMIAPP_PAD_SINK]->height
/ sensor->binning_subtypes[i].vertical,
sel->r.height, sel->flags);
if (this > best) {
binh = sensor->binning_subtypes[i].horizontal;
binv = sensor->binning_subtypes[i].vertical;
best = this;
}
}
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sensor->binning_vertical = binv;
sensor->binning_horizontal = binh;
}
sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
}
/*
* Calculate best scaling ratio and mode for given output resolution.
*
* Try all of these: horizontal ratio, vertical ratio and smallest
* size possible (horizontally).
*
* Also try whether horizontal scaler or full scaler gives a better
* result.
*/
static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel,
struct v4l2_rect **crops,
struct v4l2_rect *comp)
{
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
u32 min, max, a, b, max_m;
u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
u32 try[4];
u32 ntry = 0;
unsigned int i;
int best = INT_MIN;
sel->r.width = min_t(unsigned int, sel->r.width,
crops[SMIAPP_PAD_SINK]->width);
sel->r.height = min_t(unsigned int, sel->r.height,
crops[SMIAPP_PAD_SINK]->height);
a = crops[SMIAPP_PAD_SINK]->width
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
b = crops[SMIAPP_PAD_SINK]->height
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
max_m = crops[SMIAPP_PAD_SINK]->width
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
/ sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];
a = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
max(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
b = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
max(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
max_m = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX],
max(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN]));
dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
min = min(max_m, min(a, b));
max = min(max_m, max(a, b));
try[ntry] = min;
ntry++;
if (min != max) {
try[ntry] = max;
ntry++;
}
if (max != max_m) {
try[ntry] = min + 1;
ntry++;
if (min != max) {
try[ntry] = max + 1;
ntry++;
}
}
for (i = 0; i < ntry; i++) {
int this = scaling_goodness(
subdev,
crops[SMIAPP_PAD_SINK]->width
/ try[i]
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
sel->r.width,
crops[SMIAPP_PAD_SINK]->height,
sel->r.height,
sel->flags);
dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
if (this > best) {
scale_m = try[i];
mode = SMIAPP_SCALING_MODE_HORIZONTAL;
best = this;
}
if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
== SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
continue;
this = scaling_goodness(
subdev, crops[SMIAPP_PAD_SINK]->width
/ try[i]
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
sel->r.width,
crops[SMIAPP_PAD_SINK]->height
/ try[i]
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
sel->r.height,
sel->flags);
if (this > best) {
scale_m = try[i];
mode = SMIAPP_SCALING_MODE_BOTH;
best = this;
}
}
sel->r.width =
(crops[SMIAPP_PAD_SINK]->width
/ scale_m
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
if (mode == SMIAPP_SCALING_MODE_BOTH)
sel->r.height =
(crops[SMIAPP_PAD_SINK]->height
/ scale_m
* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
& ~1;
else
sel->r.height = crops[SMIAPP_PAD_SINK]->height;
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sensor->scale_m = scale_m;
sensor->scaling_mode = mode;
}
}
/* We're only called on source pads. This function sets scaling. */
static int smiapp_set_compose(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *comp, *crops[SMIAPP_PADS];
smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
sel->r.top = 0;
sel->r.left = 0;
if (ssd == sensor->binner)
smiapp_set_compose_binner(subdev, fh, sel, crops, comp);
else
smiapp_set_compose_scaler(subdev, fh, sel, crops, comp);
*comp = sel->r;
smiapp_propagate(subdev, fh, sel->which,
V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
return smiapp_update_mode(sensor);
return 0;
}
static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
/* We only implement crop in three places. */
switch (sel->target) {
case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
case V4L2_SUBDEV_SEL_TGT_CROP_BOUNDS:
if (ssd == sensor->pixel_array
&& sel->pad == SMIAPP_PA_PAD_SRC)
return 0;
if (ssd == sensor->src
&& sel->pad == SMIAPP_PAD_SRC)
return 0;
if (ssd == sensor->scaler
&& sel->pad == SMIAPP_PAD_SINK
&& sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
== SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
return 0;
return -EINVAL;
case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
case V4L2_SUBDEV_SEL_TGT_COMPOSE_BOUNDS:
if (sel->pad == ssd->source_pad)
return -EINVAL;
if (ssd == sensor->binner)
return 0;
if (ssd == sensor->scaler
&& sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
!= SMIAPP_SCALING_CAPABILITY_NONE)
return 0;
/* Fall through */
default:
return -EINVAL;
}
}
static int smiapp_set_crop(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
struct v4l2_rect _r;
smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (sel->pad == ssd->sink_pad)
src_size = &ssd->sink_fmt;
else
src_size = &ssd->compose;
} else {
if (sel->pad == ssd->sink_pad) {
_r.left = 0;
_r.top = 0;
_r.width = v4l2_subdev_get_try_format(fh, sel->pad)
->width;
_r.height = v4l2_subdev_get_try_format(fh, sel->pad)
->height;
src_size = &_r;
} else {
src_size =
v4l2_subdev_get_try_compose(
fh, ssd->sink_pad);
}
}
if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
sel->r.left = 0;
sel->r.top = 0;
}
sel->r.width = min(sel->r.width, src_size->width);
sel->r.height = min(sel->r.height, src_size->height);
sel->r.left = min(sel->r.left, src_size->width - sel->r.width);
sel->r.top = min(sel->r.top, src_size->height - sel->r.height);
*crops[sel->pad] = sel->r;
if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
smiapp_propagate(subdev, fh, sel->which,
V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL);
return 0;
}
static int __smiapp_get_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
struct v4l2_rect *comp, *crops[SMIAPP_PADS];
struct v4l2_rect sink_fmt;
int ret;
ret = __smiapp_sel_supported(subdev, sel);
if (ret)
return ret;
smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
sink_fmt = ssd->sink_fmt;
} else {
struct v4l2_mbus_framefmt *fmt =
v4l2_subdev_get_try_format(fh, ssd->sink_pad);
sink_fmt.left = 0;
sink_fmt.top = 0;
sink_fmt.width = fmt->width;
sink_fmt.height = fmt->height;
}
switch (sel->target) {
case V4L2_SUBDEV_SEL_TGT_CROP_BOUNDS:
if (ssd == sensor->pixel_array) {
sel->r.width =
sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
sel->r.height =
sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
} else if (sel->pad == ssd->sink_pad) {
sel->r = sink_fmt;
} else {
sel->r = *comp;
}
break;
case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
case V4L2_SUBDEV_SEL_TGT_COMPOSE_BOUNDS:
sel->r = *crops[sel->pad];
break;
case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
sel->r = *comp;
break;
}
return 0;
}
static int smiapp_get_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
mutex_lock(&sensor->mutex);
rval = __smiapp_get_selection(subdev, fh, sel);
mutex_unlock(&sensor->mutex);
return rval;
}
static int smiapp_set_selection(struct v4l2_subdev *subdev,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_selection *sel)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int ret;
ret = __smiapp_sel_supported(subdev, sel);
if (ret)
return ret;
mutex_lock(&sensor->mutex);
sel->r.left = max(0, sel->r.left & ~1);
sel->r.top = max(0, sel->r.top & ~1);
sel->r.width = max(0, SMIAPP_ALIGN_DIM(sel->r.width, sel->flags));
sel->r.height = max(0, SMIAPP_ALIGN_DIM(sel->r.height, sel->flags));
sel->r.width = max_t(unsigned int,
sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
sel->r.width);
sel->r.height = max_t(unsigned int,
sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
sel->r.height);
switch (sel->target) {
case V4L2_SUBDEV_SEL_TGT_CROP_ACTUAL:
ret = smiapp_set_crop(subdev, fh, sel);
break;
case V4L2_SUBDEV_SEL_TGT_COMPOSE_ACTUAL:
ret = smiapp_set_compose(subdev, fh, sel);
break;
default:
BUG();
}
mutex_unlock(&sensor->mutex);
return ret;
}
static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
*frames = sensor->frame_skip;
return 0;
}
/* -----------------------------------------------------------------------------
* sysfs attributes
*/
static ssize_t
smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int nbytes;
if (!sensor->dev_init_done)
return -EBUSY;
if (!sensor->nvm_size) {
/* NVM not read yet - read it now */
sensor->nvm_size = sensor->platform_data->nvm_size;
if (smiapp_set_power(subdev, 1) < 0)
return -ENODEV;
if (smiapp_read_nvm(sensor, sensor->nvm)) {
dev_err(&client->dev, "nvm read failed\n");
return -ENODEV;
}
smiapp_set_power(subdev, 0);
}
/*
* NVM is still way below a PAGE_SIZE, so we can safely
* assume this for now.
*/
nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
memcpy(buf, sensor->nvm, nbytes);
return nbytes;
}
static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
/* -----------------------------------------------------------------------------
* V4L2 subdev core operations
*/
static int smiapp_identify_module(struct v4l2_subdev *subdev)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_module_info *minfo = &sensor->minfo;
unsigned int i;
int rval = 0;
minfo->name = SMIAPP_NAME;
/* Module info */
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
&minfo->manufacturer_id);
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
&minfo->model_id);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
&minfo->revision_number_major);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
&minfo->revision_number_minor);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_MODULE_DATE_YEAR,
&minfo->module_year);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_MODULE_DATE_MONTH,
&minfo->module_month);
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
&minfo->module_day);
/* Sensor info */
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
&minfo->sensor_manufacturer_id);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U16_SENSOR_MODEL_ID,
&minfo->sensor_model_id);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
&minfo->sensor_revision_number);
if (!rval)
rval = smiapp_read_8only(sensor,
SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
&minfo->sensor_firmware_version);
/* SMIA */
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
&minfo->smia_version);
if (!rval)
rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
&minfo->smiapp_version);
if (rval) {
dev_err(&client->dev, "sensor detection failed\n");
return -ENODEV;
}
dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
minfo->manufacturer_id, minfo->model_id);
dev_dbg(&client->dev,
"module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
minfo->revision_number_major, minfo->revision_number_minor,
minfo->module_year, minfo->module_month, minfo->module_day);
dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
minfo->sensor_manufacturer_id, minfo->sensor_model_id);
dev_dbg(&client->dev,
"sensor revision 0x%2.2x firmware version 0x%2.2x\n",
minfo->sensor_revision_number, minfo->sensor_firmware_version);
dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
minfo->smia_version, minfo->smiapp_version);
/*
* Some modules have bad data in the lvalues below. Hope the
* rvalues have better stuff. The lvalues are module
* parameters whereas the rvalues are sensor parameters.
*/
if (!minfo->manufacturer_id && !minfo->model_id) {
minfo->manufacturer_id = minfo->sensor_manufacturer_id;
minfo->model_id = minfo->sensor_model_id;
minfo->revision_number_major = minfo->sensor_revision_number;
}
for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
if (smiapp_module_idents[i].manufacturer_id
!= minfo->manufacturer_id)
continue;
if (smiapp_module_idents[i].model_id != minfo->model_id)
continue;
if (smiapp_module_idents[i].flags
& SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
if (smiapp_module_idents[i].revision_number_major
< minfo->revision_number_major)
continue;
} else {
if (smiapp_module_idents[i].revision_number_major
!= minfo->revision_number_major)
continue;
}
minfo->name = smiapp_module_idents[i].name;
minfo->quirk = smiapp_module_idents[i].quirk;
break;
}
if (i >= ARRAY_SIZE(smiapp_module_idents))
dev_warn(&client->dev,
"no quirks for this module; let's hope it's fully compliant\n");
dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
minfo->name, minfo->manufacturer_id, minfo->model_id,
minfo->revision_number_major);
strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name));
return 0;
}
static const struct v4l2_subdev_ops smiapp_ops;
static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
static const struct media_entity_operations smiapp_entity_ops;
static int smiapp_registered(struct v4l2_subdev *subdev)
{
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
struct i2c_client *client = v4l2_get_subdevdata(subdev);
struct smiapp_subdev *last = NULL;
u32 tmp;
unsigned int i;
int rval;
sensor->vana = regulator_get(&client->dev, "VANA");
if (IS_ERR(sensor->vana)) {
dev_err(&client->dev, "could not get regulator for vana\n");
return -ENODEV;
}
if (!sensor->platform_data->set_xclk) {
sensor->ext_clk = clk_get(&client->dev,
sensor->platform_data->ext_clk_name);
if (IS_ERR(sensor->ext_clk)) {
dev_err(&client->dev, "could not get clock %s\n",
sensor->platform_data->ext_clk_name);
rval = -ENODEV;
goto out_clk_get;
}
rval = clk_set_rate(sensor->ext_clk,
sensor->platform_data->ext_clk);
if (rval < 0) {
dev_err(&client->dev,
"unable to set clock %s freq to %u\n",
sensor->platform_data->ext_clk_name,
sensor->platform_data->ext_clk);
rval = -ENODEV;
goto out_clk_set_rate;
}
}
if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) {
if (gpio_request_one(sensor->platform_data->xshutdown, 0,
"SMIA++ xshutdown") != 0) {
dev_err(&client->dev,
"unable to acquire reset gpio %d\n",
sensor->platform_data->xshutdown);
rval = -ENODEV;
goto out_clk_set_rate;
}
}
rval = smiapp_power_on(sensor);
if (rval) {
rval = -ENODEV;
goto out_smiapp_power_on;
}
rval = smiapp_identify_module(subdev);
if (rval) {
rval = -ENODEV;
goto out_power_off;
}
rval = smiapp_get_all_limits(sensor);
if (rval) {
rval = -ENODEV;
goto out_power_off;
}
/*
* Handle Sensor Module orientation on the board.
*
* The application of H-FLIP and V-FLIP on the sensor is modified by
* the sensor orientation on the board.
*
* For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
* both H-FLIP and V-FLIP for normal operation which also implies
* that a set/unset operation for user space HFLIP and VFLIP v4l2
* controls will need to be internally inverted.
*
* Rotation also changes the bayer pattern.
*/
if (sensor->platform_data->module_board_orient ==
SMIAPP_MODULE_BOARD_ORIENT_180)
sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
SMIAPP_IMAGE_ORIENTATION_VFLIP;
rval = smiapp_get_mbus_formats(sensor);
if (rval) {
rval = -ENODEV;
goto out_power_off;
}
if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
u32 val;
rval = smiapp_read(sensor,
SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
if (rval < 0) {
rval = -ENODEV;
goto out_power_off;
}
sensor->nbinning_subtypes = min_t(u8, val,
SMIAPP_BINNING_SUBTYPES);
for (i = 0; i < sensor->nbinning_subtypes; i++) {
rval = smiapp_read(
sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
if (rval < 0) {
rval = -ENODEV;
goto out_power_off;
}
sensor->binning_subtypes[i] =
*(struct smiapp_binning_subtype *)&val;
dev_dbg(&client->dev, "binning %xx%x\n",
sensor->binning_subtypes[i].horizontal,
sensor->binning_subtypes[i].vertical);
}
}
sensor->binning_horizontal = 1;
sensor->binning_vertical = 1;
/* SMIA++ NVM initialization - it will be read from the sensor
* when it is first requested by userspace.
*/
if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) {
sensor->nvm = kzalloc(sensor->platform_data->nvm_size,
GFP_KERNEL);
if (sensor->nvm == NULL) {
dev_err(&client->dev, "nvm buf allocation failed\n");
rval = -ENOMEM;
goto out_power_off;
}
if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
dev_err(&client->dev, "sysfs nvm entry failed\n");
rval = -EBUSY;
goto out_power_off;
}
}
rval = smiapp_call_quirk(sensor, limits);
if (rval) {
dev_err(&client->dev, "limits quirks failed\n");
goto out_nvm_release;
}
/* We consider this as profile 0 sensor if any of these are zero. */
if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
!sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
!sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
!sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
} else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
!= SMIAPP_SCALING_CAPABILITY_NONE) {
if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
== SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
else
sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
sensor->scaler = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
} else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
== SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
sensor->scaler = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
}
sensor->binner = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
sensor->ssds_used++;
sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
for (i = 0; i < SMIAPP_SUBDEVS; i++) {
struct {
struct smiapp_subdev *ssd;
char *name;
} const __this[] = {
{ sensor->scaler, "scaler", },
{ sensor->binner, "binner", },
{ sensor->pixel_array, "pixel array", },
}, *_this = &__this[i];
struct smiapp_subdev *this = _this->ssd;
if (!this)
continue;
if (this != sensor->src)
v4l2_subdev_init(&this->sd, &smiapp_ops);
this->sensor = sensor;
if (this == sensor->pixel_array) {
this->npads = 1;
} else {
this->npads = 2;
this->source_pad = 1;
}
snprintf(this->sd.name,
sizeof(this->sd.name), "%s %s",
sensor->minfo.name, _this->name);
this->sink_fmt.width =
sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
this->sink_fmt.height =
sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
this->compose.width = this->sink_fmt.width;
this->compose.height = this->sink_fmt.height;
this->crop[this->source_pad] = this->compose;
this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE;
if (this != sensor->pixel_array) {
this->crop[this->sink_pad] = this->compose;
this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK;
}
this->sd.entity.ops = &smiapp_entity_ops;
if (last == NULL) {
last = this;
continue;
}
this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
this->sd.internal_ops = &smiapp_internal_ops;
this->sd.owner = NULL;
v4l2_set_subdevdata(&this->sd, client);
rval = media_entity_init(&this->sd.entity,
this->npads, this->pads, 0);
if (rval) {
dev_err(&client->dev,
"media_entity_init failed\n");
goto out_nvm_release;
}
rval = media_entity_create_link(&this->sd.entity,
this->source_pad,
&last->sd.entity,
last->sink_pad,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
if (rval) {
dev_err(&client->dev,
"media_entity_create_link failed\n");
goto out_nvm_release;
}
rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
&this->sd);
if (rval) {
dev_err(&client->dev,
"v4l2_device_register_subdev failed\n");
goto out_nvm_release;
}
last = this;
}
dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR;
/* final steps */
smiapp_read_frame_fmt(sensor);
rval = smiapp_init_controls(sensor);
if (rval < 0)
goto out_nvm_release;
rval = smiapp_update_mode(sensor);
if (rval) {
dev_err(&client->dev, "update mode failed\n");
goto out_nvm_release;
}
sensor->streaming = false;
sensor->dev_init_done = true;
/* check flash capability */
rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp);
sensor->flash_capability = tmp;
if (rval)
goto out_nvm_release;
smiapp_power_off(sensor);
return 0;
out_nvm_release:
device_remove_file(&client->dev, &dev_attr_nvm);
out_power_off:
kfree(sensor->nvm);
sensor->nvm = NULL;
smiapp_power_off(sensor);
out_smiapp_power_on:
if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
gpio_free(sensor->platform_data->xshutdown);
out_clk_set_rate:
clk_put(sensor->ext_clk);
sensor->ext_clk = NULL;
out_clk_get:
regulator_put(sensor->vana);
sensor->vana = NULL;
return rval;
}
static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
struct smiapp_sensor *sensor = ssd->sensor;
u32 mbus_code =
smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code;
unsigned int i;
mutex_lock(&sensor->mutex);
for (i = 0; i < ssd->npads; i++) {
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(fh, i);
struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i);
struct v4l2_rect *try_comp;
try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
try_fmt->code = mbus_code;
try_crop->top = 0;
try_crop->left = 0;
try_crop->width = try_fmt->width;
try_crop->height = try_fmt->height;
if (ssd != sensor->pixel_array)
continue;
try_comp = v4l2_subdev_get_try_compose(fh, i);
*try_comp = *try_crop;
}
mutex_unlock(&sensor->mutex);
return smiapp_set_power(sd, 1);
}
static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
return smiapp_set_power(sd, 0);
}
static const struct v4l2_subdev_video_ops smiapp_video_ops = {
.s_stream = smiapp_set_stream,
};
static const struct v4l2_subdev_core_ops smiapp_core_ops = {
.s_power = smiapp_set_power,
};
static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
.enum_mbus_code = smiapp_enum_mbus_code,
.get_fmt = smiapp_get_format,
.set_fmt = smiapp_set_format,
.get_selection = smiapp_get_selection,
.set_selection = smiapp_set_selection,
};
static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
.g_skip_frames = smiapp_get_skip_frames,
};
static const struct v4l2_subdev_ops smiapp_ops = {
.core = &smiapp_core_ops,
.video = &smiapp_video_ops,
.pad = &smiapp_pad_ops,
.sensor = &smiapp_sensor_ops,
};
static const struct media_entity_operations smiapp_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
.registered = smiapp_registered,
.open = smiapp_open,
.close = smiapp_close,
};
static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
.open = smiapp_open,
.close = smiapp_close,
};
/* -----------------------------------------------------------------------------
* I2C Driver
*/
#ifdef CONFIG_PM
static int smiapp_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
bool streaming;
BUG_ON(mutex_is_locked(&sensor->mutex));
if (sensor->power_count == 0)
return 0;
if (sensor->streaming)
smiapp_stop_streaming(sensor);
streaming = sensor->streaming;
smiapp_power_off(sensor);
/* save state for resume */
sensor->streaming = streaming;
return 0;
}
static int smiapp_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
int rval;
if (sensor->power_count == 0)
return 0;
rval = smiapp_power_on(sensor);
if (rval)
return rval;
if (sensor->streaming)
rval = smiapp_start_streaming(sensor);
return rval;
}
#else
#define smiapp_suspend NULL
#define smiapp_resume NULL
#endif /* CONFIG_PM */
static int smiapp_probe(struct i2c_client *client,
const struct i2c_device_id *devid)
{
struct smiapp_sensor *sensor;
int rval;
if (client->dev.platform_data == NULL)
return -ENODEV;
sensor = kzalloc(sizeof(*sensor), GFP_KERNEL);
if (sensor == NULL)
return -ENOMEM;
sensor->platform_data = client->dev.platform_data;
mutex_init(&sensor->mutex);
mutex_init(&sensor->power_mutex);
sensor->src = &sensor->ssds[sensor->ssds_used];
v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
sensor->src->sensor = sensor;
sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE;
rval = media_entity_init(&sensor->src->sd.entity, 2,
sensor->src->pads, 0);
if (rval < 0)
kfree(sensor);
return rval;
}
static int __exit smiapp_remove(struct i2c_client *client)
{
struct v4l2_subdev *subdev = i2c_get_clientdata(client);
struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
unsigned int i;
if (sensor->power_count) {
if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
gpio_set_value(sensor->platform_data->xshutdown, 0);
if (sensor->platform_data->set_xclk)
sensor->platform_data->set_xclk(&sensor->src->sd, 0);
else
clk_disable(sensor->ext_clk);
sensor->power_count = 0;
}
if (sensor->nvm) {
device_remove_file(&client->dev, &dev_attr_nvm);
kfree(sensor->nvm);
}
for (i = 0; i < sensor->ssds_used; i++) {
media_entity_cleanup(&sensor->ssds[i].sd.entity);
v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
}
smiapp_free_controls(sensor);
if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN)
gpio_free(sensor->platform_data->xshutdown);
if (sensor->ext_clk)
clk_put(sensor->ext_clk);
if (sensor->vana)
regulator_put(sensor->vana);
kfree(sensor);
return 0;
}
static const struct i2c_device_id smiapp_id_table[] = {
{ SMIAPP_NAME, 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
static const struct dev_pm_ops smiapp_pm_ops = {
.suspend = smiapp_suspend,
.resume = smiapp_resume,
};
static struct i2c_driver smiapp_i2c_driver = {
.driver = {
.name = SMIAPP_NAME,
.pm = &smiapp_pm_ops,
},
.probe = smiapp_probe,
.remove = __exit_p(smiapp_remove),
.id_table = smiapp_id_table,
};
module_i2c_driver(smiapp_i2c_driver);
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>");
MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
MODULE_LICENSE("GPL");