forked from Minki/linux
016ed39c54
When call kvm_vgic_inject_irq to inject interrupt, we can known which vcpu the interrupt for by the irq_num and the cpuid. So we should just kick this vcpu to avoid iterating through all. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Shannon Zhao <zhaoshenglong@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2486 lines
61 KiB
C
2486 lines
61 KiB
C
/*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <linux/irqchip/arm-gic.h>
|
|
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
|
|
/*
|
|
* How the whole thing works (courtesy of Christoffer Dall):
|
|
*
|
|
* - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
|
|
* something is pending on the CPU interface.
|
|
* - Interrupts that are pending on the distributor are stored on the
|
|
* vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
|
|
* ioctls and guest mmio ops, and other in-kernel peripherals such as the
|
|
* arch. timers).
|
|
* - Every time the bitmap changes, the irq_pending_on_cpu oracle is
|
|
* recalculated
|
|
* - To calculate the oracle, we need info for each cpu from
|
|
* compute_pending_for_cpu, which considers:
|
|
* - PPI: dist->irq_pending & dist->irq_enable
|
|
* - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
|
|
* - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
|
|
* registers, stored on each vcpu. We only keep one bit of
|
|
* information per interrupt, making sure that only one vcpu can
|
|
* accept the interrupt.
|
|
* - If any of the above state changes, we must recalculate the oracle.
|
|
* - The same is true when injecting an interrupt, except that we only
|
|
* consider a single interrupt at a time. The irq_spi_cpu array
|
|
* contains the target CPU for each SPI.
|
|
*
|
|
* The handling of level interrupts adds some extra complexity. We
|
|
* need to track when the interrupt has been EOIed, so we can sample
|
|
* the 'line' again. This is achieved as such:
|
|
*
|
|
* - When a level interrupt is moved onto a vcpu, the corresponding
|
|
* bit in irq_queued is set. As long as this bit is set, the line
|
|
* will be ignored for further interrupts. The interrupt is injected
|
|
* into the vcpu with the GICH_LR_EOI bit set (generate a
|
|
* maintenance interrupt on EOI).
|
|
* - When the interrupt is EOIed, the maintenance interrupt fires,
|
|
* and clears the corresponding bit in irq_queued. This allows the
|
|
* interrupt line to be sampled again.
|
|
* - Note that level-triggered interrupts can also be set to pending from
|
|
* writes to GICD_ISPENDRn and lowering the external input line does not
|
|
* cause the interrupt to become inactive in such a situation.
|
|
* Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
|
|
* inactive as long as the external input line is held high.
|
|
*/
|
|
|
|
#define VGIC_ADDR_UNDEF (-1)
|
|
#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
|
|
|
|
#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
|
|
#define IMPLEMENTER_ARM 0x43b
|
|
#define GICC_ARCH_VERSION_V2 0x2
|
|
|
|
#define ACCESS_READ_VALUE (1 << 0)
|
|
#define ACCESS_READ_RAZ (0 << 0)
|
|
#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
|
|
#define ACCESS_WRITE_IGNORED (0 << 1)
|
|
#define ACCESS_WRITE_SETBIT (1 << 1)
|
|
#define ACCESS_WRITE_CLEARBIT (2 << 1)
|
|
#define ACCESS_WRITE_VALUE (3 << 1)
|
|
#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
|
|
|
|
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
|
|
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
|
|
static void vgic_update_state(struct kvm *kvm);
|
|
static void vgic_kick_vcpus(struct kvm *kvm);
|
|
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
|
|
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
|
|
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
|
|
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
|
|
static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
|
|
static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
|
|
|
|
static const struct vgic_ops *vgic_ops;
|
|
static const struct vgic_params *vgic;
|
|
|
|
/*
|
|
* struct vgic_bitmap contains a bitmap made of unsigned longs, but
|
|
* extracts u32s out of them.
|
|
*
|
|
* This does not work on 64-bit BE systems, because the bitmap access
|
|
* will store two consecutive 32-bit words with the higher-addressed
|
|
* register's bits at the lower index and the lower-addressed register's
|
|
* bits at the higher index.
|
|
*
|
|
* Therefore, swizzle the register index when accessing the 32-bit word
|
|
* registers to access the right register's value.
|
|
*/
|
|
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
|
|
#define REG_OFFSET_SWIZZLE 1
|
|
#else
|
|
#define REG_OFFSET_SWIZZLE 0
|
|
#endif
|
|
|
|
static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
|
|
{
|
|
int nr_longs;
|
|
|
|
nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
|
|
|
|
b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
|
|
if (!b->private)
|
|
return -ENOMEM;
|
|
|
|
b->shared = b->private + nr_cpus;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vgic_free_bitmap(struct vgic_bitmap *b)
|
|
{
|
|
kfree(b->private);
|
|
b->private = NULL;
|
|
b->shared = NULL;
|
|
}
|
|
|
|
/*
|
|
* Call this function to convert a u64 value to an unsigned long * bitmask
|
|
* in a way that works on both 32-bit and 64-bit LE and BE platforms.
|
|
*
|
|
* Warning: Calling this function may modify *val.
|
|
*/
|
|
static unsigned long *u64_to_bitmask(u64 *val)
|
|
{
|
|
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
|
|
*val = (*val >> 32) | (*val << 32);
|
|
#endif
|
|
return (unsigned long *)val;
|
|
}
|
|
|
|
static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
|
|
int cpuid, u32 offset)
|
|
{
|
|
offset >>= 2;
|
|
if (!offset)
|
|
return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
|
|
else
|
|
return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
|
|
}
|
|
|
|
static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
|
|
int cpuid, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
return test_bit(irq, x->private + cpuid);
|
|
|
|
return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
|
|
}
|
|
|
|
static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
|
|
int irq, int val)
|
|
{
|
|
unsigned long *reg;
|
|
|
|
if (irq < VGIC_NR_PRIVATE_IRQS) {
|
|
reg = x->private + cpuid;
|
|
} else {
|
|
reg = x->shared;
|
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
|
}
|
|
|
|
if (val)
|
|
set_bit(irq, reg);
|
|
else
|
|
clear_bit(irq, reg);
|
|
}
|
|
|
|
static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
|
|
{
|
|
return x->private + cpuid;
|
|
}
|
|
|
|
static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
|
|
{
|
|
return x->shared;
|
|
}
|
|
|
|
static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
|
|
{
|
|
int size;
|
|
|
|
size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
|
|
size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
|
|
|
|
x->private = kzalloc(size, GFP_KERNEL);
|
|
if (!x->private)
|
|
return -ENOMEM;
|
|
|
|
x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
|
|
return 0;
|
|
}
|
|
|
|
static void vgic_free_bytemap(struct vgic_bytemap *b)
|
|
{
|
|
kfree(b->private);
|
|
b->private = NULL;
|
|
b->shared = NULL;
|
|
}
|
|
|
|
static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
|
|
{
|
|
u32 *reg;
|
|
|
|
if (offset < VGIC_NR_PRIVATE_IRQS) {
|
|
reg = x->private;
|
|
offset += cpuid * VGIC_NR_PRIVATE_IRQS;
|
|
} else {
|
|
reg = x->shared;
|
|
offset -= VGIC_NR_PRIVATE_IRQS;
|
|
}
|
|
|
|
return reg + (offset / sizeof(u32));
|
|
}
|
|
|
|
#define VGIC_CFG_LEVEL 0
|
|
#define VGIC_CFG_EDGE 1
|
|
|
|
static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int irq_val;
|
|
|
|
irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
|
|
return irq_val == VGIC_CFG_EDGE;
|
|
}
|
|
|
|
static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
|
|
}
|
|
|
|
static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
|
|
}
|
|
|
|
static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
|
|
}
|
|
|
|
static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
|
|
else
|
|
set_bit(irq - VGIC_NR_PRIVATE_IRQS,
|
|
vcpu->arch.vgic_cpu.pending_shared);
|
|
}
|
|
|
|
static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
|
|
else
|
|
clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
|
|
vcpu->arch.vgic_cpu.pending_shared);
|
|
}
|
|
|
|
static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
|
|
}
|
|
|
|
static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
|
|
{
|
|
return le32_to_cpu(*((u32 *)mmio->data)) & mask;
|
|
}
|
|
|
|
static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
|
|
{
|
|
*((u32 *)mmio->data) = cpu_to_le32(value) & mask;
|
|
}
|
|
|
|
/**
|
|
* vgic_reg_access - access vgic register
|
|
* @mmio: pointer to the data describing the mmio access
|
|
* @reg: pointer to the virtual backing of vgic distributor data
|
|
* @offset: least significant 2 bits used for word offset
|
|
* @mode: ACCESS_ mode (see defines above)
|
|
*
|
|
* Helper to make vgic register access easier using one of the access
|
|
* modes defined for vgic register access
|
|
* (read,raz,write-ignored,setbit,clearbit,write)
|
|
*/
|
|
static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
|
|
phys_addr_t offset, int mode)
|
|
{
|
|
int word_offset = (offset & 3) * 8;
|
|
u32 mask = (1UL << (mmio->len * 8)) - 1;
|
|
u32 regval;
|
|
|
|
/*
|
|
* Any alignment fault should have been delivered to the guest
|
|
* directly (ARM ARM B3.12.7 "Prioritization of aborts").
|
|
*/
|
|
|
|
if (reg) {
|
|
regval = *reg;
|
|
} else {
|
|
BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
|
|
regval = 0;
|
|
}
|
|
|
|
if (mmio->is_write) {
|
|
u32 data = mmio_data_read(mmio, mask) << word_offset;
|
|
switch (ACCESS_WRITE_MASK(mode)) {
|
|
case ACCESS_WRITE_IGNORED:
|
|
return;
|
|
|
|
case ACCESS_WRITE_SETBIT:
|
|
regval |= data;
|
|
break;
|
|
|
|
case ACCESS_WRITE_CLEARBIT:
|
|
regval &= ~data;
|
|
break;
|
|
|
|
case ACCESS_WRITE_VALUE:
|
|
regval = (regval & ~(mask << word_offset)) | data;
|
|
break;
|
|
}
|
|
*reg = regval;
|
|
} else {
|
|
switch (ACCESS_READ_MASK(mode)) {
|
|
case ACCESS_READ_RAZ:
|
|
regval = 0;
|
|
/* fall through */
|
|
|
|
case ACCESS_READ_VALUE:
|
|
mmio_data_write(mmio, mask, regval >> word_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
u32 reg;
|
|
u32 word_offset = offset & 3;
|
|
|
|
switch (offset & ~3) {
|
|
case 0: /* GICD_CTLR */
|
|
reg = vcpu->kvm->arch.vgic.enabled;
|
|
vgic_reg_access(mmio, ®, word_offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
vcpu->kvm->arch.vgic.enabled = reg & 1;
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
case 4: /* GICD_TYPER */
|
|
reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
|
|
reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
|
|
vgic_reg_access(mmio, ®, word_offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
|
break;
|
|
|
|
case 8: /* GICD_IIDR */
|
|
reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
|
|
vgic_reg_access(mmio, ®, word_offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
vgic_reg_access(mmio, NULL, offset,
|
|
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
|
|
if (mmio->is_write) {
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
|
|
if (mmio->is_write) {
|
|
if (offset < 4) /* Force SGI enabled */
|
|
*reg |= 0xffff;
|
|
vgic_retire_disabled_irqs(vcpu);
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg, orig;
|
|
u32 level_mask;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
|
|
level_mask = (~(*reg));
|
|
|
|
/* Mark both level and edge triggered irqs as pending */
|
|
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
|
|
orig = *reg;
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
|
|
|
|
if (mmio->is_write) {
|
|
/* Set the soft-pending flag only for level-triggered irqs */
|
|
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
|
|
*reg &= level_mask;
|
|
|
|
/* Ignore writes to SGIs */
|
|
if (offset < 2) {
|
|
*reg &= ~0xffff;
|
|
*reg |= orig & 0xffff;
|
|
}
|
|
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *level_active;
|
|
u32 *reg, orig;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
|
|
orig = *reg;
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
|
|
if (mmio->is_write) {
|
|
/* Re-set level triggered level-active interrupts */
|
|
level_active = vgic_bitmap_get_reg(&dist->irq_level,
|
|
vcpu->vcpu_id, offset);
|
|
reg = vgic_bitmap_get_reg(&dist->irq_pending,
|
|
vcpu->vcpu_id, offset);
|
|
*reg |= *level_active;
|
|
|
|
/* Ignore writes to SGIs */
|
|
if (offset < 2) {
|
|
*reg &= ~0xffff;
|
|
*reg |= orig & 0xffff;
|
|
}
|
|
|
|
/* Clear soft-pending flags */
|
|
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
|
|
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
return false;
|
|
}
|
|
|
|
#define GICD_ITARGETSR_SIZE 32
|
|
#define GICD_CPUTARGETS_BITS 8
|
|
#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
|
|
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
int i;
|
|
u32 val = 0;
|
|
|
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
|
|
|
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
|
|
val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
|
|
|
|
return val;
|
|
}
|
|
|
|
static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int i, c;
|
|
unsigned long *bmap;
|
|
u32 target;
|
|
|
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
|
|
|
/*
|
|
* Pick the LSB in each byte. This ensures we target exactly
|
|
* one vcpu per IRQ. If the byte is null, assume we target
|
|
* CPU0.
|
|
*/
|
|
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
|
|
int shift = i * GICD_CPUTARGETS_BITS;
|
|
target = ffs((val >> shift) & 0xffU);
|
|
target = target ? (target - 1) : 0;
|
|
dist->irq_spi_cpu[irq + i] = target;
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
|
|
if (c == target)
|
|
set_bit(irq + i, bmap);
|
|
else
|
|
clear_bit(irq + i, bmap);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 reg;
|
|
|
|
/* We treat the banked interrupts targets as read-only */
|
|
if (offset < 32) {
|
|
u32 roreg = 1 << vcpu->vcpu_id;
|
|
roreg |= roreg << 8;
|
|
roreg |= roreg << 16;
|
|
|
|
vgic_reg_access(mmio, &roreg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
|
return false;
|
|
}
|
|
|
|
reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
|
|
vgic_reg_access(mmio, ®, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static u32 vgic_cfg_expand(u16 val)
|
|
{
|
|
u32 res = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Turn a 16bit value like abcd...mnop into a 32bit word
|
|
* a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
|
|
*/
|
|
for (i = 0; i < 16; i++)
|
|
res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
|
|
|
|
return res;
|
|
}
|
|
|
|
static u16 vgic_cfg_compress(u32 val)
|
|
{
|
|
u16 res = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
|
|
* abcd...mnop which is what we really care about.
|
|
*/
|
|
for (i = 0; i < 16; i++)
|
|
res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* The distributor uses 2 bits per IRQ for the CFG register, but the
|
|
* LSB is always 0. As such, we only keep the upper bit, and use the
|
|
* two above functions to compress/expand the bits
|
|
*/
|
|
static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
u32 val;
|
|
u32 *reg;
|
|
|
|
reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
|
|
vcpu->vcpu_id, offset >> 1);
|
|
|
|
if (offset & 4)
|
|
val = *reg >> 16;
|
|
else
|
|
val = *reg & 0xffff;
|
|
|
|
val = vgic_cfg_expand(val);
|
|
vgic_reg_access(mmio, &val, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
if (offset < 8) {
|
|
*reg = ~0U; /* Force PPIs/SGIs to 1 */
|
|
return false;
|
|
}
|
|
|
|
val = vgic_cfg_compress(val);
|
|
if (offset & 4) {
|
|
*reg &= 0xffff;
|
|
*reg |= val << 16;
|
|
} else {
|
|
*reg &= 0xffff << 16;
|
|
*reg |= val;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
u32 reg;
|
|
vgic_reg_access(mmio, ®, offset,
|
|
ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
vgic_dispatch_sgi(vcpu, reg);
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
|
|
* @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
|
|
*
|
|
* Move any pending IRQs that have already been assigned to LRs back to the
|
|
* emulated distributor state so that the complete emulated state can be read
|
|
* from the main emulation structures without investigating the LRs.
|
|
*
|
|
* Note that IRQs in the active state in the LRs get their pending state moved
|
|
* to the distributor but the active state stays in the LRs, because we don't
|
|
* track the active state on the distributor side.
|
|
*/
|
|
static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
int vcpu_id = vcpu->vcpu_id;
|
|
int i;
|
|
|
|
for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
|
|
struct vgic_lr lr = vgic_get_lr(vcpu, i);
|
|
|
|
/*
|
|
* There are three options for the state bits:
|
|
*
|
|
* 01: pending
|
|
* 10: active
|
|
* 11: pending and active
|
|
*
|
|
* If the LR holds only an active interrupt (not pending) then
|
|
* just leave it alone.
|
|
*/
|
|
if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
|
|
continue;
|
|
|
|
/*
|
|
* Reestablish the pending state on the distributor and the
|
|
* CPU interface. It may have already been pending, but that
|
|
* is fine, then we are only setting a few bits that were
|
|
* already set.
|
|
*/
|
|
vgic_dist_irq_set_pending(vcpu, lr.irq);
|
|
if (lr.irq < VGIC_NR_SGIS)
|
|
*vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source;
|
|
lr.state &= ~LR_STATE_PENDING;
|
|
vgic_set_lr(vcpu, i, lr);
|
|
|
|
/*
|
|
* If there's no state left on the LR (it could still be
|
|
* active), then the LR does not hold any useful info and can
|
|
* be marked as free for other use.
|
|
*/
|
|
if (!(lr.state & LR_STATE_MASK)) {
|
|
vgic_retire_lr(i, lr.irq, vcpu);
|
|
vgic_irq_clear_queued(vcpu, lr.irq);
|
|
}
|
|
|
|
/* Finally update the VGIC state. */
|
|
vgic_update_state(vcpu->kvm);
|
|
}
|
|
}
|
|
|
|
/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
|
|
static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int sgi;
|
|
int min_sgi = (offset & ~0x3);
|
|
int max_sgi = min_sgi + 3;
|
|
int vcpu_id = vcpu->vcpu_id;
|
|
u32 reg = 0;
|
|
|
|
/* Copy source SGIs from distributor side */
|
|
for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
|
|
int shift = 8 * (sgi - min_sgi);
|
|
reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
|
|
}
|
|
|
|
mmio_data_write(mmio, ~0, reg);
|
|
return false;
|
|
}
|
|
|
|
static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset, bool set)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int sgi;
|
|
int min_sgi = (offset & ~0x3);
|
|
int max_sgi = min_sgi + 3;
|
|
int vcpu_id = vcpu->vcpu_id;
|
|
u32 reg;
|
|
bool updated = false;
|
|
|
|
reg = mmio_data_read(mmio, ~0);
|
|
|
|
/* Clear pending SGIs on the distributor */
|
|
for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
|
|
u8 mask = reg >> (8 * (sgi - min_sgi));
|
|
u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
|
|
if (set) {
|
|
if ((*src & mask) != mask)
|
|
updated = true;
|
|
*src |= mask;
|
|
} else {
|
|
if (*src & mask)
|
|
updated = true;
|
|
*src &= ~mask;
|
|
}
|
|
}
|
|
|
|
if (updated)
|
|
vgic_update_state(vcpu->kvm);
|
|
|
|
return updated;
|
|
}
|
|
|
|
static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
if (!mmio->is_write)
|
|
return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
|
|
else
|
|
return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
|
|
}
|
|
|
|
static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
if (!mmio->is_write)
|
|
return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
|
|
else
|
|
return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
|
|
}
|
|
|
|
/*
|
|
* I would have liked to use the kvm_bus_io_*() API instead, but it
|
|
* cannot cope with banked registers (only the VM pointer is passed
|
|
* around, and we need the vcpu). One of these days, someone please
|
|
* fix it!
|
|
*/
|
|
struct mmio_range {
|
|
phys_addr_t base;
|
|
unsigned long len;
|
|
int bits_per_irq;
|
|
bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset);
|
|
};
|
|
|
|
static const struct mmio_range vgic_dist_ranges[] = {
|
|
{
|
|
.base = GIC_DIST_CTRL,
|
|
.len = 12,
|
|
.bits_per_irq = 0,
|
|
.handle_mmio = handle_mmio_misc,
|
|
},
|
|
{
|
|
.base = GIC_DIST_IGROUP,
|
|
.len = VGIC_MAX_IRQS / 8,
|
|
.bits_per_irq = 1,
|
|
.handle_mmio = handle_mmio_raz_wi,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ENABLE_SET,
|
|
.len = VGIC_MAX_IRQS / 8,
|
|
.bits_per_irq = 1,
|
|
.handle_mmio = handle_mmio_set_enable_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ENABLE_CLEAR,
|
|
.len = VGIC_MAX_IRQS / 8,
|
|
.bits_per_irq = 1,
|
|
.handle_mmio = handle_mmio_clear_enable_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_PENDING_SET,
|
|
.len = VGIC_MAX_IRQS / 8,
|
|
.bits_per_irq = 1,
|
|
.handle_mmio = handle_mmio_set_pending_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_PENDING_CLEAR,
|
|
.len = VGIC_MAX_IRQS / 8,
|
|
.bits_per_irq = 1,
|
|
.handle_mmio = handle_mmio_clear_pending_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ACTIVE_SET,
|
|
.len = VGIC_MAX_IRQS / 8,
|
|
.bits_per_irq = 1,
|
|
.handle_mmio = handle_mmio_raz_wi,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ACTIVE_CLEAR,
|
|
.len = VGIC_MAX_IRQS / 8,
|
|
.bits_per_irq = 1,
|
|
.handle_mmio = handle_mmio_raz_wi,
|
|
},
|
|
{
|
|
.base = GIC_DIST_PRI,
|
|
.len = VGIC_MAX_IRQS,
|
|
.bits_per_irq = 8,
|
|
.handle_mmio = handle_mmio_priority_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_TARGET,
|
|
.len = VGIC_MAX_IRQS,
|
|
.bits_per_irq = 8,
|
|
.handle_mmio = handle_mmio_target_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_CONFIG,
|
|
.len = VGIC_MAX_IRQS / 4,
|
|
.bits_per_irq = 2,
|
|
.handle_mmio = handle_mmio_cfg_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_SOFTINT,
|
|
.len = 4,
|
|
.handle_mmio = handle_mmio_sgi_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_SGI_PENDING_CLEAR,
|
|
.len = VGIC_NR_SGIS,
|
|
.handle_mmio = handle_mmio_sgi_clear,
|
|
},
|
|
{
|
|
.base = GIC_DIST_SGI_PENDING_SET,
|
|
.len = VGIC_NR_SGIS,
|
|
.handle_mmio = handle_mmio_sgi_set,
|
|
},
|
|
{}
|
|
};
|
|
|
|
static const
|
|
struct mmio_range *find_matching_range(const struct mmio_range *ranges,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
const struct mmio_range *r = ranges;
|
|
|
|
while (r->len) {
|
|
if (offset >= r->base &&
|
|
(offset + mmio->len) <= (r->base + r->len))
|
|
return r;
|
|
r++;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool vgic_validate_access(const struct vgic_dist *dist,
|
|
const struct mmio_range *range,
|
|
unsigned long offset)
|
|
{
|
|
int irq;
|
|
|
|
if (!range->bits_per_irq)
|
|
return true; /* Not an irq-based access */
|
|
|
|
irq = offset * 8 / range->bits_per_irq;
|
|
if (irq >= dist->nr_irqs)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* vgic_handle_mmio - handle an in-kernel MMIO access
|
|
* @vcpu: pointer to the vcpu performing the access
|
|
* @run: pointer to the kvm_run structure
|
|
* @mmio: pointer to the data describing the access
|
|
*
|
|
* returns true if the MMIO access has been performed in kernel space,
|
|
* and false if it needs to be emulated in user space.
|
|
*/
|
|
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
struct kvm_exit_mmio *mmio)
|
|
{
|
|
const struct mmio_range *range;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
unsigned long base = dist->vgic_dist_base;
|
|
bool updated_state;
|
|
unsigned long offset;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm) ||
|
|
mmio->phys_addr < base ||
|
|
(mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
|
|
return false;
|
|
|
|
/* We don't support ldrd / strd or ldm / stm to the emulated vgic */
|
|
if (mmio->len > 4) {
|
|
kvm_inject_dabt(vcpu, mmio->phys_addr);
|
|
return true;
|
|
}
|
|
|
|
offset = mmio->phys_addr - base;
|
|
range = find_matching_range(vgic_dist_ranges, mmio, offset);
|
|
if (unlikely(!range || !range->handle_mmio)) {
|
|
pr_warn("Unhandled access %d %08llx %d\n",
|
|
mmio->is_write, mmio->phys_addr, mmio->len);
|
|
return false;
|
|
}
|
|
|
|
spin_lock(&vcpu->kvm->arch.vgic.lock);
|
|
offset = mmio->phys_addr - range->base - base;
|
|
if (vgic_validate_access(dist, range, offset)) {
|
|
updated_state = range->handle_mmio(vcpu, mmio, offset);
|
|
} else {
|
|
vgic_reg_access(mmio, NULL, offset,
|
|
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
|
|
updated_state = false;
|
|
}
|
|
spin_unlock(&vcpu->kvm->arch.vgic.lock);
|
|
kvm_prepare_mmio(run, mmio);
|
|
kvm_handle_mmio_return(vcpu, run);
|
|
|
|
if (updated_state)
|
|
vgic_kick_vcpus(vcpu->kvm);
|
|
|
|
return true;
|
|
}
|
|
|
|
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
|
|
{
|
|
return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
|
|
}
|
|
|
|
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
int nrcpus = atomic_read(&kvm->online_vcpus);
|
|
u8 target_cpus;
|
|
int sgi, mode, c, vcpu_id;
|
|
|
|
vcpu_id = vcpu->vcpu_id;
|
|
|
|
sgi = reg & 0xf;
|
|
target_cpus = (reg >> 16) & 0xff;
|
|
mode = (reg >> 24) & 3;
|
|
|
|
switch (mode) {
|
|
case 0:
|
|
if (!target_cpus)
|
|
return;
|
|
break;
|
|
|
|
case 1:
|
|
target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
|
|
break;
|
|
|
|
case 2:
|
|
target_cpus = 1 << vcpu_id;
|
|
break;
|
|
}
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
if (target_cpus & 1) {
|
|
/* Flag the SGI as pending */
|
|
vgic_dist_irq_set_pending(vcpu, sgi);
|
|
*vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
|
|
kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
|
|
}
|
|
|
|
target_cpus >>= 1;
|
|
}
|
|
}
|
|
|
|
static int vgic_nr_shared_irqs(struct vgic_dist *dist)
|
|
{
|
|
return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
|
|
}
|
|
|
|
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
|
|
unsigned long pending_private, pending_shared;
|
|
int nr_shared = vgic_nr_shared_irqs(dist);
|
|
int vcpu_id;
|
|
|
|
vcpu_id = vcpu->vcpu_id;
|
|
pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
|
|
pend_shared = vcpu->arch.vgic_cpu.pending_shared;
|
|
|
|
pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
|
|
enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
|
|
bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
|
|
|
|
pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
|
|
enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
|
|
bitmap_and(pend_shared, pending, enabled, nr_shared);
|
|
bitmap_and(pend_shared, pend_shared,
|
|
vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
|
|
nr_shared);
|
|
|
|
pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
|
|
pending_shared = find_first_bit(pend_shared, nr_shared);
|
|
return (pending_private < VGIC_NR_PRIVATE_IRQS ||
|
|
pending_shared < vgic_nr_shared_irqs(dist));
|
|
}
|
|
|
|
/*
|
|
* Update the interrupt state and determine which CPUs have pending
|
|
* interrupts. Must be called with distributor lock held.
|
|
*/
|
|
static void vgic_update_state(struct kvm *kvm)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int c;
|
|
|
|
if (!dist->enabled) {
|
|
set_bit(0, dist->irq_pending_on_cpu);
|
|
return;
|
|
}
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
if (compute_pending_for_cpu(vcpu)) {
|
|
pr_debug("CPU%d has pending interrupts\n", c);
|
|
set_bit(c, dist->irq_pending_on_cpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
|
|
{
|
|
return vgic_ops->get_lr(vcpu, lr);
|
|
}
|
|
|
|
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
|
|
struct vgic_lr vlr)
|
|
{
|
|
vgic_ops->set_lr(vcpu, lr, vlr);
|
|
}
|
|
|
|
static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
|
|
struct vgic_lr vlr)
|
|
{
|
|
vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
|
|
}
|
|
|
|
static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vgic_ops->get_elrsr(vcpu);
|
|
}
|
|
|
|
static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vgic_ops->get_eisr(vcpu);
|
|
}
|
|
|
|
static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vgic_ops->get_interrupt_status(vcpu);
|
|
}
|
|
|
|
static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
|
|
{
|
|
vgic_ops->enable_underflow(vcpu);
|
|
}
|
|
|
|
static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
|
|
{
|
|
vgic_ops->disable_underflow(vcpu);
|
|
}
|
|
|
|
static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
|
|
{
|
|
vgic_ops->get_vmcr(vcpu, vmcr);
|
|
}
|
|
|
|
static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
|
|
{
|
|
vgic_ops->set_vmcr(vcpu, vmcr);
|
|
}
|
|
|
|
static inline void vgic_enable(struct kvm_vcpu *vcpu)
|
|
{
|
|
vgic_ops->enable(vcpu);
|
|
}
|
|
|
|
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
|
|
|
|
vlr.state = 0;
|
|
vgic_set_lr(vcpu, lr_nr, vlr);
|
|
clear_bit(lr_nr, vgic_cpu->lr_used);
|
|
vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
|
|
}
|
|
|
|
/*
|
|
* An interrupt may have been disabled after being made pending on the
|
|
* CPU interface (the classic case is a timer running while we're
|
|
* rebooting the guest - the interrupt would kick as soon as the CPU
|
|
* interface gets enabled, with deadly consequences).
|
|
*
|
|
* The solution is to examine already active LRs, and check the
|
|
* interrupt is still enabled. If not, just retire it.
|
|
*/
|
|
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
int lr;
|
|
|
|
for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
|
|
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
|
|
|
|
if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
|
|
vgic_retire_lr(lr, vlr.irq, vcpu);
|
|
if (vgic_irq_is_queued(vcpu, vlr.irq))
|
|
vgic_irq_clear_queued(vcpu, vlr.irq);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Queue an interrupt to a CPU virtual interface. Return true on success,
|
|
* or false if it wasn't possible to queue it.
|
|
*/
|
|
static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
struct vgic_lr vlr;
|
|
int lr;
|
|
|
|
/* Sanitize the input... */
|
|
BUG_ON(sgi_source_id & ~7);
|
|
BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
|
|
BUG_ON(irq >= dist->nr_irqs);
|
|
|
|
kvm_debug("Queue IRQ%d\n", irq);
|
|
|
|
lr = vgic_cpu->vgic_irq_lr_map[irq];
|
|
|
|
/* Do we have an active interrupt for the same CPUID? */
|
|
if (lr != LR_EMPTY) {
|
|
vlr = vgic_get_lr(vcpu, lr);
|
|
if (vlr.source == sgi_source_id) {
|
|
kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
|
|
BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
|
|
vlr.state |= LR_STATE_PENDING;
|
|
vgic_set_lr(vcpu, lr, vlr);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* Try to use another LR for this interrupt */
|
|
lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
|
|
vgic->nr_lr);
|
|
if (lr >= vgic->nr_lr)
|
|
return false;
|
|
|
|
kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
|
|
vgic_cpu->vgic_irq_lr_map[irq] = lr;
|
|
set_bit(lr, vgic_cpu->lr_used);
|
|
|
|
vlr.irq = irq;
|
|
vlr.source = sgi_source_id;
|
|
vlr.state = LR_STATE_PENDING;
|
|
if (!vgic_irq_is_edge(vcpu, irq))
|
|
vlr.state |= LR_EOI_INT;
|
|
|
|
vgic_set_lr(vcpu, lr, vlr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
unsigned long sources;
|
|
int vcpu_id = vcpu->vcpu_id;
|
|
int c;
|
|
|
|
sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
|
|
|
|
for_each_set_bit(c, &sources, dist->nr_cpus) {
|
|
if (vgic_queue_irq(vcpu, c, irq))
|
|
clear_bit(c, &sources);
|
|
}
|
|
|
|
*vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
|
|
|
|
/*
|
|
* If the sources bitmap has been cleared it means that we
|
|
* could queue all the SGIs onto link registers (see the
|
|
* clear_bit above), and therefore we are done with them in
|
|
* our emulated gic and can get rid of them.
|
|
*/
|
|
if (!sources) {
|
|
vgic_dist_irq_clear_pending(vcpu, irq);
|
|
vgic_cpu_irq_clear(vcpu, irq);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (!vgic_can_sample_irq(vcpu, irq))
|
|
return true; /* level interrupt, already queued */
|
|
|
|
if (vgic_queue_irq(vcpu, 0, irq)) {
|
|
if (vgic_irq_is_edge(vcpu, irq)) {
|
|
vgic_dist_irq_clear_pending(vcpu, irq);
|
|
vgic_cpu_irq_clear(vcpu, irq);
|
|
} else {
|
|
vgic_irq_set_queued(vcpu, irq);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Fill the list registers with pending interrupts before running the
|
|
* guest.
|
|
*/
|
|
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int i, vcpu_id;
|
|
int overflow = 0;
|
|
|
|
vcpu_id = vcpu->vcpu_id;
|
|
|
|
/*
|
|
* We may not have any pending interrupt, or the interrupts
|
|
* may have been serviced from another vcpu. In all cases,
|
|
* move along.
|
|
*/
|
|
if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
|
|
pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
|
|
goto epilog;
|
|
}
|
|
|
|
/* SGIs */
|
|
for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
|
|
if (!vgic_queue_sgi(vcpu, i))
|
|
overflow = 1;
|
|
}
|
|
|
|
/* PPIs */
|
|
for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
|
|
if (!vgic_queue_hwirq(vcpu, i))
|
|
overflow = 1;
|
|
}
|
|
|
|
/* SPIs */
|
|
for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
|
|
if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
|
|
overflow = 1;
|
|
}
|
|
|
|
epilog:
|
|
if (overflow) {
|
|
vgic_enable_underflow(vcpu);
|
|
} else {
|
|
vgic_disable_underflow(vcpu);
|
|
/*
|
|
* We're about to run this VCPU, and we've consumed
|
|
* everything the distributor had in store for
|
|
* us. Claim we don't have anything pending. We'll
|
|
* adjust that if needed while exiting.
|
|
*/
|
|
clear_bit(vcpu_id, dist->irq_pending_on_cpu);
|
|
}
|
|
}
|
|
|
|
static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 status = vgic_get_interrupt_status(vcpu);
|
|
bool level_pending = false;
|
|
|
|
kvm_debug("STATUS = %08x\n", status);
|
|
|
|
if (status & INT_STATUS_EOI) {
|
|
/*
|
|
* Some level interrupts have been EOIed. Clear their
|
|
* active bit.
|
|
*/
|
|
u64 eisr = vgic_get_eisr(vcpu);
|
|
unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
|
|
int lr;
|
|
|
|
for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
|
|
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
|
|
WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
|
|
|
|
vgic_irq_clear_queued(vcpu, vlr.irq);
|
|
WARN_ON(vlr.state & LR_STATE_MASK);
|
|
vlr.state = 0;
|
|
vgic_set_lr(vcpu, lr, vlr);
|
|
|
|
/*
|
|
* If the IRQ was EOIed it was also ACKed and we we
|
|
* therefore assume we can clear the soft pending
|
|
* state (should it had been set) for this interrupt.
|
|
*
|
|
* Note: if the IRQ soft pending state was set after
|
|
* the IRQ was acked, it actually shouldn't be
|
|
* cleared, but we have no way of knowing that unless
|
|
* we start trapping ACKs when the soft-pending state
|
|
* is set.
|
|
*/
|
|
vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
|
|
|
|
/* Any additional pending interrupt? */
|
|
if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
|
|
vgic_cpu_irq_set(vcpu, vlr.irq);
|
|
level_pending = true;
|
|
} else {
|
|
vgic_dist_irq_clear_pending(vcpu, vlr.irq);
|
|
vgic_cpu_irq_clear(vcpu, vlr.irq);
|
|
}
|
|
|
|
/*
|
|
* Despite being EOIed, the LR may not have
|
|
* been marked as empty.
|
|
*/
|
|
vgic_sync_lr_elrsr(vcpu, lr, vlr);
|
|
}
|
|
}
|
|
|
|
if (status & INT_STATUS_UNDERFLOW)
|
|
vgic_disable_underflow(vcpu);
|
|
|
|
return level_pending;
|
|
}
|
|
|
|
/*
|
|
* Sync back the VGIC state after a guest run. The distributor lock is
|
|
* needed so we don't get preempted in the middle of the state processing.
|
|
*/
|
|
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
u64 elrsr;
|
|
unsigned long *elrsr_ptr;
|
|
int lr, pending;
|
|
bool level_pending;
|
|
|
|
level_pending = vgic_process_maintenance(vcpu);
|
|
elrsr = vgic_get_elrsr(vcpu);
|
|
elrsr_ptr = u64_to_bitmask(&elrsr);
|
|
|
|
/* Clear mappings for empty LRs */
|
|
for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
|
|
struct vgic_lr vlr;
|
|
|
|
if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
|
|
continue;
|
|
|
|
vlr = vgic_get_lr(vcpu, lr);
|
|
|
|
BUG_ON(vlr.irq >= dist->nr_irqs);
|
|
vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
|
|
}
|
|
|
|
/* Check if we still have something up our sleeve... */
|
|
pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
|
|
if (level_pending || pending < vgic->nr_lr)
|
|
set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return;
|
|
|
|
spin_lock(&dist->lock);
|
|
__kvm_vgic_flush_hwstate(vcpu);
|
|
spin_unlock(&dist->lock);
|
|
}
|
|
|
|
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return;
|
|
|
|
spin_lock(&dist->lock);
|
|
__kvm_vgic_sync_hwstate(vcpu);
|
|
spin_unlock(&dist->lock);
|
|
}
|
|
|
|
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return 0;
|
|
|
|
return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
static void vgic_kick_vcpus(struct kvm *kvm)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int c;
|
|
|
|
/*
|
|
* We've injected an interrupt, time to find out who deserves
|
|
* a good kick...
|
|
*/
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
if (kvm_vgic_vcpu_pending_irq(vcpu))
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
}
|
|
|
|
static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
|
|
{
|
|
int edge_triggered = vgic_irq_is_edge(vcpu, irq);
|
|
|
|
/*
|
|
* Only inject an interrupt if:
|
|
* - edge triggered and we have a rising edge
|
|
* - level triggered and we change level
|
|
*/
|
|
if (edge_triggered) {
|
|
int state = vgic_dist_irq_is_pending(vcpu, irq);
|
|
return level > state;
|
|
} else {
|
|
int state = vgic_dist_irq_get_level(vcpu, irq);
|
|
return level != state;
|
|
}
|
|
}
|
|
|
|
static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
|
|
unsigned int irq_num, bool level)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int edge_triggered, level_triggered;
|
|
int enabled;
|
|
bool ret = true;
|
|
|
|
spin_lock(&dist->lock);
|
|
|
|
vcpu = kvm_get_vcpu(kvm, cpuid);
|
|
edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
|
|
level_triggered = !edge_triggered;
|
|
|
|
if (!vgic_validate_injection(vcpu, irq_num, level)) {
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
|
|
cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
|
|
vcpu = kvm_get_vcpu(kvm, cpuid);
|
|
}
|
|
|
|
kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
|
|
|
|
if (level) {
|
|
if (level_triggered)
|
|
vgic_dist_irq_set_level(vcpu, irq_num);
|
|
vgic_dist_irq_set_pending(vcpu, irq_num);
|
|
} else {
|
|
if (level_triggered) {
|
|
vgic_dist_irq_clear_level(vcpu, irq_num);
|
|
if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
|
|
vgic_dist_irq_clear_pending(vcpu, irq_num);
|
|
}
|
|
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
enabled = vgic_irq_is_enabled(vcpu, irq_num);
|
|
|
|
if (!enabled) {
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (!vgic_can_sample_irq(vcpu, irq_num)) {
|
|
/*
|
|
* Level interrupt in progress, will be picked up
|
|
* when EOId.
|
|
*/
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (level) {
|
|
vgic_cpu_irq_set(vcpu, irq_num);
|
|
set_bit(cpuid, dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
out:
|
|
spin_unlock(&dist->lock);
|
|
|
|
return ret ? cpuid : -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
|
|
* @kvm: The VM structure pointer
|
|
* @cpuid: The CPU for PPIs
|
|
* @irq_num: The IRQ number that is assigned to the device
|
|
* @level: Edge-triggered: true: to trigger the interrupt
|
|
* false: to ignore the call
|
|
* Level-sensitive true: activates an interrupt
|
|
* false: deactivates an interrupt
|
|
*
|
|
* The GIC is not concerned with devices being active-LOW or active-HIGH for
|
|
* level-sensitive interrupts. You can think of the level parameter as 1
|
|
* being HIGH and 0 being LOW and all devices being active-HIGH.
|
|
*/
|
|
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
|
|
bool level)
|
|
{
|
|
int vcpu_id;
|
|
|
|
if (likely(vgic_initialized(kvm))) {
|
|
vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
|
|
if (vcpu_id >= 0)
|
|
/* kick the specified vcpu */
|
|
kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t vgic_maintenance_handler(int irq, void *data)
|
|
{
|
|
/*
|
|
* We cannot rely on the vgic maintenance interrupt to be
|
|
* delivered synchronously. This means we can only use it to
|
|
* exit the VM, and we perform the handling of EOIed
|
|
* interrupts on the exit path (see vgic_process_maintenance).
|
|
*/
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
|
kfree(vgic_cpu->pending_shared);
|
|
kfree(vgic_cpu->vgic_irq_lr_map);
|
|
vgic_cpu->pending_shared = NULL;
|
|
vgic_cpu->vgic_irq_lr_map = NULL;
|
|
}
|
|
|
|
static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
|
int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
|
|
vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
|
|
vgic_cpu->vgic_irq_lr_map = kzalloc(nr_irqs, GFP_KERNEL);
|
|
|
|
if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
|
|
kvm_vgic_vcpu_destroy(vcpu);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
|
|
* @vcpu: pointer to the vcpu struct
|
|
*
|
|
* Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
|
|
* this vcpu and enable the VGIC for this VCPU
|
|
*/
|
|
static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int i;
|
|
|
|
for (i = 0; i < dist->nr_irqs; i++) {
|
|
if (i < VGIC_NR_PPIS)
|
|
vgic_bitmap_set_irq_val(&dist->irq_enabled,
|
|
vcpu->vcpu_id, i, 1);
|
|
if (i < VGIC_NR_PRIVATE_IRQS)
|
|
vgic_bitmap_set_irq_val(&dist->irq_cfg,
|
|
vcpu->vcpu_id, i, VGIC_CFG_EDGE);
|
|
|
|
vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
|
|
}
|
|
|
|
/*
|
|
* Store the number of LRs per vcpu, so we don't have to go
|
|
* all the way to the distributor structure to find out. Only
|
|
* assembly code should use this one.
|
|
*/
|
|
vgic_cpu->nr_lr = vgic->nr_lr;
|
|
|
|
vgic_enable(vcpu);
|
|
}
|
|
|
|
void kvm_vgic_destroy(struct kvm *kvm)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvm_vgic_vcpu_destroy(vcpu);
|
|
|
|
vgic_free_bitmap(&dist->irq_enabled);
|
|
vgic_free_bitmap(&dist->irq_level);
|
|
vgic_free_bitmap(&dist->irq_pending);
|
|
vgic_free_bitmap(&dist->irq_soft_pend);
|
|
vgic_free_bitmap(&dist->irq_queued);
|
|
vgic_free_bitmap(&dist->irq_cfg);
|
|
vgic_free_bytemap(&dist->irq_priority);
|
|
if (dist->irq_spi_target) {
|
|
for (i = 0; i < dist->nr_cpus; i++)
|
|
vgic_free_bitmap(&dist->irq_spi_target[i]);
|
|
}
|
|
kfree(dist->irq_sgi_sources);
|
|
kfree(dist->irq_spi_cpu);
|
|
kfree(dist->irq_spi_target);
|
|
kfree(dist->irq_pending_on_cpu);
|
|
dist->irq_sgi_sources = NULL;
|
|
dist->irq_spi_cpu = NULL;
|
|
dist->irq_spi_target = NULL;
|
|
dist->irq_pending_on_cpu = NULL;
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize the various data structures. Must be called
|
|
* with kvm->lock held!
|
|
*/
|
|
static int vgic_init_maps(struct kvm *kvm)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int nr_cpus, nr_irqs;
|
|
int ret, i;
|
|
|
|
if (dist->nr_cpus) /* Already allocated */
|
|
return 0;
|
|
|
|
nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
|
|
if (!nr_cpus) /* No vcpus? Can't be good... */
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If nobody configured the number of interrupts, use the
|
|
* legacy one.
|
|
*/
|
|
if (!dist->nr_irqs)
|
|
dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
|
|
|
|
nr_irqs = dist->nr_irqs;
|
|
|
|
ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
|
|
ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
|
|
dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
|
|
dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
|
|
GFP_KERNEL);
|
|
dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
|
|
GFP_KERNEL);
|
|
if (!dist->irq_sgi_sources ||
|
|
!dist->irq_spi_cpu ||
|
|
!dist->irq_spi_target ||
|
|
!dist->irq_pending_on_cpu) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < nr_cpus; i++)
|
|
ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
|
|
nr_cpus, nr_irqs);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
|
|
if (ret) {
|
|
kvm_err("VGIC: Failed to allocate vcpu memory\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i += 4)
|
|
vgic_set_target_reg(kvm, 0, i);
|
|
|
|
out:
|
|
if (ret)
|
|
kvm_vgic_destroy(kvm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_init - Initialize global VGIC state before running any VCPUs
|
|
* @kvm: pointer to the kvm struct
|
|
*
|
|
* Map the virtual CPU interface into the VM before running any VCPUs. We
|
|
* can't do this at creation time, because user space must first set the
|
|
* virtual CPU interface address in the guest physical address space. Also
|
|
* initialize the ITARGETSRn regs to 0 on the emulated distributor.
|
|
*/
|
|
int kvm_vgic_init(struct kvm *kvm)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int ret = 0, i;
|
|
|
|
if (!irqchip_in_kernel(kvm))
|
|
return 0;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
if (vgic_initialized(kvm))
|
|
goto out;
|
|
|
|
if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
|
|
IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
|
|
kvm_err("Need to set vgic cpu and dist addresses first\n");
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
ret = vgic_init_maps(kvm);
|
|
if (ret) {
|
|
kvm_err("Unable to allocate maps\n");
|
|
goto out;
|
|
}
|
|
|
|
ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
|
|
vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
|
|
true);
|
|
if (ret) {
|
|
kvm_err("Unable to remap VGIC CPU to VCPU\n");
|
|
goto out;
|
|
}
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvm_vgic_vcpu_init(vcpu);
|
|
|
|
kvm->arch.vgic.ready = true;
|
|
out:
|
|
if (ret)
|
|
kvm_vgic_destroy(kvm);
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vgic_create(struct kvm *kvm)
|
|
{
|
|
int i, vcpu_lock_idx = -1, ret = 0;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
if (kvm->arch.vgic.vctrl_base) {
|
|
ret = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Any time a vcpu is run, vcpu_load is called which tries to grab the
|
|
* vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
|
|
* that no other VCPUs are run while we create the vgic.
|
|
*/
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!mutex_trylock(&vcpu->mutex))
|
|
goto out_unlock;
|
|
vcpu_lock_idx = i;
|
|
}
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (vcpu->arch.has_run_once) {
|
|
ret = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
spin_lock_init(&kvm->arch.vgic.lock);
|
|
kvm->arch.vgic.in_kernel = true;
|
|
kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
|
|
kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
|
|
kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
|
|
|
|
out_unlock:
|
|
for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
|
|
vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
|
|
mutex_unlock(&vcpu->mutex);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int vgic_ioaddr_overlap(struct kvm *kvm)
|
|
{
|
|
phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
|
|
phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
|
|
|
|
if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
|
|
return 0;
|
|
if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
|
|
(cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
|
|
phys_addr_t addr, phys_addr_t size)
|
|
{
|
|
int ret;
|
|
|
|
if (addr & ~KVM_PHYS_MASK)
|
|
return -E2BIG;
|
|
|
|
if (addr & (SZ_4K - 1))
|
|
return -EINVAL;
|
|
|
|
if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
|
|
return -EEXIST;
|
|
if (addr + size < addr)
|
|
return -EINVAL;
|
|
|
|
*ioaddr = addr;
|
|
ret = vgic_ioaddr_overlap(kvm);
|
|
if (ret)
|
|
*ioaddr = VGIC_ADDR_UNDEF;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_addr - set or get vgic VM base addresses
|
|
* @kvm: pointer to the vm struct
|
|
* @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
|
|
* @addr: pointer to address value
|
|
* @write: if true set the address in the VM address space, if false read the
|
|
* address
|
|
*
|
|
* Set or get the vgic base addresses for the distributor and the virtual CPU
|
|
* interface in the VM physical address space. These addresses are properties
|
|
* of the emulated core/SoC and therefore user space initially knows this
|
|
* information.
|
|
*/
|
|
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
|
|
{
|
|
int r = 0;
|
|
struct vgic_dist *vgic = &kvm->arch.vgic;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
switch (type) {
|
|
case KVM_VGIC_V2_ADDR_TYPE_DIST:
|
|
if (write) {
|
|
r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
|
|
*addr, KVM_VGIC_V2_DIST_SIZE);
|
|
} else {
|
|
*addr = vgic->vgic_dist_base;
|
|
}
|
|
break;
|
|
case KVM_VGIC_V2_ADDR_TYPE_CPU:
|
|
if (write) {
|
|
r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
|
|
*addr, KVM_VGIC_V2_CPU_SIZE);
|
|
} else {
|
|
*addr = vgic->vgic_cpu_base;
|
|
}
|
|
break;
|
|
default:
|
|
r = -ENODEV;
|
|
}
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
}
|
|
|
|
static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
bool updated = false;
|
|
struct vgic_vmcr vmcr;
|
|
u32 *vmcr_field;
|
|
u32 reg;
|
|
|
|
vgic_get_vmcr(vcpu, &vmcr);
|
|
|
|
switch (offset & ~0x3) {
|
|
case GIC_CPU_CTRL:
|
|
vmcr_field = &vmcr.ctlr;
|
|
break;
|
|
case GIC_CPU_PRIMASK:
|
|
vmcr_field = &vmcr.pmr;
|
|
break;
|
|
case GIC_CPU_BINPOINT:
|
|
vmcr_field = &vmcr.bpr;
|
|
break;
|
|
case GIC_CPU_ALIAS_BINPOINT:
|
|
vmcr_field = &vmcr.abpr;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (!mmio->is_write) {
|
|
reg = *vmcr_field;
|
|
mmio_data_write(mmio, ~0, reg);
|
|
} else {
|
|
reg = mmio_data_read(mmio, ~0);
|
|
if (reg != *vmcr_field) {
|
|
*vmcr_field = reg;
|
|
vgic_set_vmcr(vcpu, &vmcr);
|
|
updated = true;
|
|
}
|
|
}
|
|
return updated;
|
|
}
|
|
|
|
static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
|
|
}
|
|
|
|
static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 reg;
|
|
|
|
if (mmio->is_write)
|
|
return false;
|
|
|
|
/* GICC_IIDR */
|
|
reg = (PRODUCT_ID_KVM << 20) |
|
|
(GICC_ARCH_VERSION_V2 << 16) |
|
|
(IMPLEMENTER_ARM << 0);
|
|
mmio_data_write(mmio, ~0, reg);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* CPU Interface Register accesses - these are not accessed by the VM, but by
|
|
* user space for saving and restoring VGIC state.
|
|
*/
|
|
static const struct mmio_range vgic_cpu_ranges[] = {
|
|
{
|
|
.base = GIC_CPU_CTRL,
|
|
.len = 12,
|
|
.handle_mmio = handle_cpu_mmio_misc,
|
|
},
|
|
{
|
|
.base = GIC_CPU_ALIAS_BINPOINT,
|
|
.len = 4,
|
|
.handle_mmio = handle_mmio_abpr,
|
|
},
|
|
{
|
|
.base = GIC_CPU_ACTIVEPRIO,
|
|
.len = 16,
|
|
.handle_mmio = handle_mmio_raz_wi,
|
|
},
|
|
{
|
|
.base = GIC_CPU_IDENT,
|
|
.len = 4,
|
|
.handle_mmio = handle_cpu_mmio_ident,
|
|
},
|
|
};
|
|
|
|
static int vgic_attr_regs_access(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr,
|
|
u32 *reg, bool is_write)
|
|
{
|
|
const struct mmio_range *r = NULL, *ranges;
|
|
phys_addr_t offset;
|
|
int ret, cpuid, c;
|
|
struct kvm_vcpu *vcpu, *tmp_vcpu;
|
|
struct vgic_dist *vgic;
|
|
struct kvm_exit_mmio mmio;
|
|
|
|
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
|
|
cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
|
|
KVM_DEV_ARM_VGIC_CPUID_SHIFT;
|
|
|
|
mutex_lock(&dev->kvm->lock);
|
|
|
|
ret = vgic_init_maps(dev->kvm);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
vcpu = kvm_get_vcpu(dev->kvm, cpuid);
|
|
vgic = &dev->kvm->arch.vgic;
|
|
|
|
mmio.len = 4;
|
|
mmio.is_write = is_write;
|
|
if (is_write)
|
|
mmio_data_write(&mmio, ~0, *reg);
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
|
mmio.phys_addr = vgic->vgic_dist_base + offset;
|
|
ranges = vgic_dist_ranges;
|
|
break;
|
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
|
|
mmio.phys_addr = vgic->vgic_cpu_base + offset;
|
|
ranges = vgic_cpu_ranges;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
r = find_matching_range(ranges, &mmio, offset);
|
|
|
|
if (unlikely(!r || !r->handle_mmio)) {
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
|
|
spin_lock(&vgic->lock);
|
|
|
|
/*
|
|
* Ensure that no other VCPU is running by checking the vcpu->cpu
|
|
* field. If no other VPCUs are running we can safely access the VGIC
|
|
* state, because even if another VPU is run after this point, that
|
|
* VCPU will not touch the vgic state, because it will block on
|
|
* getting the vgic->lock in kvm_vgic_sync_hwstate().
|
|
*/
|
|
kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
|
|
if (unlikely(tmp_vcpu->cpu != -1)) {
|
|
ret = -EBUSY;
|
|
goto out_vgic_unlock;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move all pending IRQs from the LRs on all VCPUs so the pending
|
|
* state can be properly represented in the register state accessible
|
|
* through this API.
|
|
*/
|
|
kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
|
|
vgic_unqueue_irqs(tmp_vcpu);
|
|
|
|
offset -= r->base;
|
|
r->handle_mmio(vcpu, &mmio, offset);
|
|
|
|
if (!is_write)
|
|
*reg = mmio_data_read(&mmio, ~0);
|
|
|
|
ret = 0;
|
|
out_vgic_unlock:
|
|
spin_unlock(&vgic->lock);
|
|
out:
|
|
mutex_unlock(&dev->kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
int r;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
u64 addr;
|
|
unsigned long type = (unsigned long)attr->attr;
|
|
|
|
if (copy_from_user(&addr, uaddr, sizeof(addr)))
|
|
return -EFAULT;
|
|
|
|
r = kvm_vgic_addr(dev->kvm, type, &addr, true);
|
|
return (r == -ENODEV) ? -ENXIO : r;
|
|
}
|
|
|
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
|
|
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
|
u32 reg;
|
|
|
|
if (get_user(reg, uaddr))
|
|
return -EFAULT;
|
|
|
|
return vgic_attr_regs_access(dev, attr, ®, true);
|
|
}
|
|
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
|
|
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
|
u32 val;
|
|
int ret = 0;
|
|
|
|
if (get_user(val, uaddr))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* We require:
|
|
* - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
|
|
* - at most 1024 interrupts
|
|
* - a multiple of 32 interrupts
|
|
*/
|
|
if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
|
|
val > VGIC_MAX_IRQS ||
|
|
(val & 31))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&dev->kvm->lock);
|
|
|
|
if (vgic_initialized(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
|
|
ret = -EBUSY;
|
|
else
|
|
dev->kvm->arch.vgic.nr_irqs = val;
|
|
|
|
mutex_unlock(&dev->kvm->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
int r = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
u64 addr;
|
|
unsigned long type = (unsigned long)attr->attr;
|
|
|
|
r = kvm_vgic_addr(dev->kvm, type, &addr, false);
|
|
if (r)
|
|
return (r == -ENODEV) ? -ENXIO : r;
|
|
|
|
if (copy_to_user(uaddr, &addr, sizeof(addr)))
|
|
return -EFAULT;
|
|
break;
|
|
}
|
|
|
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
|
|
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
|
u32 reg = 0;
|
|
|
|
r = vgic_attr_regs_access(dev, attr, ®, false);
|
|
if (r)
|
|
return r;
|
|
r = put_user(reg, uaddr);
|
|
break;
|
|
}
|
|
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
|
|
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
|
r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int vgic_has_attr_regs(const struct mmio_range *ranges,
|
|
phys_addr_t offset)
|
|
{
|
|
struct kvm_exit_mmio dev_attr_mmio;
|
|
|
|
dev_attr_mmio.len = 4;
|
|
if (find_matching_range(ranges, &dev_attr_mmio, offset))
|
|
return 0;
|
|
else
|
|
return -ENXIO;
|
|
}
|
|
|
|
static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
{
|
|
phys_addr_t offset;
|
|
|
|
switch (attr->group) {
|
|
case KVM_DEV_ARM_VGIC_GRP_ADDR:
|
|
switch (attr->attr) {
|
|
case KVM_VGIC_V2_ADDR_TYPE_DIST:
|
|
case KVM_VGIC_V2_ADDR_TYPE_CPU:
|
|
return 0;
|
|
}
|
|
break;
|
|
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
|
|
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
|
|
return vgic_has_attr_regs(vgic_dist_ranges, offset);
|
|
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
|
|
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
|
|
return vgic_has_attr_regs(vgic_cpu_ranges, offset);
|
|
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
|
|
return 0;
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
|
|
static void vgic_destroy(struct kvm_device *dev)
|
|
{
|
|
kfree(dev);
|
|
}
|
|
|
|
static int vgic_create(struct kvm_device *dev, u32 type)
|
|
{
|
|
return kvm_vgic_create(dev->kvm);
|
|
}
|
|
|
|
static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
|
|
.name = "kvm-arm-vgic",
|
|
.create = vgic_create,
|
|
.destroy = vgic_destroy,
|
|
.set_attr = vgic_set_attr,
|
|
.get_attr = vgic_get_attr,
|
|
.has_attr = vgic_has_attr,
|
|
};
|
|
|
|
static void vgic_init_maintenance_interrupt(void *info)
|
|
{
|
|
enable_percpu_irq(vgic->maint_irq, 0);
|
|
}
|
|
|
|
static int vgic_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *cpu)
|
|
{
|
|
switch (action) {
|
|
case CPU_STARTING:
|
|
case CPU_STARTING_FROZEN:
|
|
vgic_init_maintenance_interrupt(NULL);
|
|
break;
|
|
case CPU_DYING:
|
|
case CPU_DYING_FROZEN:
|
|
disable_percpu_irq(vgic->maint_irq);
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block vgic_cpu_nb = {
|
|
.notifier_call = vgic_cpu_notify,
|
|
};
|
|
|
|
static const struct of_device_id vgic_ids[] = {
|
|
{ .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
|
|
{ .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
|
|
{},
|
|
};
|
|
|
|
int kvm_vgic_hyp_init(void)
|
|
{
|
|
const struct of_device_id *matched_id;
|
|
const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
|
|
const struct vgic_params **);
|
|
struct device_node *vgic_node;
|
|
int ret;
|
|
|
|
vgic_node = of_find_matching_node_and_match(NULL,
|
|
vgic_ids, &matched_id);
|
|
if (!vgic_node) {
|
|
kvm_err("error: no compatible GIC node found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
vgic_probe = matched_id->data;
|
|
ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
|
|
"vgic", kvm_get_running_vcpus());
|
|
if (ret) {
|
|
kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
|
|
return ret;
|
|
}
|
|
|
|
ret = __register_cpu_notifier(&vgic_cpu_nb);
|
|
if (ret) {
|
|
kvm_err("Cannot register vgic CPU notifier\n");
|
|
goto out_free_irq;
|
|
}
|
|
|
|
/* Callback into for arch code for setup */
|
|
vgic_arch_setup(vgic);
|
|
|
|
on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
|
|
|
|
return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
|
|
KVM_DEV_TYPE_ARM_VGIC_V2);
|
|
|
|
out_free_irq:
|
|
free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
|
|
return ret;
|
|
}
|