forked from Minki/linux
fd451b90e7
The GICv3 architecture spec says: Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior: - ICH_AP0R<n>_EL2. - ICH_AP1R<n>_EL2. So let's not pointlessly go against the rule... Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
229 lines
6.9 KiB
C
229 lines
6.9 KiB
C
/*
|
|
* Copyright (C) 2012-2015 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/compiler.h>
|
|
#include <linux/irqchip/arm-gic-v3.h>
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <asm/kvm_mmu.h>
|
|
|
|
#include "hyp.h"
|
|
|
|
#define vtr_to_max_lr_idx(v) ((v) & 0xf)
|
|
#define vtr_to_nr_pri_bits(v) (((u32)(v) >> 29) + 1)
|
|
|
|
#define read_gicreg(r) \
|
|
({ \
|
|
u64 reg; \
|
|
asm volatile("mrs_s %0, " __stringify(r) : "=r" (reg)); \
|
|
reg; \
|
|
})
|
|
|
|
#define write_gicreg(v,r) \
|
|
do { \
|
|
u64 __val = (v); \
|
|
asm volatile("msr_s " __stringify(r) ", %0" : : "r" (__val));\
|
|
} while (0)
|
|
|
|
/* vcpu is already in the HYP VA space */
|
|
void __hyp_text __vgic_v3_save_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
|
|
u64 val;
|
|
u32 max_lr_idx, nr_pri_bits;
|
|
|
|
/*
|
|
* Make sure stores to the GIC via the memory mapped interface
|
|
* are now visible to the system register interface.
|
|
*/
|
|
dsb(st);
|
|
|
|
cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
|
|
cpu_if->vgic_misr = read_gicreg(ICH_MISR_EL2);
|
|
cpu_if->vgic_eisr = read_gicreg(ICH_EISR_EL2);
|
|
cpu_if->vgic_elrsr = read_gicreg(ICH_ELSR_EL2);
|
|
|
|
write_gicreg(0, ICH_HCR_EL2);
|
|
val = read_gicreg(ICH_VTR_EL2);
|
|
max_lr_idx = vtr_to_max_lr_idx(val);
|
|
nr_pri_bits = vtr_to_nr_pri_bits(val);
|
|
|
|
switch (max_lr_idx) {
|
|
case 15:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(15)] = read_gicreg(ICH_LR15_EL2);
|
|
case 14:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(14)] = read_gicreg(ICH_LR14_EL2);
|
|
case 13:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(13)] = read_gicreg(ICH_LR13_EL2);
|
|
case 12:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(12)] = read_gicreg(ICH_LR12_EL2);
|
|
case 11:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(11)] = read_gicreg(ICH_LR11_EL2);
|
|
case 10:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(10)] = read_gicreg(ICH_LR10_EL2);
|
|
case 9:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(9)] = read_gicreg(ICH_LR9_EL2);
|
|
case 8:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(8)] = read_gicreg(ICH_LR8_EL2);
|
|
case 7:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(7)] = read_gicreg(ICH_LR7_EL2);
|
|
case 6:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(6)] = read_gicreg(ICH_LR6_EL2);
|
|
case 5:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(5)] = read_gicreg(ICH_LR5_EL2);
|
|
case 4:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(4)] = read_gicreg(ICH_LR4_EL2);
|
|
case 3:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(3)] = read_gicreg(ICH_LR3_EL2);
|
|
case 2:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(2)] = read_gicreg(ICH_LR2_EL2);
|
|
case 1:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(1)] = read_gicreg(ICH_LR1_EL2);
|
|
case 0:
|
|
cpu_if->vgic_lr[VGIC_V3_LR_INDEX(0)] = read_gicreg(ICH_LR0_EL2);
|
|
}
|
|
|
|
switch (nr_pri_bits) {
|
|
case 7:
|
|
cpu_if->vgic_ap0r[3] = read_gicreg(ICH_AP0R3_EL2);
|
|
cpu_if->vgic_ap0r[2] = read_gicreg(ICH_AP0R2_EL2);
|
|
case 6:
|
|
cpu_if->vgic_ap0r[1] = read_gicreg(ICH_AP0R1_EL2);
|
|
default:
|
|
cpu_if->vgic_ap0r[0] = read_gicreg(ICH_AP0R0_EL2);
|
|
}
|
|
|
|
switch (nr_pri_bits) {
|
|
case 7:
|
|
cpu_if->vgic_ap1r[3] = read_gicreg(ICH_AP1R3_EL2);
|
|
cpu_if->vgic_ap1r[2] = read_gicreg(ICH_AP1R2_EL2);
|
|
case 6:
|
|
cpu_if->vgic_ap1r[1] = read_gicreg(ICH_AP1R1_EL2);
|
|
default:
|
|
cpu_if->vgic_ap1r[0] = read_gicreg(ICH_AP1R0_EL2);
|
|
}
|
|
|
|
val = read_gicreg(ICC_SRE_EL2);
|
|
write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
|
|
isb(); /* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
|
|
write_gicreg(1, ICC_SRE_EL1);
|
|
}
|
|
|
|
void __hyp_text __vgic_v3_restore_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
|
|
u64 val;
|
|
u32 max_lr_idx, nr_pri_bits;
|
|
|
|
/*
|
|
* VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
|
|
* Group0 interrupt (as generated in GICv2 mode) to be
|
|
* delivered as a FIQ to the guest, with potentially fatal
|
|
* consequences. So we must make sure that ICC_SRE_EL1 has
|
|
* been actually programmed with the value we want before
|
|
* starting to mess with the rest of the GIC.
|
|
*/
|
|
write_gicreg(cpu_if->vgic_sre, ICC_SRE_EL1);
|
|
isb();
|
|
|
|
write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
|
|
write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
|
|
|
|
val = read_gicreg(ICH_VTR_EL2);
|
|
max_lr_idx = vtr_to_max_lr_idx(val);
|
|
nr_pri_bits = vtr_to_nr_pri_bits(val);
|
|
|
|
switch (nr_pri_bits) {
|
|
case 7:
|
|
write_gicreg(cpu_if->vgic_ap0r[3], ICH_AP0R3_EL2);
|
|
write_gicreg(cpu_if->vgic_ap0r[2], ICH_AP0R2_EL2);
|
|
case 6:
|
|
write_gicreg(cpu_if->vgic_ap0r[1], ICH_AP0R1_EL2);
|
|
default:
|
|
write_gicreg(cpu_if->vgic_ap0r[0], ICH_AP0R0_EL2);
|
|
}
|
|
|
|
switch (nr_pri_bits) {
|
|
case 7:
|
|
write_gicreg(cpu_if->vgic_ap1r[3], ICH_AP1R3_EL2);
|
|
write_gicreg(cpu_if->vgic_ap1r[2], ICH_AP1R2_EL2);
|
|
case 6:
|
|
write_gicreg(cpu_if->vgic_ap1r[1], ICH_AP1R1_EL2);
|
|
default:
|
|
write_gicreg(cpu_if->vgic_ap1r[0], ICH_AP1R0_EL2);
|
|
}
|
|
|
|
switch (max_lr_idx) {
|
|
case 15:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(15)], ICH_LR15_EL2);
|
|
case 14:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(14)], ICH_LR14_EL2);
|
|
case 13:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(13)], ICH_LR13_EL2);
|
|
case 12:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(12)], ICH_LR12_EL2);
|
|
case 11:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(11)], ICH_LR11_EL2);
|
|
case 10:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(10)], ICH_LR10_EL2);
|
|
case 9:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(9)], ICH_LR9_EL2);
|
|
case 8:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(8)], ICH_LR8_EL2);
|
|
case 7:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(7)], ICH_LR7_EL2);
|
|
case 6:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(6)], ICH_LR6_EL2);
|
|
case 5:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(5)], ICH_LR5_EL2);
|
|
case 4:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(4)], ICH_LR4_EL2);
|
|
case 3:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(3)], ICH_LR3_EL2);
|
|
case 2:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(2)], ICH_LR2_EL2);
|
|
case 1:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(1)], ICH_LR1_EL2);
|
|
case 0:
|
|
write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(0)], ICH_LR0_EL2);
|
|
}
|
|
|
|
/*
|
|
* Ensures that the above will have reached the
|
|
* (re)distributors. This ensure the guest will read the
|
|
* correct values from the memory-mapped interface.
|
|
*/
|
|
isb();
|
|
dsb(sy);
|
|
|
|
/*
|
|
* Prevent the guest from touching the GIC system registers if
|
|
* SRE isn't enabled for GICv3 emulation.
|
|
*/
|
|
if (!cpu_if->vgic_sre) {
|
|
write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
|
|
ICC_SRE_EL2);
|
|
}
|
|
}
|
|
|
|
static u64 __hyp_text __vgic_v3_read_ich_vtr_el2(void)
|
|
{
|
|
return read_gicreg(ICH_VTR_EL2);
|
|
}
|
|
|
|
__alias(__vgic_v3_read_ich_vtr_el2) u64 __vgic_v3_get_ich_vtr_el2(void);
|