use SPDX-License-Identifier instead of a verbose license text Signed-off-by: Cai Huoqing <caihuoqing@baidu.com> Link: https://lore.kernel.org/r/20210906112302.937-1-caihuoqing@baidu.com Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
		
			
				
	
	
		
			1157 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1157 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Kernel Debug Core
 | |
|  *
 | |
|  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
 | |
|  *
 | |
|  * Copyright (C) 2000-2001 VERITAS Software Corporation.
 | |
|  * Copyright (C) 2002-2004 Timesys Corporation
 | |
|  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
 | |
|  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
 | |
|  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
 | |
|  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
 | |
|  * Copyright (C) 2005-2009 Wind River Systems, Inc.
 | |
|  * Copyright (C) 2007 MontaVista Software, Inc.
 | |
|  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 | |
|  *
 | |
|  * Contributors at various stages not listed above:
 | |
|  *  Jason Wessel ( jason.wessel@windriver.com )
 | |
|  *  George Anzinger <george@mvista.com>
 | |
|  *  Anurekh Saxena (anurekh.saxena@timesys.com)
 | |
|  *  Lake Stevens Instrument Division (Glenn Engel)
 | |
|  *  Jim Kingdon, Cygnus Support.
 | |
|  *
 | |
|  * Original KGDB stub: David Grothe <dave@gcom.com>,
 | |
|  * Tigran Aivazian <tigran@sco.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/kgdb.h>
 | |
| #include <linux/kdb.h>
 | |
| #include <linux/serial_core.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/unaligned.h>
 | |
| #include "debug_core.h"
 | |
| 
 | |
| #define KGDB_MAX_THREAD_QUERY 17
 | |
| 
 | |
| /* Our I/O buffers. */
 | |
| static char			remcom_in_buffer[BUFMAX];
 | |
| static char			remcom_out_buffer[BUFMAX];
 | |
| static int			gdbstub_use_prev_in_buf;
 | |
| static int			gdbstub_prev_in_buf_pos;
 | |
| 
 | |
| /* Storage for the registers, in GDB format. */
 | |
| static unsigned long		gdb_regs[(NUMREGBYTES +
 | |
| 					sizeof(unsigned long) - 1) /
 | |
| 					sizeof(unsigned long)];
 | |
| 
 | |
| /*
 | |
|  * GDB remote protocol parser:
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_KGDB_KDB
 | |
| static int gdbstub_read_wait(void)
 | |
| {
 | |
| 	int ret = -1;
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(gdbstub_use_prev_in_buf)) {
 | |
| 		if (gdbstub_prev_in_buf_pos < gdbstub_use_prev_in_buf)
 | |
| 			return remcom_in_buffer[gdbstub_prev_in_buf_pos++];
 | |
| 		else
 | |
| 			gdbstub_use_prev_in_buf = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* poll any additional I/O interfaces that are defined */
 | |
| 	while (ret < 0)
 | |
| 		for (i = 0; kdb_poll_funcs[i] != NULL; i++) {
 | |
| 			ret = kdb_poll_funcs[i]();
 | |
| 			if (ret > 0)
 | |
| 				break;
 | |
| 		}
 | |
| 	return ret;
 | |
| }
 | |
| #else
 | |
| static int gdbstub_read_wait(void)
 | |
| {
 | |
| 	int ret = dbg_io_ops->read_char();
 | |
| 	while (ret == NO_POLL_CHAR)
 | |
| 		ret = dbg_io_ops->read_char();
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| /* scan for the sequence $<data>#<checksum> */
 | |
| static void get_packet(char *buffer)
 | |
| {
 | |
| 	unsigned char checksum;
 | |
| 	unsigned char xmitcsum;
 | |
| 	int count;
 | |
| 	char ch;
 | |
| 
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Spin and wait around for the start character, ignore all
 | |
| 		 * other characters:
 | |
| 		 */
 | |
| 		while ((ch = (gdbstub_read_wait())) != '$')
 | |
| 			/* nothing */;
 | |
| 
 | |
| 		kgdb_connected = 1;
 | |
| 		checksum = 0;
 | |
| 		xmitcsum = -1;
 | |
| 
 | |
| 		count = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * now, read until a # or end of buffer is found:
 | |
| 		 */
 | |
| 		while (count < (BUFMAX - 1)) {
 | |
| 			ch = gdbstub_read_wait();
 | |
| 			if (ch == '#')
 | |
| 				break;
 | |
| 			checksum = checksum + ch;
 | |
| 			buffer[count] = ch;
 | |
| 			count = count + 1;
 | |
| 		}
 | |
| 
 | |
| 		if (ch == '#') {
 | |
| 			xmitcsum = hex_to_bin(gdbstub_read_wait()) << 4;
 | |
| 			xmitcsum += hex_to_bin(gdbstub_read_wait());
 | |
| 
 | |
| 			if (checksum != xmitcsum)
 | |
| 				/* failed checksum */
 | |
| 				dbg_io_ops->write_char('-');
 | |
| 			else
 | |
| 				/* successful transfer */
 | |
| 				dbg_io_ops->write_char('+');
 | |
| 			if (dbg_io_ops->flush)
 | |
| 				dbg_io_ops->flush();
 | |
| 		}
 | |
| 		buffer[count] = 0;
 | |
| 	} while (checksum != xmitcsum);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send the packet in buffer.
 | |
|  * Check for gdb connection if asked for.
 | |
|  */
 | |
| static void put_packet(char *buffer)
 | |
| {
 | |
| 	unsigned char checksum;
 | |
| 	int count;
 | |
| 	char ch;
 | |
| 
 | |
| 	/*
 | |
| 	 * $<packet info>#<checksum>.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		dbg_io_ops->write_char('$');
 | |
| 		checksum = 0;
 | |
| 		count = 0;
 | |
| 
 | |
| 		while ((ch = buffer[count])) {
 | |
| 			dbg_io_ops->write_char(ch);
 | |
| 			checksum += ch;
 | |
| 			count++;
 | |
| 		}
 | |
| 
 | |
| 		dbg_io_ops->write_char('#');
 | |
| 		dbg_io_ops->write_char(hex_asc_hi(checksum));
 | |
| 		dbg_io_ops->write_char(hex_asc_lo(checksum));
 | |
| 		if (dbg_io_ops->flush)
 | |
| 			dbg_io_ops->flush();
 | |
| 
 | |
| 		/* Now see what we get in reply. */
 | |
| 		ch = gdbstub_read_wait();
 | |
| 
 | |
| 		if (ch == 3)
 | |
| 			ch = gdbstub_read_wait();
 | |
| 
 | |
| 		/* If we get an ACK, we are done. */
 | |
| 		if (ch == '+')
 | |
| 			return;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we get the start of another packet, this means
 | |
| 		 * that GDB is attempting to reconnect.  We will NAK
 | |
| 		 * the packet being sent, and stop trying to send this
 | |
| 		 * packet.
 | |
| 		 */
 | |
| 		if (ch == '$') {
 | |
| 			dbg_io_ops->write_char('-');
 | |
| 			if (dbg_io_ops->flush)
 | |
| 				dbg_io_ops->flush();
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static char gdbmsgbuf[BUFMAX + 1];
 | |
| 
 | |
| void gdbstub_msg_write(const char *s, int len)
 | |
| {
 | |
| 	char *bufptr;
 | |
| 	int wcount;
 | |
| 	int i;
 | |
| 
 | |
| 	if (len == 0)
 | |
| 		len = strlen(s);
 | |
| 
 | |
| 	/* 'O'utput */
 | |
| 	gdbmsgbuf[0] = 'O';
 | |
| 
 | |
| 	/* Fill and send buffers... */
 | |
| 	while (len > 0) {
 | |
| 		bufptr = gdbmsgbuf + 1;
 | |
| 
 | |
| 		/* Calculate how many this time */
 | |
| 		if ((len << 1) > (BUFMAX - 2))
 | |
| 			wcount = (BUFMAX - 2) >> 1;
 | |
| 		else
 | |
| 			wcount = len;
 | |
| 
 | |
| 		/* Pack in hex chars */
 | |
| 		for (i = 0; i < wcount; i++)
 | |
| 			bufptr = hex_byte_pack(bufptr, s[i]);
 | |
| 		*bufptr = '\0';
 | |
| 
 | |
| 		/* Move up */
 | |
| 		s += wcount;
 | |
| 		len -= wcount;
 | |
| 
 | |
| 		/* Write packet */
 | |
| 		put_packet(gdbmsgbuf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert the memory pointed to by mem into hex, placing result in
 | |
|  * buf.  Return a pointer to the last char put in buf (null). May
 | |
|  * return an error.
 | |
|  */
 | |
| char *kgdb_mem2hex(char *mem, char *buf, int count)
 | |
| {
 | |
| 	char *tmp;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * We use the upper half of buf as an intermediate buffer for the
 | |
| 	 * raw memory copy.  Hex conversion will work against this one.
 | |
| 	 */
 | |
| 	tmp = buf + count;
 | |
| 
 | |
| 	err = copy_from_kernel_nofault(tmp, mem, count);
 | |
| 	if (err)
 | |
| 		return NULL;
 | |
| 	while (count > 0) {
 | |
| 		buf = hex_byte_pack(buf, *tmp);
 | |
| 		tmp++;
 | |
| 		count--;
 | |
| 	}
 | |
| 	*buf = 0;
 | |
| 
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert the hex array pointed to by buf into binary to be placed in
 | |
|  * mem.  Return a pointer to the character AFTER the last byte
 | |
|  * written.  May return an error.
 | |
|  */
 | |
| int kgdb_hex2mem(char *buf, char *mem, int count)
 | |
| {
 | |
| 	char *tmp_raw;
 | |
| 	char *tmp_hex;
 | |
| 
 | |
| 	/*
 | |
| 	 * We use the upper half of buf as an intermediate buffer for the
 | |
| 	 * raw memory that is converted from hex.
 | |
| 	 */
 | |
| 	tmp_raw = buf + count * 2;
 | |
| 
 | |
| 	tmp_hex = tmp_raw - 1;
 | |
| 	while (tmp_hex >= buf) {
 | |
| 		tmp_raw--;
 | |
| 		*tmp_raw = hex_to_bin(*tmp_hex--);
 | |
| 		*tmp_raw |= hex_to_bin(*tmp_hex--) << 4;
 | |
| 	}
 | |
| 
 | |
| 	return copy_to_kernel_nofault(mem, tmp_raw, count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * While we find nice hex chars, build a long_val.
 | |
|  * Return number of chars processed.
 | |
|  */
 | |
| int kgdb_hex2long(char **ptr, unsigned long *long_val)
 | |
| {
 | |
| 	int hex_val;
 | |
| 	int num = 0;
 | |
| 	int negate = 0;
 | |
| 
 | |
| 	*long_val = 0;
 | |
| 
 | |
| 	if (**ptr == '-') {
 | |
| 		negate = 1;
 | |
| 		(*ptr)++;
 | |
| 	}
 | |
| 	while (**ptr) {
 | |
| 		hex_val = hex_to_bin(**ptr);
 | |
| 		if (hex_val < 0)
 | |
| 			break;
 | |
| 
 | |
| 		*long_val = (*long_val << 4) | hex_val;
 | |
| 		num++;
 | |
| 		(*ptr)++;
 | |
| 	}
 | |
| 
 | |
| 	if (negate)
 | |
| 		*long_val = -*long_val;
 | |
| 
 | |
| 	return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the binary array pointed to by buf into mem.  Fix $, #, and
 | |
|  * 0x7d escaped with 0x7d. Return -EFAULT on failure or 0 on success.
 | |
|  * The input buf is overwritten with the result to write to mem.
 | |
|  */
 | |
| static int kgdb_ebin2mem(char *buf, char *mem, int count)
 | |
| {
 | |
| 	int size = 0;
 | |
| 	char *c = buf;
 | |
| 
 | |
| 	while (count-- > 0) {
 | |
| 		c[size] = *buf++;
 | |
| 		if (c[size] == 0x7d)
 | |
| 			c[size] = *buf++ ^ 0x20;
 | |
| 		size++;
 | |
| 	}
 | |
| 
 | |
| 	return copy_to_kernel_nofault(mem, c, size);
 | |
| }
 | |
| 
 | |
| #if DBG_MAX_REG_NUM > 0
 | |
| void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
 | |
| {
 | |
| 	int i;
 | |
| 	int idx = 0;
 | |
| 	char *ptr = (char *)gdb_regs;
 | |
| 
 | |
| 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
 | |
| 		dbg_get_reg(i, ptr + idx, regs);
 | |
| 		idx += dbg_reg_def[i].size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
 | |
| {
 | |
| 	int i;
 | |
| 	int idx = 0;
 | |
| 	char *ptr = (char *)gdb_regs;
 | |
| 
 | |
| 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
 | |
| 		dbg_set_reg(i, ptr + idx, regs);
 | |
| 		idx += dbg_reg_def[i].size;
 | |
| 	}
 | |
| }
 | |
| #endif /* DBG_MAX_REG_NUM > 0 */
 | |
| 
 | |
| /* Write memory due to an 'M' or 'X' packet. */
 | |
| static int write_mem_msg(int binary)
 | |
| {
 | |
| 	char *ptr = &remcom_in_buffer[1];
 | |
| 	unsigned long addr;
 | |
| 	unsigned long length;
 | |
| 	int err;
 | |
| 
 | |
| 	if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' &&
 | |
| 	    kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') {
 | |
| 		if (binary)
 | |
| 			err = kgdb_ebin2mem(ptr, (char *)addr, length);
 | |
| 		else
 | |
| 			err = kgdb_hex2mem(ptr, (char *)addr, length);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		if (CACHE_FLUSH_IS_SAFE)
 | |
| 			flush_icache_range(addr, addr + length);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void error_packet(char *pkt, int error)
 | |
| {
 | |
| 	error = -error;
 | |
| 	pkt[0] = 'E';
 | |
| 	pkt[1] = hex_asc[(error / 10)];
 | |
| 	pkt[2] = hex_asc[(error % 10)];
 | |
| 	pkt[3] = '\0';
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Thread ID accessors. We represent a flat TID space to GDB, where
 | |
|  * the per CPU idle threads (which under Linux all have PID 0) are
 | |
|  * remapped to negative TIDs.
 | |
|  */
 | |
| 
 | |
| #define BUF_THREAD_ID_SIZE	8
 | |
| 
 | |
| static char *pack_threadid(char *pkt, unsigned char *id)
 | |
| {
 | |
| 	unsigned char *limit;
 | |
| 	int lzero = 1;
 | |
| 
 | |
| 	limit = id + (BUF_THREAD_ID_SIZE / 2);
 | |
| 	while (id < limit) {
 | |
| 		if (!lzero || *id != 0) {
 | |
| 			pkt = hex_byte_pack(pkt, *id);
 | |
| 			lzero = 0;
 | |
| 		}
 | |
| 		id++;
 | |
| 	}
 | |
| 
 | |
| 	if (lzero)
 | |
| 		pkt = hex_byte_pack(pkt, 0);
 | |
| 
 | |
| 	return pkt;
 | |
| }
 | |
| 
 | |
| static void int_to_threadref(unsigned char *id, int value)
 | |
| {
 | |
| 	put_unaligned_be32(value, id);
 | |
| }
 | |
| 
 | |
| static struct task_struct *getthread(struct pt_regs *regs, int tid)
 | |
| {
 | |
| 	/*
 | |
| 	 * Non-positive TIDs are remapped to the cpu shadow information
 | |
| 	 */
 | |
| 	if (tid == 0 || tid == -1)
 | |
| 		tid = -atomic_read(&kgdb_active) - 2;
 | |
| 	if (tid < -1 && tid > -NR_CPUS - 2) {
 | |
| 		if (kgdb_info[-tid - 2].task)
 | |
| 			return kgdb_info[-tid - 2].task;
 | |
| 		else
 | |
| 			return idle_task(-tid - 2);
 | |
| 	}
 | |
| 	if (tid <= 0) {
 | |
| 		printk(KERN_ERR "KGDB: Internal thread select error\n");
 | |
| 		dump_stack();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * find_task_by_pid_ns() does not take the tasklist lock anymore
 | |
| 	 * but is nicely RCU locked - hence is a pretty resilient
 | |
| 	 * thing to use:
 | |
| 	 */
 | |
| 	return find_task_by_pid_ns(tid, &init_pid_ns);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Remap normal tasks to their real PID,
 | |
|  * CPU shadow threads are mapped to -CPU - 2
 | |
|  */
 | |
| static inline int shadow_pid(int realpid)
 | |
| {
 | |
| 	if (realpid)
 | |
| 		return realpid;
 | |
| 
 | |
| 	return -raw_smp_processor_id() - 2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * All the functions that start with gdb_cmd are the various
 | |
|  * operations to implement the handlers for the gdbserial protocol
 | |
|  * where KGDB is communicating with an external debugger
 | |
|  */
 | |
| 
 | |
| /* Handle the '?' status packets */
 | |
| static void gdb_cmd_status(struct kgdb_state *ks)
 | |
| {
 | |
| 	/*
 | |
| 	 * We know that this packet is only sent
 | |
| 	 * during initial connect.  So to be safe,
 | |
| 	 * we clear out our breakpoints now in case
 | |
| 	 * GDB is reconnecting.
 | |
| 	 */
 | |
| 	dbg_remove_all_break();
 | |
| 
 | |
| 	remcom_out_buffer[0] = 'S';
 | |
| 	hex_byte_pack(&remcom_out_buffer[1], ks->signo);
 | |
| }
 | |
| 
 | |
| static void gdb_get_regs_helper(struct kgdb_state *ks)
 | |
| {
 | |
| 	struct task_struct *thread;
 | |
| 	void *local_debuggerinfo;
 | |
| 	int i;
 | |
| 
 | |
| 	thread = kgdb_usethread;
 | |
| 	if (!thread) {
 | |
| 		thread = kgdb_info[ks->cpu].task;
 | |
| 		local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo;
 | |
| 	} else {
 | |
| 		local_debuggerinfo = NULL;
 | |
| 		for_each_online_cpu(i) {
 | |
| 			/*
 | |
| 			 * Try to find the task on some other
 | |
| 			 * or possibly this node if we do not
 | |
| 			 * find the matching task then we try
 | |
| 			 * to approximate the results.
 | |
| 			 */
 | |
| 			if (thread == kgdb_info[i].task)
 | |
| 				local_debuggerinfo = kgdb_info[i].debuggerinfo;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All threads that don't have debuggerinfo should be
 | |
| 	 * in schedule() sleeping, since all other CPUs
 | |
| 	 * are in kgdb_wait, and thus have debuggerinfo.
 | |
| 	 */
 | |
| 	if (local_debuggerinfo) {
 | |
| 		pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Pull stuff saved during switch_to; nothing
 | |
| 		 * else is accessible (or even particularly
 | |
| 		 * relevant).
 | |
| 		 *
 | |
| 		 * This should be enough for a stack trace.
 | |
| 		 */
 | |
| 		sleeping_thread_to_gdb_regs(gdb_regs, thread);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Handle the 'g' get registers request */
 | |
| static void gdb_cmd_getregs(struct kgdb_state *ks)
 | |
| {
 | |
| 	gdb_get_regs_helper(ks);
 | |
| 	kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES);
 | |
| }
 | |
| 
 | |
| /* Handle the 'G' set registers request */
 | |
| static void gdb_cmd_setregs(struct kgdb_state *ks)
 | |
| {
 | |
| 	kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES);
 | |
| 
 | |
| 	if (kgdb_usethread && kgdb_usethread != current) {
 | |
| 		error_packet(remcom_out_buffer, -EINVAL);
 | |
| 	} else {
 | |
| 		gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs);
 | |
| 		strcpy(remcom_out_buffer, "OK");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Handle the 'm' memory read bytes */
 | |
| static void gdb_cmd_memread(struct kgdb_state *ks)
 | |
| {
 | |
| 	char *ptr = &remcom_in_buffer[1];
 | |
| 	unsigned long length;
 | |
| 	unsigned long addr;
 | |
| 	char *err;
 | |
| 
 | |
| 	if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' &&
 | |
| 					kgdb_hex2long(&ptr, &length) > 0) {
 | |
| 		err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length);
 | |
| 		if (!err)
 | |
| 			error_packet(remcom_out_buffer, -EINVAL);
 | |
| 	} else {
 | |
| 		error_packet(remcom_out_buffer, -EINVAL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Handle the 'M' memory write bytes */
 | |
| static void gdb_cmd_memwrite(struct kgdb_state *ks)
 | |
| {
 | |
| 	int err = write_mem_msg(0);
 | |
| 
 | |
| 	if (err)
 | |
| 		error_packet(remcom_out_buffer, err);
 | |
| 	else
 | |
| 		strcpy(remcom_out_buffer, "OK");
 | |
| }
 | |
| 
 | |
| #if DBG_MAX_REG_NUM > 0
 | |
| static char *gdb_hex_reg_helper(int regnum, char *out)
 | |
| {
 | |
| 	int i;
 | |
| 	int offset = 0;
 | |
| 
 | |
| 	for (i = 0; i < regnum; i++)
 | |
| 		offset += dbg_reg_def[i].size;
 | |
| 	return kgdb_mem2hex((char *)gdb_regs + offset, out,
 | |
| 			    dbg_reg_def[i].size);
 | |
| }
 | |
| 
 | |
| /* Handle the 'p' individual register get */
 | |
| static void gdb_cmd_reg_get(struct kgdb_state *ks)
 | |
| {
 | |
| 	unsigned long regnum;
 | |
| 	char *ptr = &remcom_in_buffer[1];
 | |
| 
 | |
| 	kgdb_hex2long(&ptr, ®num);
 | |
| 	if (regnum >= DBG_MAX_REG_NUM) {
 | |
| 		error_packet(remcom_out_buffer, -EINVAL);
 | |
| 		return;
 | |
| 	}
 | |
| 	gdb_get_regs_helper(ks);
 | |
| 	gdb_hex_reg_helper(regnum, remcom_out_buffer);
 | |
| }
 | |
| 
 | |
| /* Handle the 'P' individual register set */
 | |
| static void gdb_cmd_reg_set(struct kgdb_state *ks)
 | |
| {
 | |
| 	unsigned long regnum;
 | |
| 	char *ptr = &remcom_in_buffer[1];
 | |
| 	int i = 0;
 | |
| 
 | |
| 	kgdb_hex2long(&ptr, ®num);
 | |
| 	if (*ptr++ != '=' ||
 | |
| 	    !(!kgdb_usethread || kgdb_usethread == current) ||
 | |
| 	    !dbg_get_reg(regnum, gdb_regs, ks->linux_regs)) {
 | |
| 		error_packet(remcom_out_buffer, -EINVAL);
 | |
| 		return;
 | |
| 	}
 | |
| 	memset(gdb_regs, 0, sizeof(gdb_regs));
 | |
| 	while (i < sizeof(gdb_regs) * 2)
 | |
| 		if (hex_to_bin(ptr[i]) >= 0)
 | |
| 			i++;
 | |
| 		else
 | |
| 			break;
 | |
| 	i = i / 2;
 | |
| 	kgdb_hex2mem(ptr, (char *)gdb_regs, i);
 | |
| 	dbg_set_reg(regnum, gdb_regs, ks->linux_regs);
 | |
| 	strcpy(remcom_out_buffer, "OK");
 | |
| }
 | |
| #endif /* DBG_MAX_REG_NUM > 0 */
 | |
| 
 | |
| /* Handle the 'X' memory binary write bytes */
 | |
| static void gdb_cmd_binwrite(struct kgdb_state *ks)
 | |
| {
 | |
| 	int err = write_mem_msg(1);
 | |
| 
 | |
| 	if (err)
 | |
| 		error_packet(remcom_out_buffer, err);
 | |
| 	else
 | |
| 		strcpy(remcom_out_buffer, "OK");
 | |
| }
 | |
| 
 | |
| /* Handle the 'D' or 'k', detach or kill packets */
 | |
| static void gdb_cmd_detachkill(struct kgdb_state *ks)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	/* The detach case */
 | |
| 	if (remcom_in_buffer[0] == 'D') {
 | |
| 		error = dbg_remove_all_break();
 | |
| 		if (error < 0) {
 | |
| 			error_packet(remcom_out_buffer, error);
 | |
| 		} else {
 | |
| 			strcpy(remcom_out_buffer, "OK");
 | |
| 			kgdb_connected = 0;
 | |
| 		}
 | |
| 		put_packet(remcom_out_buffer);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Assume the kill case, with no exit code checking,
 | |
| 		 * trying to force detach the debugger:
 | |
| 		 */
 | |
| 		dbg_remove_all_break();
 | |
| 		kgdb_connected = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Handle the 'R' reboot packets */
 | |
| static int gdb_cmd_reboot(struct kgdb_state *ks)
 | |
| {
 | |
| 	/* For now, only honor R0 */
 | |
| 	if (strcmp(remcom_in_buffer, "R0") == 0) {
 | |
| 		printk(KERN_CRIT "Executing emergency reboot\n");
 | |
| 		strcpy(remcom_out_buffer, "OK");
 | |
| 		put_packet(remcom_out_buffer);
 | |
| 
 | |
| 		/*
 | |
| 		 * Execution should not return from
 | |
| 		 * machine_emergency_restart()
 | |
| 		 */
 | |
| 		machine_emergency_restart();
 | |
| 		kgdb_connected = 0;
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Handle the 'q' query packets */
 | |
| static void gdb_cmd_query(struct kgdb_state *ks)
 | |
| {
 | |
| 	struct task_struct *g;
 | |
| 	struct task_struct *p;
 | |
| 	unsigned char thref[BUF_THREAD_ID_SIZE];
 | |
| 	char *ptr;
 | |
| 	int i;
 | |
| 	int cpu;
 | |
| 	int finished = 0;
 | |
| 
 | |
| 	switch (remcom_in_buffer[1]) {
 | |
| 	case 's':
 | |
| 	case 'f':
 | |
| 		if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10))
 | |
| 			break;
 | |
| 
 | |
| 		i = 0;
 | |
| 		remcom_out_buffer[0] = 'm';
 | |
| 		ptr = remcom_out_buffer + 1;
 | |
| 		if (remcom_in_buffer[1] == 'f') {
 | |
| 			/* Each cpu is a shadow thread */
 | |
| 			for_each_online_cpu(cpu) {
 | |
| 				ks->thr_query = 0;
 | |
| 				int_to_threadref(thref, -cpu - 2);
 | |
| 				ptr = pack_threadid(ptr, thref);
 | |
| 				*(ptr++) = ',';
 | |
| 				i++;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for_each_process_thread(g, p) {
 | |
| 			if (i >= ks->thr_query && !finished) {
 | |
| 				int_to_threadref(thref, p->pid);
 | |
| 				ptr = pack_threadid(ptr, thref);
 | |
| 				*(ptr++) = ',';
 | |
| 				ks->thr_query++;
 | |
| 				if (ks->thr_query % KGDB_MAX_THREAD_QUERY == 0)
 | |
| 					finished = 1;
 | |
| 			}
 | |
| 			i++;
 | |
| 		}
 | |
| 
 | |
| 		*(--ptr) = '\0';
 | |
| 		break;
 | |
| 
 | |
| 	case 'C':
 | |
| 		/* Current thread id */
 | |
| 		strcpy(remcom_out_buffer, "QC");
 | |
| 		ks->threadid = shadow_pid(current->pid);
 | |
| 		int_to_threadref(thref, ks->threadid);
 | |
| 		pack_threadid(remcom_out_buffer + 2, thref);
 | |
| 		break;
 | |
| 	case 'T':
 | |
| 		if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16))
 | |
| 			break;
 | |
| 
 | |
| 		ks->threadid = 0;
 | |
| 		ptr = remcom_in_buffer + 17;
 | |
| 		kgdb_hex2long(&ptr, &ks->threadid);
 | |
| 		if (!getthread(ks->linux_regs, ks->threadid)) {
 | |
| 			error_packet(remcom_out_buffer, -EINVAL);
 | |
| 			break;
 | |
| 		}
 | |
| 		if ((int)ks->threadid > 0) {
 | |
| 			kgdb_mem2hex(getthread(ks->linux_regs,
 | |
| 					ks->threadid)->comm,
 | |
| 					remcom_out_buffer, 16);
 | |
| 		} else {
 | |
| 			static char tmpstr[23 + BUF_THREAD_ID_SIZE];
 | |
| 
 | |
| 			sprintf(tmpstr, "shadowCPU%d",
 | |
| 					(int)(-ks->threadid - 2));
 | |
| 			kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr));
 | |
| 		}
 | |
| 		break;
 | |
| #ifdef CONFIG_KGDB_KDB
 | |
| 	case 'R':
 | |
| 		if (strncmp(remcom_in_buffer, "qRcmd,", 6) == 0) {
 | |
| 			int len = strlen(remcom_in_buffer + 6);
 | |
| 
 | |
| 			if ((len % 2) != 0) {
 | |
| 				strcpy(remcom_out_buffer, "E01");
 | |
| 				break;
 | |
| 			}
 | |
| 			kgdb_hex2mem(remcom_in_buffer + 6,
 | |
| 				     remcom_out_buffer, len);
 | |
| 			len = len / 2;
 | |
| 			remcom_out_buffer[len++] = 0;
 | |
| 
 | |
| 			kdb_common_init_state(ks);
 | |
| 			kdb_parse(remcom_out_buffer);
 | |
| 			kdb_common_deinit_state();
 | |
| 
 | |
| 			strcpy(remcom_out_buffer, "OK");
 | |
| 		}
 | |
| 		break;
 | |
| #endif
 | |
| #ifdef CONFIG_HAVE_ARCH_KGDB_QXFER_PKT
 | |
| 	case 'S':
 | |
| 		if (!strncmp(remcom_in_buffer, "qSupported:", 11))
 | |
| 			strcpy(remcom_out_buffer, kgdb_arch_gdb_stub_feature);
 | |
| 		break;
 | |
| 	case 'X':
 | |
| 		if (!strncmp(remcom_in_buffer, "qXfer:", 6))
 | |
| 			kgdb_arch_handle_qxfer_pkt(remcom_in_buffer,
 | |
| 						   remcom_out_buffer);
 | |
| 		break;
 | |
| #endif
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Handle the 'H' task query packets */
 | |
| static void gdb_cmd_task(struct kgdb_state *ks)
 | |
| {
 | |
| 	struct task_struct *thread;
 | |
| 	char *ptr;
 | |
| 
 | |
| 	switch (remcom_in_buffer[1]) {
 | |
| 	case 'g':
 | |
| 		ptr = &remcom_in_buffer[2];
 | |
| 		kgdb_hex2long(&ptr, &ks->threadid);
 | |
| 		thread = getthread(ks->linux_regs, ks->threadid);
 | |
| 		if (!thread && ks->threadid > 0) {
 | |
| 			error_packet(remcom_out_buffer, -EINVAL);
 | |
| 			break;
 | |
| 		}
 | |
| 		kgdb_usethread = thread;
 | |
| 		ks->kgdb_usethreadid = ks->threadid;
 | |
| 		strcpy(remcom_out_buffer, "OK");
 | |
| 		break;
 | |
| 	case 'c':
 | |
| 		ptr = &remcom_in_buffer[2];
 | |
| 		kgdb_hex2long(&ptr, &ks->threadid);
 | |
| 		if (!ks->threadid) {
 | |
| 			kgdb_contthread = NULL;
 | |
| 		} else {
 | |
| 			thread = getthread(ks->linux_regs, ks->threadid);
 | |
| 			if (!thread && ks->threadid > 0) {
 | |
| 				error_packet(remcom_out_buffer, -EINVAL);
 | |
| 				break;
 | |
| 			}
 | |
| 			kgdb_contthread = thread;
 | |
| 		}
 | |
| 		strcpy(remcom_out_buffer, "OK");
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Handle the 'T' thread query packets */
 | |
| static void gdb_cmd_thread(struct kgdb_state *ks)
 | |
| {
 | |
| 	char *ptr = &remcom_in_buffer[1];
 | |
| 	struct task_struct *thread;
 | |
| 
 | |
| 	kgdb_hex2long(&ptr, &ks->threadid);
 | |
| 	thread = getthread(ks->linux_regs, ks->threadid);
 | |
| 	if (thread)
 | |
| 		strcpy(remcom_out_buffer, "OK");
 | |
| 	else
 | |
| 		error_packet(remcom_out_buffer, -EINVAL);
 | |
| }
 | |
| 
 | |
| /* Handle the 'z' or 'Z' breakpoint remove or set packets */
 | |
| static void gdb_cmd_break(struct kgdb_state *ks)
 | |
| {
 | |
| 	/*
 | |
| 	 * Since GDB-5.3, it's been drafted that '0' is a software
 | |
| 	 * breakpoint, '1' is a hardware breakpoint, so let's do that.
 | |
| 	 */
 | |
| 	char *bpt_type = &remcom_in_buffer[1];
 | |
| 	char *ptr = &remcom_in_buffer[2];
 | |
| 	unsigned long addr;
 | |
| 	unsigned long length;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') {
 | |
| 		/* Unsupported */
 | |
| 		if (*bpt_type > '4')
 | |
| 			return;
 | |
| 	} else {
 | |
| 		if (*bpt_type != '0' && *bpt_type != '1')
 | |
| 			/* Unsupported. */
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Test if this is a hardware breakpoint, and
 | |
| 	 * if we support it:
 | |
| 	 */
 | |
| 	if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT))
 | |
| 		/* Unsupported. */
 | |
| 		return;
 | |
| 
 | |
| 	if (*(ptr++) != ',') {
 | |
| 		error_packet(remcom_out_buffer, -EINVAL);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!kgdb_hex2long(&ptr, &addr)) {
 | |
| 		error_packet(remcom_out_buffer, -EINVAL);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (*(ptr++) != ',' ||
 | |
| 		!kgdb_hex2long(&ptr, &length)) {
 | |
| 		error_packet(remcom_out_buffer, -EINVAL);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0')
 | |
| 		error = dbg_set_sw_break(addr);
 | |
| 	else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0')
 | |
| 		error = dbg_remove_sw_break(addr);
 | |
| 	else if (remcom_in_buffer[0] == 'Z')
 | |
| 		error = arch_kgdb_ops.set_hw_breakpoint(addr,
 | |
| 			(int)length, *bpt_type - '0');
 | |
| 	else if (remcom_in_buffer[0] == 'z')
 | |
| 		error = arch_kgdb_ops.remove_hw_breakpoint(addr,
 | |
| 			(int) length, *bpt_type - '0');
 | |
| 
 | |
| 	if (error == 0)
 | |
| 		strcpy(remcom_out_buffer, "OK");
 | |
| 	else
 | |
| 		error_packet(remcom_out_buffer, error);
 | |
| }
 | |
| 
 | |
| /* Handle the 'C' signal / exception passing packets */
 | |
| static int gdb_cmd_exception_pass(struct kgdb_state *ks)
 | |
| {
 | |
| 	/* C09 == pass exception
 | |
| 	 * C15 == detach kgdb, pass exception
 | |
| 	 */
 | |
| 	if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') {
 | |
| 
 | |
| 		ks->pass_exception = 1;
 | |
| 		remcom_in_buffer[0] = 'c';
 | |
| 
 | |
| 	} else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') {
 | |
| 
 | |
| 		ks->pass_exception = 1;
 | |
| 		remcom_in_buffer[0] = 'D';
 | |
| 		dbg_remove_all_break();
 | |
| 		kgdb_connected = 0;
 | |
| 		return 1;
 | |
| 
 | |
| 	} else {
 | |
| 		gdbstub_msg_write("KGDB only knows signal 9 (pass)"
 | |
| 			" and 15 (pass and disconnect)\n"
 | |
| 			"Executing a continue without signal passing\n", 0);
 | |
| 		remcom_in_buffer[0] = 'c';
 | |
| 	}
 | |
| 
 | |
| 	/* Indicate fall through */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function performs all gdbserial command processing
 | |
|  */
 | |
| int gdb_serial_stub(struct kgdb_state *ks)
 | |
| {
 | |
| 	int error = 0;
 | |
| 	int tmp;
 | |
| 
 | |
| 	/* Initialize comm buffer and globals. */
 | |
| 	memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
 | |
| 	kgdb_usethread = kgdb_info[ks->cpu].task;
 | |
| 	ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid);
 | |
| 	ks->pass_exception = 0;
 | |
| 
 | |
| 	if (kgdb_connected) {
 | |
| 		unsigned char thref[BUF_THREAD_ID_SIZE];
 | |
| 		char *ptr;
 | |
| 
 | |
| 		/* Reply to host that an exception has occurred */
 | |
| 		ptr = remcom_out_buffer;
 | |
| 		*ptr++ = 'T';
 | |
| 		ptr = hex_byte_pack(ptr, ks->signo);
 | |
| 		ptr += strlen(strcpy(ptr, "thread:"));
 | |
| 		int_to_threadref(thref, shadow_pid(current->pid));
 | |
| 		ptr = pack_threadid(ptr, thref);
 | |
| 		*ptr++ = ';';
 | |
| 		put_packet(remcom_out_buffer);
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		error = 0;
 | |
| 
 | |
| 		/* Clear the out buffer. */
 | |
| 		memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
 | |
| 
 | |
| 		get_packet(remcom_in_buffer);
 | |
| 
 | |
| 		switch (remcom_in_buffer[0]) {
 | |
| 		case '?': /* gdbserial status */
 | |
| 			gdb_cmd_status(ks);
 | |
| 			break;
 | |
| 		case 'g': /* return the value of the CPU registers */
 | |
| 			gdb_cmd_getregs(ks);
 | |
| 			break;
 | |
| 		case 'G': /* set the value of the CPU registers - return OK */
 | |
| 			gdb_cmd_setregs(ks);
 | |
| 			break;
 | |
| 		case 'm': /* mAA..AA,LLLL  Read LLLL bytes at address AA..AA */
 | |
| 			gdb_cmd_memread(ks);
 | |
| 			break;
 | |
| 		case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */
 | |
| 			gdb_cmd_memwrite(ks);
 | |
| 			break;
 | |
| #if DBG_MAX_REG_NUM > 0
 | |
| 		case 'p': /* pXX Return gdb register XX (in hex) */
 | |
| 			gdb_cmd_reg_get(ks);
 | |
| 			break;
 | |
| 		case 'P': /* PXX=aaaa Set gdb register XX to aaaa (in hex) */
 | |
| 			gdb_cmd_reg_set(ks);
 | |
| 			break;
 | |
| #endif /* DBG_MAX_REG_NUM > 0 */
 | |
| 		case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */
 | |
| 			gdb_cmd_binwrite(ks);
 | |
| 			break;
 | |
| 			/* kill or detach. KGDB should treat this like a
 | |
| 			 * continue.
 | |
| 			 */
 | |
| 		case 'D': /* Debugger detach */
 | |
| 		case 'k': /* Debugger detach via kill */
 | |
| 			gdb_cmd_detachkill(ks);
 | |
| 			goto default_handle;
 | |
| 		case 'R': /* Reboot */
 | |
| 			if (gdb_cmd_reboot(ks))
 | |
| 				goto default_handle;
 | |
| 			break;
 | |
| 		case 'q': /* query command */
 | |
| 			gdb_cmd_query(ks);
 | |
| 			break;
 | |
| 		case 'H': /* task related */
 | |
| 			gdb_cmd_task(ks);
 | |
| 			break;
 | |
| 		case 'T': /* Query thread status */
 | |
| 			gdb_cmd_thread(ks);
 | |
| 			break;
 | |
| 		case 'z': /* Break point remove */
 | |
| 		case 'Z': /* Break point set */
 | |
| 			gdb_cmd_break(ks);
 | |
| 			break;
 | |
| #ifdef CONFIG_KGDB_KDB
 | |
| 		case '3': /* Escape into back into kdb */
 | |
| 			if (remcom_in_buffer[1] == '\0') {
 | |
| 				gdb_cmd_detachkill(ks);
 | |
| 				return DBG_PASS_EVENT;
 | |
| 			}
 | |
| 			fallthrough;
 | |
| #endif
 | |
| 		case 'C': /* Exception passing */
 | |
| 			tmp = gdb_cmd_exception_pass(ks);
 | |
| 			if (tmp > 0)
 | |
| 				goto default_handle;
 | |
| 			if (tmp == 0)
 | |
| 				break;
 | |
| 			fallthrough;	/* on tmp < 0 */
 | |
| 		case 'c': /* Continue packet */
 | |
| 		case 's': /* Single step packet */
 | |
| 			if (kgdb_contthread && kgdb_contthread != current) {
 | |
| 				/* Can't switch threads in kgdb */
 | |
| 				error_packet(remcom_out_buffer, -EINVAL);
 | |
| 				break;
 | |
| 			}
 | |
| 			fallthrough;	/* to default processing */
 | |
| 		default:
 | |
| default_handle:
 | |
| 			error = kgdb_arch_handle_exception(ks->ex_vector,
 | |
| 						ks->signo,
 | |
| 						ks->err_code,
 | |
| 						remcom_in_buffer,
 | |
| 						remcom_out_buffer,
 | |
| 						ks->linux_regs);
 | |
| 			/*
 | |
| 			 * Leave cmd processing on error, detach,
 | |
| 			 * kill, continue, or single step.
 | |
| 			 */
 | |
| 			if (error >= 0 || remcom_in_buffer[0] == 'D' ||
 | |
| 			    remcom_in_buffer[0] == 'k') {
 | |
| 				error = 0;
 | |
| 				goto kgdb_exit;
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		/* reply to the request */
 | |
| 		put_packet(remcom_out_buffer);
 | |
| 	}
 | |
| 
 | |
| kgdb_exit:
 | |
| 	if (ks->pass_exception)
 | |
| 		error = 1;
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int gdbstub_state(struct kgdb_state *ks, char *cmd)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	switch (cmd[0]) {
 | |
| 	case 'e':
 | |
| 		error = kgdb_arch_handle_exception(ks->ex_vector,
 | |
| 						   ks->signo,
 | |
| 						   ks->err_code,
 | |
| 						   remcom_in_buffer,
 | |
| 						   remcom_out_buffer,
 | |
| 						   ks->linux_regs);
 | |
| 		return error;
 | |
| 	case 's':
 | |
| 	case 'c':
 | |
| 		strscpy(remcom_in_buffer, cmd, sizeof(remcom_in_buffer));
 | |
| 		return 0;
 | |
| 	case '$':
 | |
| 		strscpy(remcom_in_buffer, cmd, sizeof(remcom_in_buffer));
 | |
| 		gdbstub_use_prev_in_buf = strlen(remcom_in_buffer);
 | |
| 		gdbstub_prev_in_buf_pos = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	dbg_io_ops->write_char('+');
 | |
| 	put_packet(remcom_out_buffer);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * gdbstub_exit - Send an exit message to GDB
 | |
|  * @status: The exit code to report.
 | |
|  */
 | |
| void gdbstub_exit(int status)
 | |
| {
 | |
| 	unsigned char checksum, ch, buffer[3];
 | |
| 	int loop;
 | |
| 
 | |
| 	if (!kgdb_connected)
 | |
| 		return;
 | |
| 	kgdb_connected = 0;
 | |
| 
 | |
| 	if (!dbg_io_ops || dbg_kdb_mode)
 | |
| 		return;
 | |
| 
 | |
| 	buffer[0] = 'W';
 | |
| 	buffer[1] = hex_asc_hi(status);
 | |
| 	buffer[2] = hex_asc_lo(status);
 | |
| 
 | |
| 	dbg_io_ops->write_char('$');
 | |
| 	checksum = 0;
 | |
| 
 | |
| 	for (loop = 0; loop < 3; loop++) {
 | |
| 		ch = buffer[loop];
 | |
| 		checksum += ch;
 | |
| 		dbg_io_ops->write_char(ch);
 | |
| 	}
 | |
| 
 | |
| 	dbg_io_ops->write_char('#');
 | |
| 	dbg_io_ops->write_char(hex_asc_hi(checksum));
 | |
| 	dbg_io_ops->write_char(hex_asc_lo(checksum));
 | |
| 
 | |
| 	/* make sure the output is flushed, lest the bootloader clobber it */
 | |
| 	if (dbg_io_ops->flush)
 | |
| 		dbg_io_ops->flush();
 | |
| }
 |