Now that usb_endpoint_maxp() only returns the lowest 11 bits from wMaxPacketSize, we can remove this macro from the driver. Cc: Alan Stern <stern@rowland.harvard.edu> Cc: <linux-usb@vger.kernel.org> Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
		
			
				
	
	
		
			1536 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1536 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2001-2004 by David Brownell
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by the
 | |
|  * Free Software Foundation; either version 2 of the License, or (at your
 | |
|  * option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 | |
|  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|  * for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| /* this file is part of ehci-hcd.c */
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
 | |
|  *
 | |
|  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
 | |
|  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
 | |
|  * buffers needed for the larger number).  We use one QH per endpoint, queue
 | |
|  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
 | |
|  *
 | |
|  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
 | |
|  * interrupts) needs careful scheduling.  Performance improvements can be
 | |
|  * an ongoing challenge.  That's in "ehci-sched.c".
 | |
|  *
 | |
|  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
 | |
|  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
 | |
|  * (b) special fields in qh entries or (c) split iso entries.  TTs will
 | |
|  * buffer low/full speed data so the host collects it at high speed.
 | |
|  */
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| /* fill a qtd, returning how much of the buffer we were able to queue up */
 | |
| 
 | |
| static int
 | |
| qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
 | |
| 		  size_t len, int token, int maxpacket)
 | |
| {
 | |
| 	int	i, count;
 | |
| 	u64	addr = buf;
 | |
| 
 | |
| 	/* one buffer entry per 4K ... first might be short or unaligned */
 | |
| 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
 | |
| 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
 | |
| 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
 | |
| 	if (likely (len < count))		/* ... iff needed */
 | |
| 		count = len;
 | |
| 	else {
 | |
| 		buf +=  0x1000;
 | |
| 		buf &= ~0x0fff;
 | |
| 
 | |
| 		/* per-qtd limit: from 16K to 20K (best alignment) */
 | |
| 		for (i = 1; count < len && i < 5; i++) {
 | |
| 			addr = buf;
 | |
| 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
 | |
| 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
 | |
| 					(u32)(addr >> 32));
 | |
| 			buf += 0x1000;
 | |
| 			if ((count + 0x1000) < len)
 | |
| 				count += 0x1000;
 | |
| 			else
 | |
| 				count = len;
 | |
| 		}
 | |
| 
 | |
| 		/* short packets may only terminate transfers */
 | |
| 		if (count != len)
 | |
| 			count -= (count % maxpacket);
 | |
| 	}
 | |
| 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
 | |
| 	qtd->length = count;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline void
 | |
| qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
 | |
| {
 | |
| 	struct ehci_qh_hw *hw = qh->hw;
 | |
| 
 | |
| 	/* writes to an active overlay are unsafe */
 | |
| 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
 | |
| 
 | |
| 	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
 | |
| 	hw->hw_alt_next = EHCI_LIST_END(ehci);
 | |
| 
 | |
| 	/* Except for control endpoints, we make hardware maintain data
 | |
| 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
 | |
| 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
 | |
| 	 * ever clear it.
 | |
| 	 */
 | |
| 	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
 | |
| 		unsigned	is_out, epnum;
 | |
| 
 | |
| 		is_out = qh->is_out;
 | |
| 		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
 | |
| 		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
 | |
| 			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
 | |
| 			usb_settoggle(qh->ps.udev, epnum, is_out, 1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
 | |
| }
 | |
| 
 | |
| /* if it weren't for a common silicon quirk (writing the dummy into the qh
 | |
|  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
 | |
|  * recovery (including urb dequeue) would need software changes to a QH...
 | |
|  */
 | |
| static void
 | |
| qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
 | |
| {
 | |
| 	struct ehci_qtd *qtd;
 | |
| 
 | |
| 	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * first qtd may already be partially processed.
 | |
| 	 * If we come here during unlink, the QH overlay region
 | |
| 	 * might have reference to the just unlinked qtd. The
 | |
| 	 * qtd is updated in qh_completions(). Update the QH
 | |
| 	 * overlay here.
 | |
| 	 */
 | |
| 	if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
 | |
| 		qh->hw->hw_qtd_next = qtd->hw_next;
 | |
| 		if (qh->should_be_inactive)
 | |
| 			ehci_warn(ehci, "qh %p should be inactive!\n", qh);
 | |
| 	} else {
 | |
| 		qh_update(ehci, qh, qtd);
 | |
| 	}
 | |
| 	qh->should_be_inactive = 0;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
 | |
| 
 | |
| static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
 | |
| 		struct usb_host_endpoint *ep)
 | |
| {
 | |
| 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
 | |
| 	struct ehci_qh		*qh = ep->hcpriv;
 | |
| 	unsigned long		flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&ehci->lock, flags);
 | |
| 	qh->clearing_tt = 0;
 | |
| 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
 | |
| 			&& ehci->rh_state == EHCI_RH_RUNNING)
 | |
| 		qh_link_async(ehci, qh);
 | |
| 	spin_unlock_irqrestore(&ehci->lock, flags);
 | |
| }
 | |
| 
 | |
| static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
 | |
| 		struct urb *urb, u32 token)
 | |
| {
 | |
| 
 | |
| 	/* If an async split transaction gets an error or is unlinked,
 | |
| 	 * the TT buffer may be left in an indeterminate state.  We
 | |
| 	 * have to clear the TT buffer.
 | |
| 	 *
 | |
| 	 * Note: this routine is never called for Isochronous transfers.
 | |
| 	 */
 | |
| 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
 | |
| #ifdef CONFIG_DYNAMIC_DEBUG
 | |
| 		struct usb_device *tt = urb->dev->tt->hub;
 | |
| 		dev_dbg(&tt->dev,
 | |
| 			"clear tt buffer port %d, a%d ep%d t%08x\n",
 | |
| 			urb->dev->ttport, urb->dev->devnum,
 | |
| 			usb_pipeendpoint(urb->pipe), token);
 | |
| #endif /* CONFIG_DYNAMIC_DEBUG */
 | |
| 		if (!ehci_is_TDI(ehci)
 | |
| 				|| urb->dev->tt->hub !=
 | |
| 				   ehci_to_hcd(ehci)->self.root_hub) {
 | |
| 			if (usb_hub_clear_tt_buffer(urb) == 0)
 | |
| 				qh->clearing_tt = 1;
 | |
| 		} else {
 | |
| 
 | |
| 			/* REVISIT ARC-derived cores don't clear the root
 | |
| 			 * hub TT buffer in this way...
 | |
| 			 */
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int qtd_copy_status (
 | |
| 	struct ehci_hcd *ehci,
 | |
| 	struct urb *urb,
 | |
| 	size_t length,
 | |
| 	u32 token
 | |
| )
 | |
| {
 | |
| 	int	status = -EINPROGRESS;
 | |
| 
 | |
| 	/* count IN/OUT bytes, not SETUP (even short packets) */
 | |
| 	if (likely (QTD_PID (token) != 2))
 | |
| 		urb->actual_length += length - QTD_LENGTH (token);
 | |
| 
 | |
| 	/* don't modify error codes */
 | |
| 	if (unlikely(urb->unlinked))
 | |
| 		return status;
 | |
| 
 | |
| 	/* force cleanup after short read; not always an error */
 | |
| 	if (unlikely (IS_SHORT_READ (token)))
 | |
| 		status = -EREMOTEIO;
 | |
| 
 | |
| 	/* serious "can't proceed" faults reported by the hardware */
 | |
| 	if (token & QTD_STS_HALT) {
 | |
| 		if (token & QTD_STS_BABBLE) {
 | |
| 			/* FIXME "must" disable babbling device's port too */
 | |
| 			status = -EOVERFLOW;
 | |
| 		/* CERR nonzero + halt --> stall */
 | |
| 		} else if (QTD_CERR(token)) {
 | |
| 			status = -EPIPE;
 | |
| 
 | |
| 		/* In theory, more than one of the following bits can be set
 | |
| 		 * since they are sticky and the transaction is retried.
 | |
| 		 * Which to test first is rather arbitrary.
 | |
| 		 */
 | |
| 		} else if (token & QTD_STS_MMF) {
 | |
| 			/* fs/ls interrupt xfer missed the complete-split */
 | |
| 			status = -EPROTO;
 | |
| 		} else if (token & QTD_STS_DBE) {
 | |
| 			status = (QTD_PID (token) == 1) /* IN ? */
 | |
| 				? -ENOSR  /* hc couldn't read data */
 | |
| 				: -ECOMM; /* hc couldn't write data */
 | |
| 		} else if (token & QTD_STS_XACT) {
 | |
| 			/* timeout, bad CRC, wrong PID, etc */
 | |
| 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
 | |
| 				urb->dev->devpath,
 | |
| 				usb_pipeendpoint(urb->pipe),
 | |
| 				usb_pipein(urb->pipe) ? "in" : "out");
 | |
| 			status = -EPROTO;
 | |
| 		} else {	/* unknown */
 | |
| 			status = -EPROTO;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
 | |
| {
 | |
| 	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
 | |
| 		/* ... update hc-wide periodic stats */
 | |
| 		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(urb->unlinked)) {
 | |
| 		COUNT(ehci->stats.unlink);
 | |
| 	} else {
 | |
| 		/* report non-error and short read status as zero */
 | |
| 		if (status == -EINPROGRESS || status == -EREMOTEIO)
 | |
| 			status = 0;
 | |
| 		COUNT(ehci->stats.complete);
 | |
| 	}
 | |
| 
 | |
| #ifdef EHCI_URB_TRACE
 | |
| 	ehci_dbg (ehci,
 | |
| 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
 | |
| 		__func__, urb->dev->devpath, urb,
 | |
| 		usb_pipeendpoint (urb->pipe),
 | |
| 		usb_pipein (urb->pipe) ? "in" : "out",
 | |
| 		status,
 | |
| 		urb->actual_length, urb->transfer_buffer_length);
 | |
| #endif
 | |
| 
 | |
| 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
 | |
| 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
 | |
| }
 | |
| 
 | |
| static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
 | |
| 
 | |
| /*
 | |
|  * Process and free completed qtds for a qh, returning URBs to drivers.
 | |
|  * Chases up to qh->hw_current.  Returns nonzero if the caller should
 | |
|  * unlink qh.
 | |
|  */
 | |
| static unsigned
 | |
| qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
 | |
| {
 | |
| 	struct ehci_qtd		*last, *end = qh->dummy;
 | |
| 	struct list_head	*entry, *tmp;
 | |
| 	int			last_status;
 | |
| 	int			stopped;
 | |
| 	u8			state;
 | |
| 	struct ehci_qh_hw	*hw = qh->hw;
 | |
| 
 | |
| 	/* completions (or tasks on other cpus) must never clobber HALT
 | |
| 	 * till we've gone through and cleaned everything up, even when
 | |
| 	 * they add urbs to this qh's queue or mark them for unlinking.
 | |
| 	 *
 | |
| 	 * NOTE:  unlinking expects to be done in queue order.
 | |
| 	 *
 | |
| 	 * It's a bug for qh->qh_state to be anything other than
 | |
| 	 * QH_STATE_IDLE, unless our caller is scan_async() or
 | |
| 	 * scan_intr().
 | |
| 	 */
 | |
| 	state = qh->qh_state;
 | |
| 	qh->qh_state = QH_STATE_COMPLETING;
 | |
| 	stopped = (state == QH_STATE_IDLE);
 | |
| 
 | |
|  rescan:
 | |
| 	last = NULL;
 | |
| 	last_status = -EINPROGRESS;
 | |
| 	qh->dequeue_during_giveback = 0;
 | |
| 
 | |
| 	/* remove de-activated QTDs from front of queue.
 | |
| 	 * after faults (including short reads), cleanup this urb
 | |
| 	 * then let the queue advance.
 | |
| 	 * if queue is stopped, handles unlinks.
 | |
| 	 */
 | |
| 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
 | |
| 		struct ehci_qtd	*qtd;
 | |
| 		struct urb	*urb;
 | |
| 		u32		token = 0;
 | |
| 
 | |
| 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
 | |
| 		urb = qtd->urb;
 | |
| 
 | |
| 		/* clean up any state from previous QTD ...*/
 | |
| 		if (last) {
 | |
| 			if (likely (last->urb != urb)) {
 | |
| 				ehci_urb_done(ehci, last->urb, last_status);
 | |
| 				last_status = -EINPROGRESS;
 | |
| 			}
 | |
| 			ehci_qtd_free (ehci, last);
 | |
| 			last = NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* ignore urbs submitted during completions we reported */
 | |
| 		if (qtd == end)
 | |
| 			break;
 | |
| 
 | |
| 		/* hardware copies qtd out of qh overlay */
 | |
| 		rmb ();
 | |
| 		token = hc32_to_cpu(ehci, qtd->hw_token);
 | |
| 
 | |
| 		/* always clean up qtds the hc de-activated */
 | |
|  retry_xacterr:
 | |
| 		if ((token & QTD_STS_ACTIVE) == 0) {
 | |
| 
 | |
| 			/* Report Data Buffer Error: non-fatal but useful */
 | |
| 			if (token & QTD_STS_DBE)
 | |
| 				ehci_dbg(ehci,
 | |
| 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
 | |
| 					urb,
 | |
| 					usb_endpoint_num(&urb->ep->desc),
 | |
| 					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
 | |
| 					urb->transfer_buffer_length,
 | |
| 					qtd,
 | |
| 					qh);
 | |
| 
 | |
| 			/* on STALL, error, and short reads this urb must
 | |
| 			 * complete and all its qtds must be recycled.
 | |
| 			 */
 | |
| 			if ((token & QTD_STS_HALT) != 0) {
 | |
| 
 | |
| 				/* retry transaction errors until we
 | |
| 				 * reach the software xacterr limit
 | |
| 				 */
 | |
| 				if ((token & QTD_STS_XACT) &&
 | |
| 						QTD_CERR(token) == 0 &&
 | |
| 						++qh->xacterrs < QH_XACTERR_MAX &&
 | |
| 						!urb->unlinked) {
 | |
| 					ehci_dbg(ehci,
 | |
| 	"detected XactErr len %zu/%zu retry %d\n",
 | |
| 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
 | |
| 
 | |
| 					/* reset the token in the qtd and the
 | |
| 					 * qh overlay (which still contains
 | |
| 					 * the qtd) so that we pick up from
 | |
| 					 * where we left off
 | |
| 					 */
 | |
| 					token &= ~QTD_STS_HALT;
 | |
| 					token |= QTD_STS_ACTIVE |
 | |
| 							(EHCI_TUNE_CERR << 10);
 | |
| 					qtd->hw_token = cpu_to_hc32(ehci,
 | |
| 							token);
 | |
| 					wmb();
 | |
| 					hw->hw_token = cpu_to_hc32(ehci,
 | |
| 							token);
 | |
| 					goto retry_xacterr;
 | |
| 				}
 | |
| 				stopped = 1;
 | |
| 				qh->unlink_reason |= QH_UNLINK_HALTED;
 | |
| 
 | |
| 			/* magic dummy for some short reads; qh won't advance.
 | |
| 			 * that silicon quirk can kick in with this dummy too.
 | |
| 			 *
 | |
| 			 * other short reads won't stop the queue, including
 | |
| 			 * control transfers (status stage handles that) or
 | |
| 			 * most other single-qtd reads ... the queue stops if
 | |
| 			 * URB_SHORT_NOT_OK was set so the driver submitting
 | |
| 			 * the urbs could clean it up.
 | |
| 			 */
 | |
| 			} else if (IS_SHORT_READ (token)
 | |
| 					&& !(qtd->hw_alt_next
 | |
| 						& EHCI_LIST_END(ehci))) {
 | |
| 				stopped = 1;
 | |
| 				qh->unlink_reason |= QH_UNLINK_SHORT_READ;
 | |
| 			}
 | |
| 
 | |
| 		/* stop scanning when we reach qtds the hc is using */
 | |
| 		} else if (likely (!stopped
 | |
| 				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
 | |
| 			break;
 | |
| 
 | |
| 		/* scan the whole queue for unlinks whenever it stops */
 | |
| 		} else {
 | |
| 			stopped = 1;
 | |
| 
 | |
| 			/* cancel everything if we halt, suspend, etc */
 | |
| 			if (ehci->rh_state < EHCI_RH_RUNNING) {
 | |
| 				last_status = -ESHUTDOWN;
 | |
| 				qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
 | |
| 			}
 | |
| 
 | |
| 			/* this qtd is active; skip it unless a previous qtd
 | |
| 			 * for its urb faulted, or its urb was canceled.
 | |
| 			 */
 | |
| 			else if (last_status == -EINPROGRESS && !urb->unlinked)
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * If this was the active qtd when the qh was unlinked
 | |
| 			 * and the overlay's token is active, then the overlay
 | |
| 			 * hasn't been written back to the qtd yet so use its
 | |
| 			 * token instead of the qtd's.  After the qtd is
 | |
| 			 * processed and removed, the overlay won't be valid
 | |
| 			 * any more.
 | |
| 			 */
 | |
| 			if (state == QH_STATE_IDLE &&
 | |
| 					qh->qtd_list.next == &qtd->qtd_list &&
 | |
| 					(hw->hw_token & ACTIVE_BIT(ehci))) {
 | |
| 				token = hc32_to_cpu(ehci, hw->hw_token);
 | |
| 				hw->hw_token &= ~ACTIVE_BIT(ehci);
 | |
| 				qh->should_be_inactive = 1;
 | |
| 
 | |
| 				/* An unlink may leave an incomplete
 | |
| 				 * async transaction in the TT buffer.
 | |
| 				 * We have to clear it.
 | |
| 				 */
 | |
| 				ehci_clear_tt_buffer(ehci, qh, urb, token);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* unless we already know the urb's status, collect qtd status
 | |
| 		 * and update count of bytes transferred.  in common short read
 | |
| 		 * cases with only one data qtd (including control transfers),
 | |
| 		 * queue processing won't halt.  but with two or more qtds (for
 | |
| 		 * example, with a 32 KB transfer), when the first qtd gets a
 | |
| 		 * short read the second must be removed by hand.
 | |
| 		 */
 | |
| 		if (last_status == -EINPROGRESS) {
 | |
| 			last_status = qtd_copy_status(ehci, urb,
 | |
| 					qtd->length, token);
 | |
| 			if (last_status == -EREMOTEIO
 | |
| 					&& (qtd->hw_alt_next
 | |
| 						& EHCI_LIST_END(ehci)))
 | |
| 				last_status = -EINPROGRESS;
 | |
| 
 | |
| 			/* As part of low/full-speed endpoint-halt processing
 | |
| 			 * we must clear the TT buffer (11.17.5).
 | |
| 			 */
 | |
| 			if (unlikely(last_status != -EINPROGRESS &&
 | |
| 					last_status != -EREMOTEIO)) {
 | |
| 				/* The TT's in some hubs malfunction when they
 | |
| 				 * receive this request following a STALL (they
 | |
| 				 * stop sending isochronous packets).  Since a
 | |
| 				 * STALL can't leave the TT buffer in a busy
 | |
| 				 * state (if you believe Figures 11-48 - 11-51
 | |
| 				 * in the USB 2.0 spec), we won't clear the TT
 | |
| 				 * buffer in this case.  Strictly speaking this
 | |
| 				 * is a violation of the spec.
 | |
| 				 */
 | |
| 				if (last_status != -EPIPE)
 | |
| 					ehci_clear_tt_buffer(ehci, qh, urb,
 | |
| 							token);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* if we're removing something not at the queue head,
 | |
| 		 * patch the hardware queue pointer.
 | |
| 		 */
 | |
| 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
 | |
| 			last = list_entry (qtd->qtd_list.prev,
 | |
| 					struct ehci_qtd, qtd_list);
 | |
| 			last->hw_next = qtd->hw_next;
 | |
| 		}
 | |
| 
 | |
| 		/* remove qtd; it's recycled after possible urb completion */
 | |
| 		list_del (&qtd->qtd_list);
 | |
| 		last = qtd;
 | |
| 
 | |
| 		/* reinit the xacterr counter for the next qtd */
 | |
| 		qh->xacterrs = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* last urb's completion might still need calling */
 | |
| 	if (likely (last != NULL)) {
 | |
| 		ehci_urb_done(ehci, last->urb, last_status);
 | |
| 		ehci_qtd_free (ehci, last);
 | |
| 	}
 | |
| 
 | |
| 	/* Do we need to rescan for URBs dequeued during a giveback? */
 | |
| 	if (unlikely(qh->dequeue_during_giveback)) {
 | |
| 		/* If the QH is already unlinked, do the rescan now. */
 | |
| 		if (state == QH_STATE_IDLE)
 | |
| 			goto rescan;
 | |
| 
 | |
| 		/* Otherwise the caller must unlink the QH. */
 | |
| 	}
 | |
| 
 | |
| 	/* restore original state; caller must unlink or relink */
 | |
| 	qh->qh_state = state;
 | |
| 
 | |
| 	/* be sure the hardware's done with the qh before refreshing
 | |
| 	 * it after fault cleanup, or recovering from silicon wrongly
 | |
| 	 * overlaying the dummy qtd (which reduces DMA chatter).
 | |
| 	 *
 | |
| 	 * We won't refresh a QH that's linked (after the HC
 | |
| 	 * stopped the queue).  That avoids a race:
 | |
| 	 *  - HC reads first part of QH;
 | |
| 	 *  - CPU updates that first part and the token;
 | |
| 	 *  - HC reads rest of that QH, including token
 | |
| 	 * Result:  HC gets an inconsistent image, and then
 | |
| 	 * DMAs to/from the wrong memory (corrupting it).
 | |
| 	 *
 | |
| 	 * That should be rare for interrupt transfers,
 | |
| 	 * except maybe high bandwidth ...
 | |
| 	 */
 | |
| 	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
 | |
| 		qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
 | |
| 
 | |
| 	/* Let the caller know if the QH needs to be unlinked. */
 | |
| 	return qh->unlink_reason;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * reverse of qh_urb_transaction:  free a list of TDs.
 | |
|  * used for cleanup after errors, before HC sees an URB's TDs.
 | |
|  */
 | |
| static void qtd_list_free (
 | |
| 	struct ehci_hcd		*ehci,
 | |
| 	struct urb		*urb,
 | |
| 	struct list_head	*qtd_list
 | |
| ) {
 | |
| 	struct list_head	*entry, *temp;
 | |
| 
 | |
| 	list_for_each_safe (entry, temp, qtd_list) {
 | |
| 		struct ehci_qtd	*qtd;
 | |
| 
 | |
| 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
 | |
| 		list_del (&qtd->qtd_list);
 | |
| 		ehci_qtd_free (ehci, qtd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * create a list of filled qtds for this URB; won't link into qh.
 | |
|  */
 | |
| static struct list_head *
 | |
| qh_urb_transaction (
 | |
| 	struct ehci_hcd		*ehci,
 | |
| 	struct urb		*urb,
 | |
| 	struct list_head	*head,
 | |
| 	gfp_t			flags
 | |
| ) {
 | |
| 	struct ehci_qtd		*qtd, *qtd_prev;
 | |
| 	dma_addr_t		buf;
 | |
| 	int			len, this_sg_len, maxpacket;
 | |
| 	int			is_input;
 | |
| 	u32			token;
 | |
| 	int			i;
 | |
| 	struct scatterlist	*sg;
 | |
| 
 | |
| 	/*
 | |
| 	 * URBs map to sequences of QTDs:  one logical transaction
 | |
| 	 */
 | |
| 	qtd = ehci_qtd_alloc (ehci, flags);
 | |
| 	if (unlikely (!qtd))
 | |
| 		return NULL;
 | |
| 	list_add_tail (&qtd->qtd_list, head);
 | |
| 	qtd->urb = urb;
 | |
| 
 | |
| 	token = QTD_STS_ACTIVE;
 | |
| 	token |= (EHCI_TUNE_CERR << 10);
 | |
| 	/* for split transactions, SplitXState initialized to zero */
 | |
| 
 | |
| 	len = urb->transfer_buffer_length;
 | |
| 	is_input = usb_pipein (urb->pipe);
 | |
| 	if (usb_pipecontrol (urb->pipe)) {
 | |
| 		/* SETUP pid */
 | |
| 		qtd_fill(ehci, qtd, urb->setup_dma,
 | |
| 				sizeof (struct usb_ctrlrequest),
 | |
| 				token | (2 /* "setup" */ << 8), 8);
 | |
| 
 | |
| 		/* ... and always at least one more pid */
 | |
| 		token ^= QTD_TOGGLE;
 | |
| 		qtd_prev = qtd;
 | |
| 		qtd = ehci_qtd_alloc (ehci, flags);
 | |
| 		if (unlikely (!qtd))
 | |
| 			goto cleanup;
 | |
| 		qtd->urb = urb;
 | |
| 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
 | |
| 		list_add_tail (&qtd->qtd_list, head);
 | |
| 
 | |
| 		/* for zero length DATA stages, STATUS is always IN */
 | |
| 		if (len == 0)
 | |
| 			token |= (1 /* "in" */ << 8);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * data transfer stage:  buffer setup
 | |
| 	 */
 | |
| 	i = urb->num_mapped_sgs;
 | |
| 	if (len > 0 && i > 0) {
 | |
| 		sg = urb->sg;
 | |
| 		buf = sg_dma_address(sg);
 | |
| 
 | |
| 		/* urb->transfer_buffer_length may be smaller than the
 | |
| 		 * size of the scatterlist (or vice versa)
 | |
| 		 */
 | |
| 		this_sg_len = min_t(int, sg_dma_len(sg), len);
 | |
| 	} else {
 | |
| 		sg = NULL;
 | |
| 		buf = urb->transfer_dma;
 | |
| 		this_sg_len = len;
 | |
| 	}
 | |
| 
 | |
| 	if (is_input)
 | |
| 		token |= (1 /* "in" */ << 8);
 | |
| 	/* else it's already initted to "out" pid (0 << 8) */
 | |
| 
 | |
| 	maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
 | |
| 
 | |
| 	/*
 | |
| 	 * buffer gets wrapped in one or more qtds;
 | |
| 	 * last one may be "short" (including zero len)
 | |
| 	 * and may serve as a control status ack
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		int this_qtd_len;
 | |
| 
 | |
| 		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
 | |
| 				maxpacket);
 | |
| 		this_sg_len -= this_qtd_len;
 | |
| 		len -= this_qtd_len;
 | |
| 		buf += this_qtd_len;
 | |
| 
 | |
| 		/*
 | |
| 		 * short reads advance to a "magic" dummy instead of the next
 | |
| 		 * qtd ... that forces the queue to stop, for manual cleanup.
 | |
| 		 * (this will usually be overridden later.)
 | |
| 		 */
 | |
| 		if (is_input)
 | |
| 			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
 | |
| 
 | |
| 		/* qh makes control packets use qtd toggle; maybe switch it */
 | |
| 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
 | |
| 			token ^= QTD_TOGGLE;
 | |
| 
 | |
| 		if (likely(this_sg_len <= 0)) {
 | |
| 			if (--i <= 0 || len <= 0)
 | |
| 				break;
 | |
| 			sg = sg_next(sg);
 | |
| 			buf = sg_dma_address(sg);
 | |
| 			this_sg_len = min_t(int, sg_dma_len(sg), len);
 | |
| 		}
 | |
| 
 | |
| 		qtd_prev = qtd;
 | |
| 		qtd = ehci_qtd_alloc (ehci, flags);
 | |
| 		if (unlikely (!qtd))
 | |
| 			goto cleanup;
 | |
| 		qtd->urb = urb;
 | |
| 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
 | |
| 		list_add_tail (&qtd->qtd_list, head);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * unless the caller requires manual cleanup after short reads,
 | |
| 	 * have the alt_next mechanism keep the queue running after the
 | |
| 	 * last data qtd (the only one, for control and most other cases).
 | |
| 	 */
 | |
| 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
 | |
| 				|| usb_pipecontrol (urb->pipe)))
 | |
| 		qtd->hw_alt_next = EHCI_LIST_END(ehci);
 | |
| 
 | |
| 	/*
 | |
| 	 * control requests may need a terminating data "status" ack;
 | |
| 	 * other OUT ones may need a terminating short packet
 | |
| 	 * (zero length).
 | |
| 	 */
 | |
| 	if (likely (urb->transfer_buffer_length != 0)) {
 | |
| 		int	one_more = 0;
 | |
| 
 | |
| 		if (usb_pipecontrol (urb->pipe)) {
 | |
| 			one_more = 1;
 | |
| 			token ^= 0x0100;	/* "in" <--> "out"  */
 | |
| 			token |= QTD_TOGGLE;	/* force DATA1 */
 | |
| 		} else if (usb_pipeout(urb->pipe)
 | |
| 				&& (urb->transfer_flags & URB_ZERO_PACKET)
 | |
| 				&& !(urb->transfer_buffer_length % maxpacket)) {
 | |
| 			one_more = 1;
 | |
| 		}
 | |
| 		if (one_more) {
 | |
| 			qtd_prev = qtd;
 | |
| 			qtd = ehci_qtd_alloc (ehci, flags);
 | |
| 			if (unlikely (!qtd))
 | |
| 				goto cleanup;
 | |
| 			qtd->urb = urb;
 | |
| 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
 | |
| 			list_add_tail (&qtd->qtd_list, head);
 | |
| 
 | |
| 			/* never any data in such packets */
 | |
| 			qtd_fill(ehci, qtd, 0, 0, token, 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* by default, enable interrupt on urb completion */
 | |
| 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
 | |
| 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
 | |
| 	return head;
 | |
| 
 | |
| cleanup:
 | |
| 	qtd_list_free (ehci, urb, head);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| // Would be best to create all qh's from config descriptors,
 | |
| // when each interface/altsetting is established.  Unlink
 | |
| // any previous qh and cancel its urbs first; endpoints are
 | |
| // implicitly reset then (data toggle too).
 | |
| // That'd mean updating how usbcore talks to HCDs. (2.7?)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Each QH holds a qtd list; a QH is used for everything except iso.
 | |
|  *
 | |
|  * For interrupt urbs, the scheduler must set the microframe scheduling
 | |
|  * mask(s) each time the QH gets scheduled.  For highspeed, that's
 | |
|  * just one microframe in the s-mask.  For split interrupt transactions
 | |
|  * there are additional complications: c-mask, maybe FSTNs.
 | |
|  */
 | |
| static struct ehci_qh *
 | |
| qh_make (
 | |
| 	struct ehci_hcd		*ehci,
 | |
| 	struct urb		*urb,
 | |
| 	gfp_t			flags
 | |
| ) {
 | |
| 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
 | |
| 	struct usb_host_endpoint *ep;
 | |
| 	u32			info1 = 0, info2 = 0;
 | |
| 	int			is_input, type;
 | |
| 	int			maxp = 0;
 | |
| 	int			mult;
 | |
| 	struct usb_tt		*tt = urb->dev->tt;
 | |
| 	struct ehci_qh_hw	*hw;
 | |
| 
 | |
| 	if (!qh)
 | |
| 		return qh;
 | |
| 
 | |
| 	/*
 | |
| 	 * init endpoint/device data for this QH
 | |
| 	 */
 | |
| 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
 | |
| 	info1 |= usb_pipedevice (urb->pipe) << 0;
 | |
| 
 | |
| 	is_input = usb_pipein (urb->pipe);
 | |
| 	type = usb_pipetype (urb->pipe);
 | |
| 	ep = usb_pipe_endpoint (urb->dev, urb->pipe);
 | |
| 	maxp = usb_endpoint_maxp (&ep->desc);
 | |
| 	mult = usb_endpoint_maxp_mult (&ep->desc);
 | |
| 
 | |
| 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
 | |
| 	 * acts like up to 3KB, but is built from smaller packets.
 | |
| 	 */
 | |
| 	if (maxp > 1024) {
 | |
| 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Compute interrupt scheduling parameters just once, and save.
 | |
| 	 * - allowing for high bandwidth, how many nsec/uframe are used?
 | |
| 	 * - split transactions need a second CSPLIT uframe; same question
 | |
| 	 * - splits also need a schedule gap (for full/low speed I/O)
 | |
| 	 * - qh has a polling interval
 | |
| 	 *
 | |
| 	 * For control/bulk requests, the HC or TT handles these.
 | |
| 	 */
 | |
| 	if (type == PIPE_INTERRUPT) {
 | |
| 		unsigned	tmp;
 | |
| 
 | |
| 		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
 | |
| 				is_input, 0, mult * maxp));
 | |
| 		qh->ps.phase = NO_FRAME;
 | |
| 
 | |
| 		if (urb->dev->speed == USB_SPEED_HIGH) {
 | |
| 			qh->ps.c_usecs = 0;
 | |
| 			qh->gap_uf = 0;
 | |
| 
 | |
| 			if (urb->interval > 1 && urb->interval < 8) {
 | |
| 				/* NOTE interval 2 or 4 uframes could work.
 | |
| 				 * But interval 1 scheduling is simpler, and
 | |
| 				 * includes high bandwidth.
 | |
| 				 */
 | |
| 				urb->interval = 1;
 | |
| 			} else if (urb->interval > ehci->periodic_size << 3) {
 | |
| 				urb->interval = ehci->periodic_size << 3;
 | |
| 			}
 | |
| 			qh->ps.period = urb->interval >> 3;
 | |
| 
 | |
| 			/* period for bandwidth allocation */
 | |
| 			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
 | |
| 					1 << (urb->ep->desc.bInterval - 1));
 | |
| 
 | |
| 			/* Allow urb->interval to override */
 | |
| 			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
 | |
| 			qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
 | |
| 		} else {
 | |
| 			int		think_time;
 | |
| 
 | |
| 			/* gap is f(FS/LS transfer times) */
 | |
| 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
 | |
| 					is_input, 0, maxp) / (125 * 1000);
 | |
| 
 | |
| 			/* FIXME this just approximates SPLIT/CSPLIT times */
 | |
| 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
 | |
| 				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
 | |
| 				qh->ps.usecs = HS_USECS(1);
 | |
| 			} else {		// SPLIT+DATA, gap, CSPLIT
 | |
| 				qh->ps.usecs += HS_USECS(1);
 | |
| 				qh->ps.c_usecs = HS_USECS(0);
 | |
| 			}
 | |
| 
 | |
| 			think_time = tt ? tt->think_time : 0;
 | |
| 			qh->ps.tt_usecs = NS_TO_US(think_time +
 | |
| 					usb_calc_bus_time (urb->dev->speed,
 | |
| 					is_input, 0, maxp));
 | |
| 			if (urb->interval > ehci->periodic_size)
 | |
| 				urb->interval = ehci->periodic_size;
 | |
| 			qh->ps.period = urb->interval;
 | |
| 
 | |
| 			/* period for bandwidth allocation */
 | |
| 			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
 | |
| 					urb->ep->desc.bInterval);
 | |
| 			tmp = rounddown_pow_of_two(tmp);
 | |
| 
 | |
| 			/* Allow urb->interval to override */
 | |
| 			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
 | |
| 			qh->ps.bw_uperiod = qh->ps.bw_period << 3;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* support for tt scheduling, and access to toggles */
 | |
| 	qh->ps.udev = urb->dev;
 | |
| 	qh->ps.ep = urb->ep;
 | |
| 
 | |
| 	/* using TT? */
 | |
| 	switch (urb->dev->speed) {
 | |
| 	case USB_SPEED_LOW:
 | |
| 		info1 |= QH_LOW_SPEED;
 | |
| 		/* FALL THROUGH */
 | |
| 
 | |
| 	case USB_SPEED_FULL:
 | |
| 		/* EPS 0 means "full" */
 | |
| 		if (type != PIPE_INTERRUPT)
 | |
| 			info1 |= (EHCI_TUNE_RL_TT << 28);
 | |
| 		if (type == PIPE_CONTROL) {
 | |
| 			info1 |= QH_CONTROL_EP;		/* for TT */
 | |
| 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
 | |
| 		}
 | |
| 		info1 |= maxp << 16;
 | |
| 
 | |
| 		info2 |= (EHCI_TUNE_MULT_TT << 30);
 | |
| 
 | |
| 		/* Some Freescale processors have an erratum in which the
 | |
| 		 * port number in the queue head was 0..N-1 instead of 1..N.
 | |
| 		 */
 | |
| 		if (ehci_has_fsl_portno_bug(ehci))
 | |
| 			info2 |= (urb->dev->ttport-1) << 23;
 | |
| 		else
 | |
| 			info2 |= urb->dev->ttport << 23;
 | |
| 
 | |
| 		/* set the address of the TT; for TDI's integrated
 | |
| 		 * root hub tt, leave it zeroed.
 | |
| 		 */
 | |
| 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
 | |
| 			info2 |= tt->hub->devnum << 16;
 | |
| 
 | |
| 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case USB_SPEED_HIGH:		/* no TT involved */
 | |
| 		info1 |= QH_HIGH_SPEED;
 | |
| 		if (type == PIPE_CONTROL) {
 | |
| 			info1 |= (EHCI_TUNE_RL_HS << 28);
 | |
| 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
 | |
| 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
 | |
| 			info2 |= (EHCI_TUNE_MULT_HS << 30);
 | |
| 		} else if (type == PIPE_BULK) {
 | |
| 			info1 |= (EHCI_TUNE_RL_HS << 28);
 | |
| 			/* The USB spec says that high speed bulk endpoints
 | |
| 			 * always use 512 byte maxpacket.  But some device
 | |
| 			 * vendors decided to ignore that, and MSFT is happy
 | |
| 			 * to help them do so.  So now people expect to use
 | |
| 			 * such nonconformant devices with Linux too; sigh.
 | |
| 			 */
 | |
| 			info1 |= maxp << 16;
 | |
| 			info2 |= (EHCI_TUNE_MULT_HS << 30);
 | |
| 		} else {		/* PIPE_INTERRUPT */
 | |
| 			info1 |= maxp << 16;
 | |
| 			info2 |= mult << 30;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
 | |
| 			urb->dev->speed);
 | |
| done:
 | |
| 		qh_destroy(ehci, qh);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
 | |
| 
 | |
| 	/* init as live, toggle clear */
 | |
| 	qh->qh_state = QH_STATE_IDLE;
 | |
| 	hw = qh->hw;
 | |
| 	hw->hw_info1 = cpu_to_hc32(ehci, info1);
 | |
| 	hw->hw_info2 = cpu_to_hc32(ehci, info2);
 | |
| 	qh->is_out = !is_input;
 | |
| 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
 | |
| 	return qh;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| static void enable_async(struct ehci_hcd *ehci)
 | |
| {
 | |
| 	if (ehci->async_count++)
 | |
| 		return;
 | |
| 
 | |
| 	/* Stop waiting to turn off the async schedule */
 | |
| 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
 | |
| 
 | |
| 	/* Don't start the schedule until ASS is 0 */
 | |
| 	ehci_poll_ASS(ehci);
 | |
| 	turn_on_io_watchdog(ehci);
 | |
| }
 | |
| 
 | |
| static void disable_async(struct ehci_hcd *ehci)
 | |
| {
 | |
| 	if (--ehci->async_count)
 | |
| 		return;
 | |
| 
 | |
| 	/* The async schedule and unlink lists are supposed to be empty */
 | |
| 	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
 | |
| 			!list_empty(&ehci->async_idle));
 | |
| 
 | |
| 	/* Don't turn off the schedule until ASS is 1 */
 | |
| 	ehci_poll_ASS(ehci);
 | |
| }
 | |
| 
 | |
| /* move qh (and its qtds) onto async queue; maybe enable queue.  */
 | |
| 
 | |
| static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
 | |
| {
 | |
| 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
 | |
| 	struct ehci_qh	*head;
 | |
| 
 | |
| 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
 | |
| 	if (unlikely(qh->clearing_tt))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
 | |
| 
 | |
| 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
 | |
| 	qh_refresh(ehci, qh);
 | |
| 
 | |
| 	/* splice right after start */
 | |
| 	head = ehci->async;
 | |
| 	qh->qh_next = head->qh_next;
 | |
| 	qh->hw->hw_next = head->hw->hw_next;
 | |
| 	wmb ();
 | |
| 
 | |
| 	head->qh_next.qh = qh;
 | |
| 	head->hw->hw_next = dma;
 | |
| 
 | |
| 	qh->qh_state = QH_STATE_LINKED;
 | |
| 	qh->xacterrs = 0;
 | |
| 	qh->unlink_reason = 0;
 | |
| 	/* qtd completions reported later by interrupt */
 | |
| 
 | |
| 	enable_async(ehci);
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * For control/bulk/interrupt, return QH with these TDs appended.
 | |
|  * Allocates and initializes the QH if necessary.
 | |
|  * Returns null if it can't allocate a QH it needs to.
 | |
|  * If the QH has TDs (urbs) already, that's great.
 | |
|  */
 | |
| static struct ehci_qh *qh_append_tds (
 | |
| 	struct ehci_hcd		*ehci,
 | |
| 	struct urb		*urb,
 | |
| 	struct list_head	*qtd_list,
 | |
| 	int			epnum,
 | |
| 	void			**ptr
 | |
| )
 | |
| {
 | |
| 	struct ehci_qh		*qh = NULL;
 | |
| 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
 | |
| 
 | |
| 	qh = (struct ehci_qh *) *ptr;
 | |
| 	if (unlikely (qh == NULL)) {
 | |
| 		/* can't sleep here, we have ehci->lock... */
 | |
| 		qh = qh_make (ehci, urb, GFP_ATOMIC);
 | |
| 		*ptr = qh;
 | |
| 	}
 | |
| 	if (likely (qh != NULL)) {
 | |
| 		struct ehci_qtd	*qtd;
 | |
| 
 | |
| 		if (unlikely (list_empty (qtd_list)))
 | |
| 			qtd = NULL;
 | |
| 		else
 | |
| 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
 | |
| 					qtd_list);
 | |
| 
 | |
| 		/* control qh may need patching ... */
 | |
| 		if (unlikely (epnum == 0)) {
 | |
| 
 | |
|                         /* usb_reset_device() briefly reverts to address 0 */
 | |
|                         if (usb_pipedevice (urb->pipe) == 0)
 | |
| 				qh->hw->hw_info1 &= ~qh_addr_mask;
 | |
| 		}
 | |
| 
 | |
| 		/* just one way to queue requests: swap with the dummy qtd.
 | |
| 		 * only hc or qh_refresh() ever modify the overlay.
 | |
| 		 */
 | |
| 		if (likely (qtd != NULL)) {
 | |
| 			struct ehci_qtd		*dummy;
 | |
| 			dma_addr_t		dma;
 | |
| 			__hc32			token;
 | |
| 
 | |
| 			/* to avoid racing the HC, use the dummy td instead of
 | |
| 			 * the first td of our list (becomes new dummy).  both
 | |
| 			 * tds stay deactivated until we're done, when the
 | |
| 			 * HC is allowed to fetch the old dummy (4.10.2).
 | |
| 			 */
 | |
| 			token = qtd->hw_token;
 | |
| 			qtd->hw_token = HALT_BIT(ehci);
 | |
| 
 | |
| 			dummy = qh->dummy;
 | |
| 
 | |
| 			dma = dummy->qtd_dma;
 | |
| 			*dummy = *qtd;
 | |
| 			dummy->qtd_dma = dma;
 | |
| 
 | |
| 			list_del (&qtd->qtd_list);
 | |
| 			list_add (&dummy->qtd_list, qtd_list);
 | |
| 			list_splice_tail(qtd_list, &qh->qtd_list);
 | |
| 
 | |
| 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
 | |
| 			qh->dummy = qtd;
 | |
| 
 | |
| 			/* hc must see the new dummy at list end */
 | |
| 			dma = qtd->qtd_dma;
 | |
| 			qtd = list_entry (qh->qtd_list.prev,
 | |
| 					struct ehci_qtd, qtd_list);
 | |
| 			qtd->hw_next = QTD_NEXT(ehci, dma);
 | |
| 
 | |
| 			/* let the hc process these next qtds */
 | |
| 			wmb ();
 | |
| 			dummy->hw_token = token;
 | |
| 
 | |
| 			urb->hcpriv = qh;
 | |
| 		}
 | |
| 	}
 | |
| 	return qh;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| static int
 | |
| submit_async (
 | |
| 	struct ehci_hcd		*ehci,
 | |
| 	struct urb		*urb,
 | |
| 	struct list_head	*qtd_list,
 | |
| 	gfp_t			mem_flags
 | |
| ) {
 | |
| 	int			epnum;
 | |
| 	unsigned long		flags;
 | |
| 	struct ehci_qh		*qh = NULL;
 | |
| 	int			rc;
 | |
| 
 | |
| 	epnum = urb->ep->desc.bEndpointAddress;
 | |
| 
 | |
| #ifdef EHCI_URB_TRACE
 | |
| 	{
 | |
| 		struct ehci_qtd *qtd;
 | |
| 		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
 | |
| 		ehci_dbg(ehci,
 | |
| 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
 | |
| 			 __func__, urb->dev->devpath, urb,
 | |
| 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
 | |
| 			 urb->transfer_buffer_length,
 | |
| 			 qtd, urb->ep->hcpriv);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	spin_lock_irqsave (&ehci->lock, flags);
 | |
| 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
 | |
| 		rc = -ESHUTDOWN;
 | |
| 		goto done;
 | |
| 	}
 | |
| 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
 | |
| 	if (unlikely(rc))
 | |
| 		goto done;
 | |
| 
 | |
| 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
 | |
| 	if (unlikely(qh == NULL)) {
 | |
| 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
 | |
| 		rc = -ENOMEM;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Control/bulk operations through TTs don't need scheduling,
 | |
| 	 * the HC and TT handle it when the TT has a buffer ready.
 | |
| 	 */
 | |
| 	if (likely (qh->qh_state == QH_STATE_IDLE))
 | |
| 		qh_link_async(ehci, qh);
 | |
|  done:
 | |
| 	spin_unlock_irqrestore (&ehci->lock, flags);
 | |
| 	if (unlikely (qh == NULL))
 | |
| 		qtd_list_free (ehci, urb, qtd_list);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| #ifdef CONFIG_USB_HCD_TEST_MODE
 | |
| /*
 | |
|  * This function creates the qtds and submits them for the
 | |
|  * SINGLE_STEP_SET_FEATURE Test.
 | |
|  * This is done in two parts: first SETUP req for GetDesc is sent then
 | |
|  * 15 seconds later, the IN stage for GetDesc starts to req data from dev
 | |
|  *
 | |
|  * is_setup : i/p arguement decides which of the two stage needs to be
 | |
|  * performed; TRUE - SETUP and FALSE - IN+STATUS
 | |
|  * Returns 0 if success
 | |
|  */
 | |
| static int submit_single_step_set_feature(
 | |
| 	struct usb_hcd  *hcd,
 | |
| 	struct urb      *urb,
 | |
| 	int             is_setup
 | |
| ) {
 | |
| 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
 | |
| 	struct list_head	qtd_list;
 | |
| 	struct list_head	*head;
 | |
| 
 | |
| 	struct ehci_qtd		*qtd, *qtd_prev;
 | |
| 	dma_addr_t		buf;
 | |
| 	int			len, maxpacket;
 | |
| 	u32			token;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&qtd_list);
 | |
| 	head = &qtd_list;
 | |
| 
 | |
| 	/* URBs map to sequences of QTDs:  one logical transaction */
 | |
| 	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
 | |
| 	if (unlikely(!qtd))
 | |
| 		return -1;
 | |
| 	list_add_tail(&qtd->qtd_list, head);
 | |
| 	qtd->urb = urb;
 | |
| 
 | |
| 	token = QTD_STS_ACTIVE;
 | |
| 	token |= (EHCI_TUNE_CERR << 10);
 | |
| 
 | |
| 	len = urb->transfer_buffer_length;
 | |
| 	/*
 | |
| 	 * Check if the request is to perform just the SETUP stage (getDesc)
 | |
| 	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
 | |
| 	 * 15 secs after the setup
 | |
| 	 */
 | |
| 	if (is_setup) {
 | |
| 		/* SETUP pid */
 | |
| 		qtd_fill(ehci, qtd, urb->setup_dma,
 | |
| 				sizeof(struct usb_ctrlrequest),
 | |
| 				token | (2 /* "setup" */ << 8), 8);
 | |
| 
 | |
| 		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
 | |
| 		return 0; /*Return now; we shall come back after 15 seconds*/
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * IN: data transfer stage:  buffer setup : start the IN txn phase for
 | |
| 	 * the get_Desc SETUP which was sent 15seconds back
 | |
| 	 */
 | |
| 	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/
 | |
| 	buf = urb->transfer_dma;
 | |
| 
 | |
| 	token |= (1 /* "in" */ << 8);  /*This is IN stage*/
 | |
| 
 | |
| 	maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0);
 | |
| 
 | |
| 	qtd_fill(ehci, qtd, buf, len, token, maxpacket);
 | |
| 
 | |
| 	/*
 | |
| 	 * Our IN phase shall always be a short read; so keep the queue running
 | |
| 	 * and let it advance to the next qtd which zero length OUT status
 | |
| 	 */
 | |
| 	qtd->hw_alt_next = EHCI_LIST_END(ehci);
 | |
| 
 | |
| 	/* STATUS stage for GetDesc control request */
 | |
| 	token ^= 0x0100;        /* "in" <--> "out"  */
 | |
| 	token |= QTD_TOGGLE;    /* force DATA1 */
 | |
| 
 | |
| 	qtd_prev = qtd;
 | |
| 	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
 | |
| 	if (unlikely(!qtd))
 | |
| 		goto cleanup;
 | |
| 	qtd->urb = urb;
 | |
| 	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
 | |
| 	list_add_tail(&qtd->qtd_list, head);
 | |
| 
 | |
| 	/* dont fill any data in such packets */
 | |
| 	qtd_fill(ehci, qtd, 0, 0, token, 0);
 | |
| 
 | |
| 	/* by default, enable interrupt on urb completion */
 | |
| 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
 | |
| 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
 | |
| 
 | |
| 	submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| cleanup:
 | |
| 	qtd_list_free(ehci, urb, head);
 | |
| 	return -1;
 | |
| }
 | |
| #endif /* CONFIG_USB_HCD_TEST_MODE */
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
 | |
| {
 | |
| 	struct ehci_qh		*prev;
 | |
| 
 | |
| 	/* Add to the end of the list of QHs waiting for the next IAAD */
 | |
| 	qh->qh_state = QH_STATE_UNLINK_WAIT;
 | |
| 	list_add_tail(&qh->unlink_node, &ehci->async_unlink);
 | |
| 
 | |
| 	/* Unlink it from the schedule */
 | |
| 	prev = ehci->async;
 | |
| 	while (prev->qh_next.qh != qh)
 | |
| 		prev = prev->qh_next.qh;
 | |
| 
 | |
| 	prev->hw->hw_next = qh->hw->hw_next;
 | |
| 	prev->qh_next = qh->qh_next;
 | |
| 	if (ehci->qh_scan_next == qh)
 | |
| 		ehci->qh_scan_next = qh->qh_next.qh;
 | |
| }
 | |
| 
 | |
| static void start_iaa_cycle(struct ehci_hcd *ehci)
 | |
| {
 | |
| 	/* If the controller isn't running, we don't have to wait for it */
 | |
| 	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
 | |
| 		end_unlink_async(ehci);
 | |
| 
 | |
| 	/* Otherwise start a new IAA cycle if one isn't already running */
 | |
| 	} else if (ehci->rh_state == EHCI_RH_RUNNING &&
 | |
| 			!ehci->iaa_in_progress) {
 | |
| 
 | |
| 		/* Make sure the unlinks are all visible to the hardware */
 | |
| 		wmb();
 | |
| 
 | |
| 		ehci_writel(ehci, ehci->command | CMD_IAAD,
 | |
| 				&ehci->regs->command);
 | |
| 		ehci_readl(ehci, &ehci->regs->command);
 | |
| 		ehci->iaa_in_progress = true;
 | |
| 		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void end_iaa_cycle(struct ehci_hcd *ehci)
 | |
| {
 | |
| 	if (ehci->has_synopsys_hc_bug)
 | |
| 		ehci_writel(ehci, (u32) ehci->async->qh_dma,
 | |
| 			    &ehci->regs->async_next);
 | |
| 
 | |
| 	/* The current IAA cycle has ended */
 | |
| 	ehci->iaa_in_progress = false;
 | |
| 
 | |
| 	end_unlink_async(ehci);
 | |
| }
 | |
| 
 | |
| /* See if the async qh for the qtds being unlinked are now gone from the HC */
 | |
| 
 | |
| static void end_unlink_async(struct ehci_hcd *ehci)
 | |
| {
 | |
| 	struct ehci_qh		*qh;
 | |
| 	bool			early_exit;
 | |
| 
 | |
| 	if (list_empty(&ehci->async_unlink))
 | |
| 		return;
 | |
| 	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
 | |
| 			unlink_node);	/* QH whose IAA cycle just ended */
 | |
| 
 | |
| 	/*
 | |
| 	 * If async_unlinking is set then this routine is already running,
 | |
| 	 * either on the stack or on another CPU.
 | |
| 	 */
 | |
| 	early_exit = ehci->async_unlinking;
 | |
| 
 | |
| 	/* If the controller isn't running, process all the waiting QHs */
 | |
| 	if (ehci->rh_state < EHCI_RH_RUNNING)
 | |
| 		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
 | |
| 
 | |
| 	/*
 | |
| 	 * Intel (?) bug: The HC can write back the overlay region even
 | |
| 	 * after the IAA interrupt occurs.  In self-defense, always go
 | |
| 	 * through two IAA cycles for each QH.
 | |
| 	 */
 | |
| 	else if (qh->qh_state == QH_STATE_UNLINK) {
 | |
| 		/*
 | |
| 		 * Second IAA cycle has finished.  Process only the first
 | |
| 		 * waiting QH (NVIDIA (?) bug).
 | |
| 		 */
 | |
| 		list_move_tail(&qh->unlink_node, &ehci->async_idle);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * AMD/ATI (?) bug: The HC can continue to use an active QH long
 | |
| 	 * after the IAA interrupt occurs.  To prevent problems, QHs that
 | |
| 	 * may still be active will wait until 2 ms have passed with no
 | |
| 	 * change to the hw_current and hw_token fields (this delay occurs
 | |
| 	 * between the two IAA cycles).
 | |
| 	 *
 | |
| 	 * The EHCI spec (4.8.2) says that active QHs must not be removed
 | |
| 	 * from the async schedule and recommends waiting until the QH
 | |
| 	 * goes inactive.  This is ridiculous because the QH will _never_
 | |
| 	 * become inactive if the endpoint NAKs indefinitely.
 | |
| 	 */
 | |
| 
 | |
| 	/* Some reasons for unlinking guarantee the QH can't be active */
 | |
| 	else if (qh->unlink_reason & (QH_UNLINK_HALTED |
 | |
| 			QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
 | |
| 		goto DelayDone;
 | |
| 
 | |
| 	/* The QH can't be active if the queue was and still is empty... */
 | |
| 	else if	((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
 | |
| 			list_empty(&qh->qtd_list))
 | |
| 		goto DelayDone;
 | |
| 
 | |
| 	/* ... or if the QH has halted */
 | |
| 	else if	(qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
 | |
| 		goto DelayDone;
 | |
| 
 | |
| 	/* Otherwise we have to wait until the QH stops changing */
 | |
| 	else {
 | |
| 		__hc32		qh_current, qh_token;
 | |
| 
 | |
| 		qh_current = qh->hw->hw_current;
 | |
| 		qh_token = qh->hw->hw_token;
 | |
| 		if (qh_current != ehci->old_current ||
 | |
| 				qh_token != ehci->old_token) {
 | |
| 			ehci->old_current = qh_current;
 | |
| 			ehci->old_token = qh_token;
 | |
| 			ehci_enable_event(ehci,
 | |
| 					EHCI_HRTIMER_ACTIVE_UNLINK, true);
 | |
| 			return;
 | |
| 		}
 | |
|  DelayDone:
 | |
| 		qh->qh_state = QH_STATE_UNLINK;
 | |
| 		early_exit = true;
 | |
| 	}
 | |
| 	ehci->old_current = ~0;		/* Prepare for next QH */
 | |
| 
 | |
| 	/* Start a new IAA cycle if any QHs are waiting for it */
 | |
| 	if (!list_empty(&ehci->async_unlink))
 | |
| 		start_iaa_cycle(ehci);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow nesting or concurrent calls,
 | |
| 	 * or wait for the second IAA cycle for the next QH.
 | |
| 	 */
 | |
| 	if (early_exit)
 | |
| 		return;
 | |
| 
 | |
| 	/* Process the idle QHs */
 | |
| 	ehci->async_unlinking = true;
 | |
| 	while (!list_empty(&ehci->async_idle)) {
 | |
| 		qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
 | |
| 				unlink_node);
 | |
| 		list_del(&qh->unlink_node);
 | |
| 
 | |
| 		qh->qh_state = QH_STATE_IDLE;
 | |
| 		qh->qh_next.qh = NULL;
 | |
| 
 | |
| 		if (!list_empty(&qh->qtd_list))
 | |
| 			qh_completions(ehci, qh);
 | |
| 		if (!list_empty(&qh->qtd_list) &&
 | |
| 				ehci->rh_state == EHCI_RH_RUNNING)
 | |
| 			qh_link_async(ehci, qh);
 | |
| 		disable_async(ehci);
 | |
| 	}
 | |
| 	ehci->async_unlinking = false;
 | |
| }
 | |
| 
 | |
| static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
 | |
| 
 | |
| static void unlink_empty_async(struct ehci_hcd *ehci)
 | |
| {
 | |
| 	struct ehci_qh		*qh;
 | |
| 	struct ehci_qh		*qh_to_unlink = NULL;
 | |
| 	int			count = 0;
 | |
| 
 | |
| 	/* Find the last async QH which has been empty for a timer cycle */
 | |
| 	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
 | |
| 		if (list_empty(&qh->qtd_list) &&
 | |
| 				qh->qh_state == QH_STATE_LINKED) {
 | |
| 			++count;
 | |
| 			if (qh->unlink_cycle != ehci->async_unlink_cycle)
 | |
| 				qh_to_unlink = qh;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If nothing else is being unlinked, unlink the last empty QH */
 | |
| 	if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
 | |
| 		qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
 | |
| 		start_unlink_async(ehci, qh_to_unlink);
 | |
| 		--count;
 | |
| 	}
 | |
| 
 | |
| 	/* Other QHs will be handled later */
 | |
| 	if (count > 0) {
 | |
| 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
 | |
| 		++ehci->async_unlink_cycle;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef	CONFIG_PM
 | |
| 
 | |
| /* The root hub is suspended; unlink all the async QHs */
 | |
| static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
 | |
| {
 | |
| 	struct ehci_qh		*qh;
 | |
| 
 | |
| 	while (ehci->async->qh_next.qh) {
 | |
| 		qh = ehci->async->qh_next.qh;
 | |
| 		WARN_ON(!list_empty(&qh->qtd_list));
 | |
| 		single_unlink_async(ehci, qh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* makes sure the async qh will become idle */
 | |
| /* caller must own ehci->lock */
 | |
| 
 | |
| static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
 | |
| {
 | |
| 	/* If the QH isn't linked then there's nothing we can do. */
 | |
| 	if (qh->qh_state != QH_STATE_LINKED)
 | |
| 		return;
 | |
| 
 | |
| 	single_unlink_async(ehci, qh);
 | |
| 	start_iaa_cycle(ehci);
 | |
| }
 | |
| 
 | |
| /*-------------------------------------------------------------------------*/
 | |
| 
 | |
| static void scan_async (struct ehci_hcd *ehci)
 | |
| {
 | |
| 	struct ehci_qh		*qh;
 | |
| 	bool			check_unlinks_later = false;
 | |
| 
 | |
| 	ehci->qh_scan_next = ehci->async->qh_next.qh;
 | |
| 	while (ehci->qh_scan_next) {
 | |
| 		qh = ehci->qh_scan_next;
 | |
| 		ehci->qh_scan_next = qh->qh_next.qh;
 | |
| 
 | |
| 		/* clean any finished work for this qh */
 | |
| 		if (!list_empty(&qh->qtd_list)) {
 | |
| 			int temp;
 | |
| 
 | |
| 			/*
 | |
| 			 * Unlinks could happen here; completion reporting
 | |
| 			 * drops the lock.  That's why ehci->qh_scan_next
 | |
| 			 * always holds the next qh to scan; if the next qh
 | |
| 			 * gets unlinked then ehci->qh_scan_next is adjusted
 | |
| 			 * in single_unlink_async().
 | |
| 			 */
 | |
| 			temp = qh_completions(ehci, qh);
 | |
| 			if (unlikely(temp)) {
 | |
| 				start_unlink_async(ehci, qh);
 | |
| 			} else if (list_empty(&qh->qtd_list)
 | |
| 					&& qh->qh_state == QH_STATE_LINKED) {
 | |
| 				qh->unlink_cycle = ehci->async_unlink_cycle;
 | |
| 				check_unlinks_later = true;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unlink empty entries, reducing DMA usage as well
 | |
| 	 * as HCD schedule-scanning costs.  Delay for any qh
 | |
| 	 * we just scanned, there's a not-unusual case that it
 | |
| 	 * doesn't stay idle for long.
 | |
| 	 */
 | |
| 	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
 | |
| 			!(ehci->enabled_hrtimer_events &
 | |
| 				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
 | |
| 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
 | |
| 		++ehci->async_unlink_cycle;
 | |
| 	}
 | |
| }
 |