In preparation for making the clockevents core NTP correction aware, all clockevent device drivers must set ->min_delta_ticks and ->max_delta_ticks rather than ->min_delta_ns and ->max_delta_ns: a clockevent device's rate is going to change dynamically and thus, the ratio of ns to ticks ceases to stay invariant. Make the sh_cmt clockevent driver initialize these fields properly. This patch alone doesn't introduce any change in functionality as the clockevents core still looks exclusively at the (untouched) ->min_delta_ns and ->max_delta_ns. As soon as this has changed, a followup patch will purge the initialization of ->min_delta_ns and ->max_delta_ns from this driver. Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Stephen Boyd <sboyd@codeaurora.org> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Nicolai Stange <nicstange@gmail.com> Signed-off-by: John Stultz <john.stultz@linaro.org>
		
			
				
	
	
		
			1120 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1120 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SuperH Timer Support - CMT
 | |
|  *
 | |
|  *  Copyright (C) 2008 Magnus Damm
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/clk.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pm_domain.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/sh_timer.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| 
 | |
| struct sh_cmt_device;
 | |
| 
 | |
| /*
 | |
|  * The CMT comes in 5 different identified flavours, depending not only on the
 | |
|  * SoC but also on the particular instance. The following table lists the main
 | |
|  * characteristics of those flavours.
 | |
|  *
 | |
|  *			16B	32B	32B-F	48B	48B-2
 | |
|  * -----------------------------------------------------------------------------
 | |
|  * Channels		2	1/4	1	6	2/8
 | |
|  * Control Width	16	16	16	16	32
 | |
|  * Counter Width	16	32	32	32/48	32/48
 | |
|  * Shared Start/Stop	Y	Y	Y	Y	N
 | |
|  *
 | |
|  * The 48-bit gen2 version has a per-channel start/stop register located in the
 | |
|  * channel registers block. All other versions have a shared start/stop register
 | |
|  * located in the global space.
 | |
|  *
 | |
|  * Channels are indexed from 0 to N-1 in the documentation. The channel index
 | |
|  * infers the start/stop bit position in the control register and the channel
 | |
|  * registers block address. Some CMT instances have a subset of channels
 | |
|  * available, in which case the index in the documentation doesn't match the
 | |
|  * "real" index as implemented in hardware. This is for instance the case with
 | |
|  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
 | |
|  * in the documentation but using start/stop bit 5 and having its registers
 | |
|  * block at 0x60.
 | |
|  *
 | |
|  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
 | |
|  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
 | |
|  */
 | |
| 
 | |
| enum sh_cmt_model {
 | |
| 	SH_CMT_16BIT,
 | |
| 	SH_CMT_32BIT,
 | |
| 	SH_CMT_32BIT_FAST,
 | |
| 	SH_CMT_48BIT,
 | |
| 	SH_CMT_48BIT_GEN2,
 | |
| };
 | |
| 
 | |
| struct sh_cmt_info {
 | |
| 	enum sh_cmt_model model;
 | |
| 
 | |
| 	unsigned long width; /* 16 or 32 bit version of hardware block */
 | |
| 	unsigned long overflow_bit;
 | |
| 	unsigned long clear_bits;
 | |
| 
 | |
| 	/* callbacks for CMSTR and CMCSR access */
 | |
| 	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
 | |
| 	void (*write_control)(void __iomem *base, unsigned long offs,
 | |
| 			      unsigned long value);
 | |
| 
 | |
| 	/* callbacks for CMCNT and CMCOR access */
 | |
| 	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
 | |
| 	void (*write_count)(void __iomem *base, unsigned long offs,
 | |
| 			    unsigned long value);
 | |
| };
 | |
| 
 | |
| struct sh_cmt_channel {
 | |
| 	struct sh_cmt_device *cmt;
 | |
| 
 | |
| 	unsigned int index;	/* Index in the documentation */
 | |
| 	unsigned int hwidx;	/* Real hardware index */
 | |
| 
 | |
| 	void __iomem *iostart;
 | |
| 	void __iomem *ioctrl;
 | |
| 
 | |
| 	unsigned int timer_bit;
 | |
| 	unsigned long flags;
 | |
| 	unsigned long match_value;
 | |
| 	unsigned long next_match_value;
 | |
| 	unsigned long max_match_value;
 | |
| 	raw_spinlock_t lock;
 | |
| 	struct clock_event_device ced;
 | |
| 	struct clocksource cs;
 | |
| 	unsigned long total_cycles;
 | |
| 	bool cs_enabled;
 | |
| };
 | |
| 
 | |
| struct sh_cmt_device {
 | |
| 	struct platform_device *pdev;
 | |
| 
 | |
| 	const struct sh_cmt_info *info;
 | |
| 
 | |
| 	void __iomem *mapbase;
 | |
| 	struct clk *clk;
 | |
| 	unsigned long rate;
 | |
| 
 | |
| 	raw_spinlock_t lock; /* Protect the shared start/stop register */
 | |
| 
 | |
| 	struct sh_cmt_channel *channels;
 | |
| 	unsigned int num_channels;
 | |
| 	unsigned int hw_channels;
 | |
| 
 | |
| 	bool has_clockevent;
 | |
| 	bool has_clocksource;
 | |
| };
 | |
| 
 | |
| #define SH_CMT16_CMCSR_CMF		(1 << 7)
 | |
| #define SH_CMT16_CMCSR_CMIE		(1 << 6)
 | |
| #define SH_CMT16_CMCSR_CKS8		(0 << 0)
 | |
| #define SH_CMT16_CMCSR_CKS32		(1 << 0)
 | |
| #define SH_CMT16_CMCSR_CKS128		(2 << 0)
 | |
| #define SH_CMT16_CMCSR_CKS512		(3 << 0)
 | |
| #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 | |
| 
 | |
| #define SH_CMT32_CMCSR_CMF		(1 << 15)
 | |
| #define SH_CMT32_CMCSR_OVF		(1 << 14)
 | |
| #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 | |
| #define SH_CMT32_CMCSR_STTF		(1 << 12)
 | |
| #define SH_CMT32_CMCSR_STPF		(1 << 11)
 | |
| #define SH_CMT32_CMCSR_SSIE		(1 << 10)
 | |
| #define SH_CMT32_CMCSR_CMS		(1 << 9)
 | |
| #define SH_CMT32_CMCSR_CMM		(1 << 8)
 | |
| #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 | |
| #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 | |
| #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 | |
| #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 | |
| #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 | |
| #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 | |
| #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 | |
| #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 | |
| #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 | |
| #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 | |
| #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 | |
| 
 | |
| static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 | |
| {
 | |
| 	return ioread16(base + (offs << 1));
 | |
| }
 | |
| 
 | |
| static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 | |
| {
 | |
| 	return ioread32(base + (offs << 2));
 | |
| }
 | |
| 
 | |
| static void sh_cmt_write16(void __iomem *base, unsigned long offs,
 | |
| 			   unsigned long value)
 | |
| {
 | |
| 	iowrite16(value, base + (offs << 1));
 | |
| }
 | |
| 
 | |
| static void sh_cmt_write32(void __iomem *base, unsigned long offs,
 | |
| 			   unsigned long value)
 | |
| {
 | |
| 	iowrite32(value, base + (offs << 2));
 | |
| }
 | |
| 
 | |
| static const struct sh_cmt_info sh_cmt_info[] = {
 | |
| 	[SH_CMT_16BIT] = {
 | |
| 		.model = SH_CMT_16BIT,
 | |
| 		.width = 16,
 | |
| 		.overflow_bit = SH_CMT16_CMCSR_CMF,
 | |
| 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 | |
| 		.read_control = sh_cmt_read16,
 | |
| 		.write_control = sh_cmt_write16,
 | |
| 		.read_count = sh_cmt_read16,
 | |
| 		.write_count = sh_cmt_write16,
 | |
| 	},
 | |
| 	[SH_CMT_32BIT] = {
 | |
| 		.model = SH_CMT_32BIT,
 | |
| 		.width = 32,
 | |
| 		.overflow_bit = SH_CMT32_CMCSR_CMF,
 | |
| 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 | |
| 		.read_control = sh_cmt_read16,
 | |
| 		.write_control = sh_cmt_write16,
 | |
| 		.read_count = sh_cmt_read32,
 | |
| 		.write_count = sh_cmt_write32,
 | |
| 	},
 | |
| 	[SH_CMT_32BIT_FAST] = {
 | |
| 		.model = SH_CMT_32BIT_FAST,
 | |
| 		.width = 32,
 | |
| 		.overflow_bit = SH_CMT32_CMCSR_CMF,
 | |
| 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 | |
| 		.read_control = sh_cmt_read16,
 | |
| 		.write_control = sh_cmt_write16,
 | |
| 		.read_count = sh_cmt_read32,
 | |
| 		.write_count = sh_cmt_write32,
 | |
| 	},
 | |
| 	[SH_CMT_48BIT] = {
 | |
| 		.model = SH_CMT_48BIT,
 | |
| 		.width = 32,
 | |
| 		.overflow_bit = SH_CMT32_CMCSR_CMF,
 | |
| 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 | |
| 		.read_control = sh_cmt_read32,
 | |
| 		.write_control = sh_cmt_write32,
 | |
| 		.read_count = sh_cmt_read32,
 | |
| 		.write_count = sh_cmt_write32,
 | |
| 	},
 | |
| 	[SH_CMT_48BIT_GEN2] = {
 | |
| 		.model = SH_CMT_48BIT_GEN2,
 | |
| 		.width = 32,
 | |
| 		.overflow_bit = SH_CMT32_CMCSR_CMF,
 | |
| 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 | |
| 		.read_control = sh_cmt_read32,
 | |
| 		.write_control = sh_cmt_write32,
 | |
| 		.read_count = sh_cmt_read32,
 | |
| 		.write_count = sh_cmt_write32,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| #define CMCSR 0 /* channel register */
 | |
| #define CMCNT 1 /* channel register */
 | |
| #define CMCOR 2 /* channel register */
 | |
| 
 | |
| static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 | |
| {
 | |
| 	if (ch->iostart)
 | |
| 		return ch->cmt->info->read_control(ch->iostart, 0);
 | |
| 	else
 | |
| 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 | |
| }
 | |
| 
 | |
| static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
 | |
| 				      unsigned long value)
 | |
| {
 | |
| 	if (ch->iostart)
 | |
| 		ch->cmt->info->write_control(ch->iostart, 0, value);
 | |
| 	else
 | |
| 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 | |
| }
 | |
| 
 | |
| static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 | |
| {
 | |
| 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 | |
| }
 | |
| 
 | |
| static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
 | |
| 				      unsigned long value)
 | |
| {
 | |
| 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 | |
| }
 | |
| 
 | |
| static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 | |
| {
 | |
| 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 | |
| }
 | |
| 
 | |
| static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
 | |
| 				      unsigned long value)
 | |
| {
 | |
| 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 | |
| }
 | |
| 
 | |
| static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
 | |
| 				      unsigned long value)
 | |
| {
 | |
| 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 | |
| }
 | |
| 
 | |
| static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
 | |
| 					int *has_wrapped)
 | |
| {
 | |
| 	unsigned long v1, v2, v3;
 | |
| 	int o1, o2;
 | |
| 
 | |
| 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 | |
| 
 | |
| 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 | |
| 	do {
 | |
| 		o2 = o1;
 | |
| 		v1 = sh_cmt_read_cmcnt(ch);
 | |
| 		v2 = sh_cmt_read_cmcnt(ch);
 | |
| 		v3 = sh_cmt_read_cmcnt(ch);
 | |
| 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 | |
| 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 | |
| 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 | |
| 
 | |
| 	*has_wrapped = o1;
 | |
| 	return v2;
 | |
| }
 | |
| 
 | |
| static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 | |
| {
 | |
| 	unsigned long flags, value;
 | |
| 
 | |
| 	/* start stop register shared by multiple timer channels */
 | |
| 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 | |
| 	value = sh_cmt_read_cmstr(ch);
 | |
| 
 | |
| 	if (start)
 | |
| 		value |= 1 << ch->timer_bit;
 | |
| 	else
 | |
| 		value &= ~(1 << ch->timer_bit);
 | |
| 
 | |
| 	sh_cmt_write_cmstr(ch, value);
 | |
| 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 | |
| }
 | |
| 
 | |
| static int sh_cmt_enable(struct sh_cmt_channel *ch)
 | |
| {
 | |
| 	int k, ret;
 | |
| 
 | |
| 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
 | |
| 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 | |
| 
 | |
| 	/* enable clock */
 | |
| 	ret = clk_enable(ch->cmt->clk);
 | |
| 	if (ret) {
 | |
| 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 | |
| 			ch->index);
 | |
| 		goto err0;
 | |
| 	}
 | |
| 
 | |
| 	/* make sure channel is disabled */
 | |
| 	sh_cmt_start_stop_ch(ch, 0);
 | |
| 
 | |
| 	/* configure channel, periodic mode and maximum timeout */
 | |
| 	if (ch->cmt->info->width == 16) {
 | |
| 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 | |
| 				   SH_CMT16_CMCSR_CKS512);
 | |
| 	} else {
 | |
| 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 | |
| 				   SH_CMT32_CMCSR_CMTOUT_IE |
 | |
| 				   SH_CMT32_CMCSR_CMR_IRQ |
 | |
| 				   SH_CMT32_CMCSR_CKS_RCLK8);
 | |
| 	}
 | |
| 
 | |
| 	sh_cmt_write_cmcor(ch, 0xffffffff);
 | |
| 	sh_cmt_write_cmcnt(ch, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * According to the sh73a0 user's manual, as CMCNT can be operated
 | |
| 	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 | |
| 	 * modifying CMCNT register; two RCLK cycles are necessary before
 | |
| 	 * this register is either read or any modification of the value
 | |
| 	 * it holds is reflected in the LSI's actual operation.
 | |
| 	 *
 | |
| 	 * While at it, we're supposed to clear out the CMCNT as of this
 | |
| 	 * moment, so make sure it's processed properly here.  This will
 | |
| 	 * take RCLKx2 at maximum.
 | |
| 	 */
 | |
| 	for (k = 0; k < 100; k++) {
 | |
| 		if (!sh_cmt_read_cmcnt(ch))
 | |
| 			break;
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 
 | |
| 	if (sh_cmt_read_cmcnt(ch)) {
 | |
| 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 | |
| 			ch->index);
 | |
| 		ret = -ETIMEDOUT;
 | |
| 		goto err1;
 | |
| 	}
 | |
| 
 | |
| 	/* enable channel */
 | |
| 	sh_cmt_start_stop_ch(ch, 1);
 | |
| 	return 0;
 | |
|  err1:
 | |
| 	/* stop clock */
 | |
| 	clk_disable(ch->cmt->clk);
 | |
| 
 | |
|  err0:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sh_cmt_disable(struct sh_cmt_channel *ch)
 | |
| {
 | |
| 	/* disable channel */
 | |
| 	sh_cmt_start_stop_ch(ch, 0);
 | |
| 
 | |
| 	/* disable interrupts in CMT block */
 | |
| 	sh_cmt_write_cmcsr(ch, 0);
 | |
| 
 | |
| 	/* stop clock */
 | |
| 	clk_disable(ch->cmt->clk);
 | |
| 
 | |
| 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 | |
| 	pm_runtime_put(&ch->cmt->pdev->dev);
 | |
| }
 | |
| 
 | |
| /* private flags */
 | |
| #define FLAG_CLOCKEVENT (1 << 0)
 | |
| #define FLAG_CLOCKSOURCE (1 << 1)
 | |
| #define FLAG_REPROGRAM (1 << 2)
 | |
| #define FLAG_SKIPEVENT (1 << 3)
 | |
| #define FLAG_IRQCONTEXT (1 << 4)
 | |
| 
 | |
| static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 | |
| 					      int absolute)
 | |
| {
 | |
| 	unsigned long new_match;
 | |
| 	unsigned long value = ch->next_match_value;
 | |
| 	unsigned long delay = 0;
 | |
| 	unsigned long now = 0;
 | |
| 	int has_wrapped;
 | |
| 
 | |
| 	now = sh_cmt_get_counter(ch, &has_wrapped);
 | |
| 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 | |
| 
 | |
| 	if (has_wrapped) {
 | |
| 		/* we're competing with the interrupt handler.
 | |
| 		 *  -> let the interrupt handler reprogram the timer.
 | |
| 		 *  -> interrupt number two handles the event.
 | |
| 		 */
 | |
| 		ch->flags |= FLAG_SKIPEVENT;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (absolute)
 | |
| 		now = 0;
 | |
| 
 | |
| 	do {
 | |
| 		/* reprogram the timer hardware,
 | |
| 		 * but don't save the new match value yet.
 | |
| 		 */
 | |
| 		new_match = now + value + delay;
 | |
| 		if (new_match > ch->max_match_value)
 | |
| 			new_match = ch->max_match_value;
 | |
| 
 | |
| 		sh_cmt_write_cmcor(ch, new_match);
 | |
| 
 | |
| 		now = sh_cmt_get_counter(ch, &has_wrapped);
 | |
| 		if (has_wrapped && (new_match > ch->match_value)) {
 | |
| 			/* we are changing to a greater match value,
 | |
| 			 * so this wrap must be caused by the counter
 | |
| 			 * matching the old value.
 | |
| 			 * -> first interrupt reprograms the timer.
 | |
| 			 * -> interrupt number two handles the event.
 | |
| 			 */
 | |
| 			ch->flags |= FLAG_SKIPEVENT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (has_wrapped) {
 | |
| 			/* we are changing to a smaller match value,
 | |
| 			 * so the wrap must be caused by the counter
 | |
| 			 * matching the new value.
 | |
| 			 * -> save programmed match value.
 | |
| 			 * -> let isr handle the event.
 | |
| 			 */
 | |
| 			ch->match_value = new_match;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* be safe: verify hardware settings */
 | |
| 		if (now < new_match) {
 | |
| 			/* timer value is below match value, all good.
 | |
| 			 * this makes sure we won't miss any match events.
 | |
| 			 * -> save programmed match value.
 | |
| 			 * -> let isr handle the event.
 | |
| 			 */
 | |
| 			ch->match_value = new_match;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* the counter has reached a value greater
 | |
| 		 * than our new match value. and since the
 | |
| 		 * has_wrapped flag isn't set we must have
 | |
| 		 * programmed a too close event.
 | |
| 		 * -> increase delay and retry.
 | |
| 		 */
 | |
| 		if (delay)
 | |
| 			delay <<= 1;
 | |
| 		else
 | |
| 			delay = 1;
 | |
| 
 | |
| 		if (!delay)
 | |
| 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 | |
| 				 ch->index);
 | |
| 
 | |
| 	} while (delay);
 | |
| }
 | |
| 
 | |
| static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 | |
| {
 | |
| 	if (delta > ch->max_match_value)
 | |
| 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 | |
| 			 ch->index);
 | |
| 
 | |
| 	ch->next_match_value = delta;
 | |
| 	sh_cmt_clock_event_program_verify(ch, 0);
 | |
| }
 | |
| 
 | |
| static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&ch->lock, flags);
 | |
| 	__sh_cmt_set_next(ch, delta);
 | |
| 	raw_spin_unlock_irqrestore(&ch->lock, flags);
 | |
| }
 | |
| 
 | |
| static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct sh_cmt_channel *ch = dev_id;
 | |
| 
 | |
| 	/* clear flags */
 | |
| 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 | |
| 			   ch->cmt->info->clear_bits);
 | |
| 
 | |
| 	/* update clock source counter to begin with if enabled
 | |
| 	 * the wrap flag should be cleared by the timer specific
 | |
| 	 * isr before we end up here.
 | |
| 	 */
 | |
| 	if (ch->flags & FLAG_CLOCKSOURCE)
 | |
| 		ch->total_cycles += ch->match_value + 1;
 | |
| 
 | |
| 	if (!(ch->flags & FLAG_REPROGRAM))
 | |
| 		ch->next_match_value = ch->max_match_value;
 | |
| 
 | |
| 	ch->flags |= FLAG_IRQCONTEXT;
 | |
| 
 | |
| 	if (ch->flags & FLAG_CLOCKEVENT) {
 | |
| 		if (!(ch->flags & FLAG_SKIPEVENT)) {
 | |
| 			if (clockevent_state_oneshot(&ch->ced)) {
 | |
| 				ch->next_match_value = ch->max_match_value;
 | |
| 				ch->flags |= FLAG_REPROGRAM;
 | |
| 			}
 | |
| 
 | |
| 			ch->ced.event_handler(&ch->ced);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ch->flags &= ~FLAG_SKIPEVENT;
 | |
| 
 | |
| 	if (ch->flags & FLAG_REPROGRAM) {
 | |
| 		ch->flags &= ~FLAG_REPROGRAM;
 | |
| 		sh_cmt_clock_event_program_verify(ch, 1);
 | |
| 
 | |
| 		if (ch->flags & FLAG_CLOCKEVENT)
 | |
| 			if ((clockevent_state_shutdown(&ch->ced))
 | |
| 			    || (ch->match_value == ch->next_match_value))
 | |
| 				ch->flags &= ~FLAG_REPROGRAM;
 | |
| 	}
 | |
| 
 | |
| 	ch->flags &= ~FLAG_IRQCONTEXT;
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&ch->lock, flags);
 | |
| 
 | |
| 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 | |
| 		ret = sh_cmt_enable(ch);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	ch->flags |= flag;
 | |
| 
 | |
| 	/* setup timeout if no clockevent */
 | |
| 	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 | |
| 		__sh_cmt_set_next(ch, ch->max_match_value);
 | |
|  out:
 | |
| 	raw_spin_unlock_irqrestore(&ch->lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long f;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&ch->lock, flags);
 | |
| 
 | |
| 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 | |
| 	ch->flags &= ~flag;
 | |
| 
 | |
| 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 | |
| 		sh_cmt_disable(ch);
 | |
| 
 | |
| 	/* adjust the timeout to maximum if only clocksource left */
 | |
| 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 | |
| 		__sh_cmt_set_next(ch, ch->max_match_value);
 | |
| 
 | |
| 	raw_spin_unlock_irqrestore(&ch->lock, flags);
 | |
| }
 | |
| 
 | |
| static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 | |
| {
 | |
| 	return container_of(cs, struct sh_cmt_channel, cs);
 | |
| }
 | |
| 
 | |
| static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 | |
| {
 | |
| 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 | |
| 	unsigned long flags, raw;
 | |
| 	unsigned long value;
 | |
| 	int has_wrapped;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&ch->lock, flags);
 | |
| 	value = ch->total_cycles;
 | |
| 	raw = sh_cmt_get_counter(ch, &has_wrapped);
 | |
| 
 | |
| 	if (unlikely(has_wrapped))
 | |
| 		raw += ch->match_value + 1;
 | |
| 	raw_spin_unlock_irqrestore(&ch->lock, flags);
 | |
| 
 | |
| 	return value + raw;
 | |
| }
 | |
| 
 | |
| static int sh_cmt_clocksource_enable(struct clocksource *cs)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 | |
| 
 | |
| 	WARN_ON(ch->cs_enabled);
 | |
| 
 | |
| 	ch->total_cycles = 0;
 | |
| 
 | |
| 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 | |
| 	if (!ret)
 | |
| 		ch->cs_enabled = true;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void sh_cmt_clocksource_disable(struct clocksource *cs)
 | |
| {
 | |
| 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 | |
| 
 | |
| 	WARN_ON(!ch->cs_enabled);
 | |
| 
 | |
| 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 | |
| 	ch->cs_enabled = false;
 | |
| }
 | |
| 
 | |
| static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 | |
| {
 | |
| 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 | |
| 
 | |
| 	if (!ch->cs_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 | |
| 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 | |
| }
 | |
| 
 | |
| static void sh_cmt_clocksource_resume(struct clocksource *cs)
 | |
| {
 | |
| 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 | |
| 
 | |
| 	if (!ch->cs_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 | |
| 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 | |
| }
 | |
| 
 | |
| static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 | |
| 				       const char *name)
 | |
| {
 | |
| 	struct clocksource *cs = &ch->cs;
 | |
| 
 | |
| 	cs->name = name;
 | |
| 	cs->rating = 125;
 | |
| 	cs->read = sh_cmt_clocksource_read;
 | |
| 	cs->enable = sh_cmt_clocksource_enable;
 | |
| 	cs->disable = sh_cmt_clocksource_disable;
 | |
| 	cs->suspend = sh_cmt_clocksource_suspend;
 | |
| 	cs->resume = sh_cmt_clocksource_resume;
 | |
| 	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
 | |
| 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 | |
| 
 | |
| 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 | |
| 		 ch->index);
 | |
| 
 | |
| 	clocksource_register_hz(cs, ch->cmt->rate);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 | |
| {
 | |
| 	return container_of(ced, struct sh_cmt_channel, ced);
 | |
| }
 | |
| 
 | |
| static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 | |
| {
 | |
| 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 | |
| 
 | |
| 	if (periodic)
 | |
| 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 | |
| 	else
 | |
| 		sh_cmt_set_next(ch, ch->max_match_value);
 | |
| }
 | |
| 
 | |
| static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 | |
| {
 | |
| 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 | |
| 
 | |
| 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 | |
| 					int periodic)
 | |
| {
 | |
| 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 | |
| 
 | |
| 	/* deal with old setting first */
 | |
| 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 | |
| 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 | |
| 
 | |
| 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 | |
| 		 ch->index, periodic ? "periodic" : "oneshot");
 | |
| 	sh_cmt_clock_event_start(ch, periodic);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 | |
| {
 | |
| 	return sh_cmt_clock_event_set_state(ced, 0);
 | |
| }
 | |
| 
 | |
| static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 | |
| {
 | |
| 	return sh_cmt_clock_event_set_state(ced, 1);
 | |
| }
 | |
| 
 | |
| static int sh_cmt_clock_event_next(unsigned long delta,
 | |
| 				   struct clock_event_device *ced)
 | |
| {
 | |
| 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 | |
| 
 | |
| 	BUG_ON(!clockevent_state_oneshot(ced));
 | |
| 	if (likely(ch->flags & FLAG_IRQCONTEXT))
 | |
| 		ch->next_match_value = delta - 1;
 | |
| 	else
 | |
| 		sh_cmt_set_next(ch, delta - 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 | |
| {
 | |
| 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 | |
| 
 | |
| 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 | |
| 	clk_unprepare(ch->cmt->clk);
 | |
| }
 | |
| 
 | |
| static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 | |
| {
 | |
| 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 | |
| 
 | |
| 	clk_prepare(ch->cmt->clk);
 | |
| 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 | |
| }
 | |
| 
 | |
| static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 | |
| 				      const char *name)
 | |
| {
 | |
| 	struct clock_event_device *ced = &ch->ced;
 | |
| 	int irq;
 | |
| 	int ret;
 | |
| 
 | |
| 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 | |
| 	if (irq < 0) {
 | |
| 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
 | |
| 			ch->index);
 | |
| 		return irq;
 | |
| 	}
 | |
| 
 | |
| 	ret = request_irq(irq, sh_cmt_interrupt,
 | |
| 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 | |
| 			  dev_name(&ch->cmt->pdev->dev), ch);
 | |
| 	if (ret) {
 | |
| 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 | |
| 			ch->index, irq);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ced->name = name;
 | |
| 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 | |
| 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 | |
| 	ced->rating = 125;
 | |
| 	ced->cpumask = cpu_possible_mask;
 | |
| 	ced->set_next_event = sh_cmt_clock_event_next;
 | |
| 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 | |
| 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 | |
| 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 | |
| 	ced->suspend = sh_cmt_clock_event_suspend;
 | |
| 	ced->resume = sh_cmt_clock_event_resume;
 | |
| 
 | |
| 	/* TODO: calculate good shift from rate and counter bit width */
 | |
| 	ced->shift = 32;
 | |
| 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 | |
| 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 | |
| 	ced->max_delta_ticks = ch->max_match_value;
 | |
| 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 | |
| 	ced->min_delta_ticks = 0x1f;
 | |
| 
 | |
| 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 | |
| 		 ch->index);
 | |
| 	clockevents_register_device(ced);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 | |
| 			   bool clockevent, bool clocksource)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (clockevent) {
 | |
| 		ch->cmt->has_clockevent = true;
 | |
| 		ret = sh_cmt_register_clockevent(ch, name);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (clocksource) {
 | |
| 		ch->cmt->has_clocksource = true;
 | |
| 		sh_cmt_register_clocksource(ch, name);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 | |
| 				unsigned int hwidx, bool clockevent,
 | |
| 				bool clocksource, struct sh_cmt_device *cmt)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Skip unused channels. */
 | |
| 	if (!clockevent && !clocksource)
 | |
| 		return 0;
 | |
| 
 | |
| 	ch->cmt = cmt;
 | |
| 	ch->index = index;
 | |
| 	ch->hwidx = hwidx;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the address of the channel control register block. For the
 | |
| 	 * timers with a per-channel start/stop register, compute its address
 | |
| 	 * as well.
 | |
| 	 */
 | |
| 	switch (cmt->info->model) {
 | |
| 	case SH_CMT_16BIT:
 | |
| 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 | |
| 		break;
 | |
| 	case SH_CMT_32BIT:
 | |
| 	case SH_CMT_48BIT:
 | |
| 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 | |
| 		break;
 | |
| 	case SH_CMT_32BIT_FAST:
 | |
| 		/*
 | |
| 		 * The 32-bit "fast" timer has a single channel at hwidx 5 but
 | |
| 		 * is located at offset 0x40 instead of 0x60 for some reason.
 | |
| 		 */
 | |
| 		ch->ioctrl = cmt->mapbase + 0x40;
 | |
| 		break;
 | |
| 	case SH_CMT_48BIT_GEN2:
 | |
| 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 | |
| 		ch->ioctrl = ch->iostart + 0x10;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 | |
| 		ch->max_match_value = ~0;
 | |
| 	else
 | |
| 		ch->max_match_value = (1 << cmt->info->width) - 1;
 | |
| 
 | |
| 	ch->match_value = ch->max_match_value;
 | |
| 	raw_spin_lock_init(&ch->lock);
 | |
| 
 | |
| 	ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
 | |
| 
 | |
| 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 | |
| 			      clockevent, clocksource);
 | |
| 	if (ret) {
 | |
| 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 | |
| 			ch->index);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	ch->cs_enabled = false;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 | |
| {
 | |
| 	struct resource *mem;
 | |
| 
 | |
| 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 | |
| 	if (!mem) {
 | |
| 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 | |
| 	if (cmt->mapbase == NULL) {
 | |
| 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct platform_device_id sh_cmt_id_table[] = {
 | |
| 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 | |
| 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 | |
| 
 | |
| static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 | |
| 	{ .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
 | |
| 	{ .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
 | |
| 	{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
 | |
| 	{ .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 | |
| 
 | |
| static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
 | |
| {
 | |
| 	struct device_node *np = cmt->pdev->dev.of_node;
 | |
| 
 | |
| 	return of_property_read_u32(np, "renesas,channels-mask",
 | |
| 				    &cmt->hw_channels);
 | |
| }
 | |
| 
 | |
| static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 | |
| {
 | |
| 	unsigned int mask;
 | |
| 	unsigned int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	cmt->pdev = pdev;
 | |
| 	raw_spin_lock_init(&cmt->lock);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 | |
| 		const struct of_device_id *id;
 | |
| 
 | |
| 		id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
 | |
| 		cmt->info = id->data;
 | |
| 
 | |
| 		ret = sh_cmt_parse_dt(cmt);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	} else if (pdev->dev.platform_data) {
 | |
| 		struct sh_timer_config *cfg = pdev->dev.platform_data;
 | |
| 		const struct platform_device_id *id = pdev->id_entry;
 | |
| 
 | |
| 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
 | |
| 		cmt->hw_channels = cfg->channels_mask;
 | |
| 	} else {
 | |
| 		dev_err(&cmt->pdev->dev, "missing platform data\n");
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Get hold of clock. */
 | |
| 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 | |
| 	if (IS_ERR(cmt->clk)) {
 | |
| 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
 | |
| 		return PTR_ERR(cmt->clk);
 | |
| 	}
 | |
| 
 | |
| 	ret = clk_prepare(cmt->clk);
 | |
| 	if (ret < 0)
 | |
| 		goto err_clk_put;
 | |
| 
 | |
| 	/* Determine clock rate. */
 | |
| 	ret = clk_enable(cmt->clk);
 | |
| 	if (ret < 0)
 | |
| 		goto err_clk_unprepare;
 | |
| 
 | |
| 	if (cmt->info->width == 16)
 | |
| 		cmt->rate = clk_get_rate(cmt->clk) / 512;
 | |
| 	else
 | |
| 		cmt->rate = clk_get_rate(cmt->clk) / 8;
 | |
| 
 | |
| 	clk_disable(cmt->clk);
 | |
| 
 | |
| 	/* Map the memory resource(s). */
 | |
| 	ret = sh_cmt_map_memory(cmt);
 | |
| 	if (ret < 0)
 | |
| 		goto err_clk_unprepare;
 | |
| 
 | |
| 	/* Allocate and setup the channels. */
 | |
| 	cmt->num_channels = hweight8(cmt->hw_channels);
 | |
| 	cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
 | |
| 				GFP_KERNEL);
 | |
| 	if (cmt->channels == NULL) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_unmap;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the first channel as a clock event device and the second channel
 | |
| 	 * as a clock source. If only one channel is available use it for both.
 | |
| 	 */
 | |
| 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
 | |
| 		unsigned int hwidx = ffs(mask) - 1;
 | |
| 		bool clocksource = i == 1 || cmt->num_channels == 1;
 | |
| 		bool clockevent = i == 0;
 | |
| 
 | |
| 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
 | |
| 					   clockevent, clocksource, cmt);
 | |
| 		if (ret < 0)
 | |
| 			goto err_unmap;
 | |
| 
 | |
| 		mask &= ~(1 << hwidx);
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, cmt);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_unmap:
 | |
| 	kfree(cmt->channels);
 | |
| 	iounmap(cmt->mapbase);
 | |
| err_clk_unprepare:
 | |
| 	clk_unprepare(cmt->clk);
 | |
| err_clk_put:
 | |
| 	clk_put(cmt->clk);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sh_cmt_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!is_early_platform_device(pdev)) {
 | |
| 		pm_runtime_set_active(&pdev->dev);
 | |
| 		pm_runtime_enable(&pdev->dev);
 | |
| 	}
 | |
| 
 | |
| 	if (cmt) {
 | |
| 		dev_info(&pdev->dev, "kept as earlytimer\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
 | |
| 	if (cmt == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = sh_cmt_setup(cmt, pdev);
 | |
| 	if (ret) {
 | |
| 		kfree(cmt);
 | |
| 		pm_runtime_idle(&pdev->dev);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	if (is_early_platform_device(pdev))
 | |
| 		return 0;
 | |
| 
 | |
|  out:
 | |
| 	if (cmt->has_clockevent || cmt->has_clocksource)
 | |
| 		pm_runtime_irq_safe(&pdev->dev);
 | |
| 	else
 | |
| 		pm_runtime_idle(&pdev->dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sh_cmt_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	return -EBUSY; /* cannot unregister clockevent and clocksource */
 | |
| }
 | |
| 
 | |
| static struct platform_driver sh_cmt_device_driver = {
 | |
| 	.probe		= sh_cmt_probe,
 | |
| 	.remove		= sh_cmt_remove,
 | |
| 	.driver		= {
 | |
| 		.name	= "sh_cmt",
 | |
| 		.of_match_table = of_match_ptr(sh_cmt_of_table),
 | |
| 	},
 | |
| 	.id_table	= sh_cmt_id_table,
 | |
| };
 | |
| 
 | |
| static int __init sh_cmt_init(void)
 | |
| {
 | |
| 	return platform_driver_register(&sh_cmt_device_driver);
 | |
| }
 | |
| 
 | |
| static void __exit sh_cmt_exit(void)
 | |
| {
 | |
| 	platform_driver_unregister(&sh_cmt_device_driver);
 | |
| }
 | |
| 
 | |
| early_platform_init("earlytimer", &sh_cmt_device_driver);
 | |
| subsys_initcall(sh_cmt_init);
 | |
| module_exit(sh_cmt_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Magnus Damm");
 | |
| MODULE_DESCRIPTION("SuperH CMT Timer Driver");
 | |
| MODULE_LICENSE("GPL v2");
 |