linux/Documentation/devicetree/bindings/mmc/synopsys-dw-mshc.txt
Guodong Xu fdc22b6b1f Documentation: synopsys-dw-mshc: add binding for resets
Add resets property to synopsys-dw-mshc bindings. It is intended to
represent the hardware reset signal present internally in some host
controller IC designs.

See Documentation/devicetree/bindings/reset/reset.txt for details.

Signed-off-by: Guodong Xu <guodong.xu@linaro.org>
Reviewed-by: Shawn Lin <shawn.lin@rock-chips.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Jaehoon Chung <jh80.chung@samsung.com>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2016-09-26 21:31:19 +02:00

139 lines
5.0 KiB
Plaintext

* Synopsys Designware Mobile Storage Host Controller
The Synopsys designware mobile storage host controller is used to interface
a SoC with storage medium such as eMMC or SD/MMC cards. This file documents
differences between the core mmc properties described by mmc.txt and the
properties used by the Synopsys Designware Mobile Storage Host Controller.
Required Properties:
* compatible: should be
- snps,dw-mshc: for controllers compliant with synopsys dw-mshc.
* #address-cells: should be 1.
* #size-cells: should be 0.
# Slots: The slot specific information are contained within child-nodes with
each child-node representing a supported slot. There should be atleast one
child node representing a card slot. The name of the child node representing
the slot is recommended to be slot@n where n is the unique number of the slot
connnected to the controller. The following are optional properties which
can be included in the slot child node.
* reg: specifies the physical slot number. The valid values of this
property is 0 to (num-slots -1), where num-slots is the value
specified by the num-slots property.
* bus-width: as documented in mmc core bindings.
* wp-gpios: specifies the write protect gpio line. The format of the
gpio specifier depends on the gpio controller. If a GPIO is not used
for write-protect, this property is optional.
* disable-wp: If the wp-gpios property isn't present then (by default)
we'd assume that the write protect is hooked up directly to the
controller's special purpose write protect line (accessible via
the WRTPRT register). However, it's possible that we simply don't
want write protect. In that case specify 'disable-wp'.
NOTE: This property is not required for slots known to always
connect to eMMC or SDIO cards.
Optional properties:
* resets: phandle + reset specifier pair, intended to represent hardware
reset signal present internally in some host controller IC designs.
See Documentation/devicetree/bindings/reset/reset.txt for details.
* clocks: from common clock binding: handle to biu and ciu clocks for the
bus interface unit clock and the card interface unit clock.
* clock-names: from common clock binding: Shall be "biu" and "ciu".
If the biu clock is missing we'll simply skip enabling it. If the
ciu clock is missing we'll just assume that the clock is running at
clock-frequency. It is an error to omit both the ciu clock and the
clock-frequency.
* clock-frequency: should be the frequency (in Hz) of the ciu clock. If this
is specified and the ciu clock is specified then we'll try to set the ciu
clock to this at probe time.
* clock-freq-min-max: Minimum and Maximum clock frequency for card output
clock(cclk_out). If it's not specified, max is 200MHZ and min is 400KHz by default.
* num-slots: specifies the number of slots supported by the controller.
The number of physical slots actually used could be equal or less than the
value specified by num-slots. If this property is not specified, the value
of num-slot property is assumed to be 1.
* fifo-depth: The maximum size of the tx/rx fifo's. If this property is not
specified, the default value of the fifo size is determined from the
controller registers.
* card-detect-delay: Delay in milli-seconds before detecting card after card
insert event. The default value is 0.
* supports-highspeed (DEPRECATED): Enables support for high speed cards (up to 50MHz)
(use "cap-mmc-highspeed" or "cap-sd-highspeed" instead)
* broken-cd: as documented in mmc core bindings.
* vmmc-supply: The phandle to the regulator to use for vmmc. If this is
specified we'll defer probe until we can find this regulator.
* dmas: List of DMA specifiers with the controller specific format as described
in the generic DMA client binding. Refer to dma.txt for details.
* dma-names: request names for generic DMA client binding. Must be "rx-tx".
Refer to dma.txt for details.
Aliases:
- All the MSHC controller nodes should be represented in the aliases node using
the following format 'mshc{n}' where n is a unique number for the alias.
Example:
The MSHC controller node can be split into two portions, SoC specific and
board specific portions as listed below.
dwmmc0@12200000 {
compatible = "snps,dw-mshc";
clocks = <&clock 351>, <&clock 132>;
clock-names = "biu", "ciu";
reg = <0x12200000 0x1000>;
interrupts = <0 75 0>;
#address-cells = <1>;
#size-cells = <0>;
};
[board specific internal DMA resources]
dwmmc0@12200000 {
clock-frequency = <400000000>;
clock-freq-min-max = <400000 200000000>;
num-slots = <1>;
broken-cd;
fifo-depth = <0x80>;
card-detect-delay = <200>;
vmmc-supply = <&buck8>;
bus-width = <8>;
cap-mmc-highspeed;
cap-sd-highspeed;
};
[board specific generic DMA request binding]
dwmmc0@12200000 {
clock-frequency = <400000000>;
clock-freq-min-max = <400000 200000000>;
num-slots = <1>;
broken-cd;
fifo-depth = <0x80>;
card-detect-delay = <200>;
vmmc-supply = <&buck8>;
bus-width = <8>;
cap-mmc-highspeed;
cap-sd-highspeed;
dmas = <&pdma 12>;
dma-names = "rx-tx";
};