linux/drivers/dma/dw-edma/dw-edma-core.c
Alan Mikhak bd96f1b2f4 dmaengine: dw-edma: support local dma device transfer semantics
Modify dw_edma_device_transfer() to also support the semantics of dma
device transfer for additional use cases involving pcitest utility as a
local initiator.

For its original use case, dw-edma supported the semantics of dma device
transfer from the perspective of a remote initiator who is located across
the PCIe bus from dma channel hardware.

To a remote initiator, DMA_DEV_TO_MEM means using a remote dma WRITE
channel to transfer from remote memory to local memory. A WRITE channel
would be employed on the remote device in order to move the contents of
remote memory to the bus destined for local memory.

To a remote initiator, DMA_MEM_TO_DEV means using a remote dma READ
channel to transfer from local memory to remote memory. A READ channel
would be employed on the remote device in order to move the contents of
local memory to the bus destined for remote memory.

>From the perspective of a local dma initiator who is co-located on the
same side of the PCIe bus as the dma channel hardware, the semantics of
dma device transfer are flipped.

To a local initiator, DMA_DEV_TO_MEM means using a local dma READ channel
to transfer from remote memory to local memory. A READ channel would be
employed on the local device in order to move the contents of remote
memory to the bus destined for local memory.

To a local initiator, DMA_MEM_TO_DEV means using a local dma WRITE channel
to transfer from local memory to remote memory. A WRITE channel would be
employed on the local device in order to move the contents of local memory
to the bus destined for remote memory.

To support local dma initiators, dw_edma_device_transfer() is modified to
now examine the direction field of struct dma_slave_config for the channel
which initiators can configure by calling dmaengine_slave_config().

If direction is configured as either DMA_DEV_TO_MEM or DMA_MEM_TO_DEV,
local initiator semantics are used. If direction is a value other than
DMA_DEV_TO_MEM nor DMA_MEM_TO_DEV, then remote initiator semantics are
used. This should maintain backward compatibility with the original use
case of dw-edma.

The dw-edma-test utility is an example of a remote initiator. From reading
its patch, dw-edma-test does not specifically set the direction field of
struct dma_slave_config. Since dw_edma_device_transfer() also does not
check the direction field of struct dma_slave_config, it seems safe to use
this convention in dw-edma to support both local and remote initiator
semantics.

Signed-off-by: Alan Mikhak <alan.mikhak@sifive.com>
Link: https://lore.kernel.org/r/1588122633-1552-1-git-send-email-alan.mikhak@sifive.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2020-05-04 14:24:27 +05:30

965 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates.
* Synopsys DesignWare eDMA core driver
*
* Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/pm_runtime.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/dma/edma.h>
#include <linux/dma-mapping.h>
#include "dw-edma-core.h"
#include "dw-edma-v0-core.h"
#include "../dmaengine.h"
#include "../virt-dma.h"
static inline
struct device *dchan2dev(struct dma_chan *dchan)
{
return &dchan->dev->device;
}
static inline
struct device *chan2dev(struct dw_edma_chan *chan)
{
return &chan->vc.chan.dev->device;
}
static inline
struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct dw_edma_desc, vd);
}
static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk)
{
struct dw_edma_burst *burst;
burst = kzalloc(sizeof(*burst), GFP_NOWAIT);
if (unlikely(!burst))
return NULL;
INIT_LIST_HEAD(&burst->list);
if (chunk->burst) {
/* Create and add new element into the linked list */
chunk->bursts_alloc++;
list_add_tail(&burst->list, &chunk->burst->list);
} else {
/* List head */
chunk->bursts_alloc = 0;
chunk->burst = burst;
}
return burst;
}
static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc)
{
struct dw_edma_chan *chan = desc->chan;
struct dw_edma *dw = chan->chip->dw;
struct dw_edma_chunk *chunk;
chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT);
if (unlikely(!chunk))
return NULL;
INIT_LIST_HEAD(&chunk->list);
chunk->chan = chan;
/* Toggling change bit (CB) in each chunk, this is a mechanism to
* inform the eDMA HW block that this is a new linked list ready
* to be consumed.
* - Odd chunks originate CB equal to 0
* - Even chunks originate CB equal to 1
*/
chunk->cb = !(desc->chunks_alloc % 2);
chunk->ll_region.paddr = dw->ll_region.paddr + chan->ll_off;
chunk->ll_region.vaddr = dw->ll_region.vaddr + chan->ll_off;
if (desc->chunk) {
/* Create and add new element into the linked list */
desc->chunks_alloc++;
list_add_tail(&chunk->list, &desc->chunk->list);
if (!dw_edma_alloc_burst(chunk)) {
kfree(chunk);
return NULL;
}
} else {
/* List head */
chunk->burst = NULL;
desc->chunks_alloc = 0;
desc->chunk = chunk;
}
return chunk;
}
static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan)
{
struct dw_edma_desc *desc;
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
if (unlikely(!desc))
return NULL;
desc->chan = chan;
if (!dw_edma_alloc_chunk(desc)) {
kfree(desc);
return NULL;
}
return desc;
}
static void dw_edma_free_burst(struct dw_edma_chunk *chunk)
{
struct dw_edma_burst *child, *_next;
/* Remove all the list elements */
list_for_each_entry_safe(child, _next, &chunk->burst->list, list) {
list_del(&child->list);
kfree(child);
chunk->bursts_alloc--;
}
/* Remove the list head */
kfree(child);
chunk->burst = NULL;
}
static void dw_edma_free_chunk(struct dw_edma_desc *desc)
{
struct dw_edma_chunk *child, *_next;
if (!desc->chunk)
return;
/* Remove all the list elements */
list_for_each_entry_safe(child, _next, &desc->chunk->list, list) {
dw_edma_free_burst(child);
list_del(&child->list);
kfree(child);
desc->chunks_alloc--;
}
/* Remove the list head */
kfree(child);
desc->chunk = NULL;
}
static void dw_edma_free_desc(struct dw_edma_desc *desc)
{
dw_edma_free_chunk(desc);
kfree(desc);
}
static void vchan_free_desc(struct virt_dma_desc *vdesc)
{
dw_edma_free_desc(vd2dw_edma_desc(vdesc));
}
static void dw_edma_start_transfer(struct dw_edma_chan *chan)
{
struct dw_edma_chunk *child;
struct dw_edma_desc *desc;
struct virt_dma_desc *vd;
vd = vchan_next_desc(&chan->vc);
if (!vd)
return;
desc = vd2dw_edma_desc(vd);
if (!desc)
return;
child = list_first_entry_or_null(&desc->chunk->list,
struct dw_edma_chunk, list);
if (!child)
return;
dw_edma_v0_core_start(child, !desc->xfer_sz);
desc->xfer_sz += child->ll_region.sz;
dw_edma_free_burst(child);
list_del(&child->list);
kfree(child);
desc->chunks_alloc--;
}
static int dw_edma_device_config(struct dma_chan *dchan,
struct dma_slave_config *config)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
memcpy(&chan->config, config, sizeof(*config));
chan->configured = true;
return 0;
}
static int dw_edma_device_pause(struct dma_chan *dchan)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
int err = 0;
if (!chan->configured)
err = -EPERM;
else if (chan->status != EDMA_ST_BUSY)
err = -EPERM;
else if (chan->request != EDMA_REQ_NONE)
err = -EPERM;
else
chan->request = EDMA_REQ_PAUSE;
return err;
}
static int dw_edma_device_resume(struct dma_chan *dchan)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
int err = 0;
if (!chan->configured) {
err = -EPERM;
} else if (chan->status != EDMA_ST_PAUSE) {
err = -EPERM;
} else if (chan->request != EDMA_REQ_NONE) {
err = -EPERM;
} else {
chan->status = EDMA_ST_BUSY;
dw_edma_start_transfer(chan);
}
return err;
}
static int dw_edma_device_terminate_all(struct dma_chan *dchan)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
int err = 0;
LIST_HEAD(head);
if (!chan->configured) {
/* Do nothing */
} else if (chan->status == EDMA_ST_PAUSE) {
chan->status = EDMA_ST_IDLE;
chan->configured = false;
} else if (chan->status == EDMA_ST_IDLE) {
chan->configured = false;
} else if (dw_edma_v0_core_ch_status(chan) == DMA_COMPLETE) {
/*
* The channel is in a false BUSY state, probably didn't
* receive or lost an interrupt
*/
chan->status = EDMA_ST_IDLE;
chan->configured = false;
} else if (chan->request > EDMA_REQ_PAUSE) {
err = -EPERM;
} else {
chan->request = EDMA_REQ_STOP;
}
return err;
}
static void dw_edma_device_issue_pending(struct dma_chan *dchan)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
unsigned long flags;
spin_lock_irqsave(&chan->vc.lock, flags);
if (chan->configured && chan->request == EDMA_REQ_NONE &&
chan->status == EDMA_ST_IDLE && vchan_issue_pending(&chan->vc)) {
chan->status = EDMA_ST_BUSY;
dw_edma_start_transfer(chan);
}
spin_unlock_irqrestore(&chan->vc.lock, flags);
}
static enum dma_status
dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
struct dw_edma_desc *desc;
struct virt_dma_desc *vd;
unsigned long flags;
enum dma_status ret;
u32 residue = 0;
ret = dma_cookie_status(dchan, cookie, txstate);
if (ret == DMA_COMPLETE)
return ret;
if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE)
ret = DMA_PAUSED;
if (!txstate)
goto ret_residue;
spin_lock_irqsave(&chan->vc.lock, flags);
vd = vchan_find_desc(&chan->vc, cookie);
if (vd) {
desc = vd2dw_edma_desc(vd);
if (desc)
residue = desc->alloc_sz - desc->xfer_sz;
}
spin_unlock_irqrestore(&chan->vc.lock, flags);
ret_residue:
dma_set_residue(txstate, residue);
return ret;
}
static struct dma_async_tx_descriptor *
dw_edma_device_transfer(struct dw_edma_transfer *xfer)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan);
enum dma_transfer_direction dir = xfer->direction;
phys_addr_t src_addr, dst_addr;
struct scatterlist *sg = NULL;
struct dw_edma_chunk *chunk;
struct dw_edma_burst *burst;
struct dw_edma_desc *desc;
u32 cnt;
int i;
if (!chan->configured)
return NULL;
switch (chan->config.direction) {
case DMA_DEV_TO_MEM: /* local dma */
if (dir == DMA_DEV_TO_MEM && chan->dir == EDMA_DIR_READ)
break;
return NULL;
case DMA_MEM_TO_DEV: /* local dma */
if (dir == DMA_MEM_TO_DEV && chan->dir == EDMA_DIR_WRITE)
break;
return NULL;
default: /* remote dma */
if (dir == DMA_MEM_TO_DEV && chan->dir == EDMA_DIR_READ)
break;
if (dir == DMA_DEV_TO_MEM && chan->dir == EDMA_DIR_WRITE)
break;
return NULL;
}
if (xfer->cyclic) {
if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt)
return NULL;
} else {
if (xfer->xfer.sg.len < 1)
return NULL;
}
desc = dw_edma_alloc_desc(chan);
if (unlikely(!desc))
goto err_alloc;
chunk = dw_edma_alloc_chunk(desc);
if (unlikely(!chunk))
goto err_alloc;
src_addr = chan->config.src_addr;
dst_addr = chan->config.dst_addr;
if (xfer->cyclic) {
cnt = xfer->xfer.cyclic.cnt;
} else {
cnt = xfer->xfer.sg.len;
sg = xfer->xfer.sg.sgl;
}
for (i = 0; i < cnt; i++) {
if (!xfer->cyclic && !sg)
break;
if (chunk->bursts_alloc == chan->ll_max) {
chunk = dw_edma_alloc_chunk(desc);
if (unlikely(!chunk))
goto err_alloc;
}
burst = dw_edma_alloc_burst(chunk);
if (unlikely(!burst))
goto err_alloc;
if (xfer->cyclic)
burst->sz = xfer->xfer.cyclic.len;
else
burst->sz = sg_dma_len(sg);
chunk->ll_region.sz += burst->sz;
desc->alloc_sz += burst->sz;
if (chan->dir == EDMA_DIR_WRITE) {
burst->sar = src_addr;
if (xfer->cyclic) {
burst->dar = xfer->xfer.cyclic.paddr;
} else {
burst->dar = sg_dma_address(sg);
/* Unlike the typical assumption by other
* drivers/IPs the peripheral memory isn't
* a FIFO memory, in this case, it's a
* linear memory and that why the source
* and destination addresses are increased
* by the same portion (data length)
*/
src_addr += sg_dma_len(sg);
}
} else {
burst->dar = dst_addr;
if (xfer->cyclic) {
burst->sar = xfer->xfer.cyclic.paddr;
} else {
burst->sar = sg_dma_address(sg);
/* Unlike the typical assumption by other
* drivers/IPs the peripheral memory isn't
* a FIFO memory, in this case, it's a
* linear memory and that why the source
* and destination addresses are increased
* by the same portion (data length)
*/
dst_addr += sg_dma_len(sg);
}
}
if (!xfer->cyclic)
sg = sg_next(sg);
}
return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags);
err_alloc:
if (desc)
dw_edma_free_desc(desc);
return NULL;
}
static struct dma_async_tx_descriptor *
dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
unsigned int len,
enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct dw_edma_transfer xfer;
xfer.dchan = dchan;
xfer.direction = direction;
xfer.xfer.sg.sgl = sgl;
xfer.xfer.sg.len = len;
xfer.flags = flags;
xfer.cyclic = false;
return dw_edma_device_transfer(&xfer);
}
static struct dma_async_tx_descriptor *
dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr,
size_t len, size_t count,
enum dma_transfer_direction direction,
unsigned long flags)
{
struct dw_edma_transfer xfer;
xfer.dchan = dchan;
xfer.direction = direction;
xfer.xfer.cyclic.paddr = paddr;
xfer.xfer.cyclic.len = len;
xfer.xfer.cyclic.cnt = count;
xfer.flags = flags;
xfer.cyclic = true;
return dw_edma_device_transfer(&xfer);
}
static void dw_edma_done_interrupt(struct dw_edma_chan *chan)
{
struct dw_edma_desc *desc;
struct virt_dma_desc *vd;
unsigned long flags;
dw_edma_v0_core_clear_done_int(chan);
spin_lock_irqsave(&chan->vc.lock, flags);
vd = vchan_next_desc(&chan->vc);
if (vd) {
switch (chan->request) {
case EDMA_REQ_NONE:
desc = vd2dw_edma_desc(vd);
if (desc->chunks_alloc) {
chan->status = EDMA_ST_BUSY;
dw_edma_start_transfer(chan);
} else {
list_del(&vd->node);
vchan_cookie_complete(vd);
chan->status = EDMA_ST_IDLE;
}
break;
case EDMA_REQ_STOP:
list_del(&vd->node);
vchan_cookie_complete(vd);
chan->request = EDMA_REQ_NONE;
chan->status = EDMA_ST_IDLE;
break;
case EDMA_REQ_PAUSE:
chan->request = EDMA_REQ_NONE;
chan->status = EDMA_ST_PAUSE;
break;
default:
break;
}
}
spin_unlock_irqrestore(&chan->vc.lock, flags);
}
static void dw_edma_abort_interrupt(struct dw_edma_chan *chan)
{
struct virt_dma_desc *vd;
unsigned long flags;
dw_edma_v0_core_clear_abort_int(chan);
spin_lock_irqsave(&chan->vc.lock, flags);
vd = vchan_next_desc(&chan->vc);
if (vd) {
list_del(&vd->node);
vchan_cookie_complete(vd);
}
spin_unlock_irqrestore(&chan->vc.lock, flags);
chan->request = EDMA_REQ_NONE;
chan->status = EDMA_ST_IDLE;
}
static irqreturn_t dw_edma_interrupt(int irq, void *data, bool write)
{
struct dw_edma_irq *dw_irq = data;
struct dw_edma *dw = dw_irq->dw;
unsigned long total, pos, val;
unsigned long off;
u32 mask;
if (write) {
total = dw->wr_ch_cnt;
off = 0;
mask = dw_irq->wr_mask;
} else {
total = dw->rd_ch_cnt;
off = dw->wr_ch_cnt;
mask = dw_irq->rd_mask;
}
val = dw_edma_v0_core_status_done_int(dw, write ?
EDMA_DIR_WRITE :
EDMA_DIR_READ);
val &= mask;
for_each_set_bit(pos, &val, total) {
struct dw_edma_chan *chan = &dw->chan[pos + off];
dw_edma_done_interrupt(chan);
}
val = dw_edma_v0_core_status_abort_int(dw, write ?
EDMA_DIR_WRITE :
EDMA_DIR_READ);
val &= mask;
for_each_set_bit(pos, &val, total) {
struct dw_edma_chan *chan = &dw->chan[pos + off];
dw_edma_abort_interrupt(chan);
}
return IRQ_HANDLED;
}
static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data)
{
return dw_edma_interrupt(irq, data, true);
}
static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data)
{
return dw_edma_interrupt(irq, data, false);
}
static irqreturn_t dw_edma_interrupt_common(int irq, void *data)
{
dw_edma_interrupt(irq, data, true);
dw_edma_interrupt(irq, data, false);
return IRQ_HANDLED;
}
static int dw_edma_alloc_chan_resources(struct dma_chan *dchan)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
if (chan->status != EDMA_ST_IDLE)
return -EBUSY;
pm_runtime_get(chan->chip->dev);
return 0;
}
static void dw_edma_free_chan_resources(struct dma_chan *dchan)
{
unsigned long timeout = jiffies + msecs_to_jiffies(5000);
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
int ret;
while (time_before(jiffies, timeout)) {
ret = dw_edma_device_terminate_all(dchan);
if (!ret)
break;
if (time_after_eq(jiffies, timeout))
return;
cpu_relax();
}
pm_runtime_put(chan->chip->dev);
}
static int dw_edma_channel_setup(struct dw_edma_chip *chip, bool write,
u32 wr_alloc, u32 rd_alloc)
{
struct dw_edma_region *dt_region;
struct device *dev = chip->dev;
struct dw_edma *dw = chip->dw;
struct dw_edma_chan *chan;
size_t ll_chunk, dt_chunk;
struct dw_edma_irq *irq;
struct dma_device *dma;
u32 i, j, cnt, ch_cnt;
u32 alloc, off_alloc;
int err = 0;
u32 pos;
ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
ll_chunk = dw->ll_region.sz;
dt_chunk = dw->dt_region.sz;
/* Calculate linked list chunk for each channel */
ll_chunk /= roundup_pow_of_two(ch_cnt);
/* Calculate linked list chunk for each channel */
dt_chunk /= roundup_pow_of_two(ch_cnt);
if (write) {
i = 0;
cnt = dw->wr_ch_cnt;
dma = &dw->wr_edma;
alloc = wr_alloc;
off_alloc = 0;
} else {
i = dw->wr_ch_cnt;
cnt = dw->rd_ch_cnt;
dma = &dw->rd_edma;
alloc = rd_alloc;
off_alloc = wr_alloc;
}
INIT_LIST_HEAD(&dma->channels);
for (j = 0; (alloc || dw->nr_irqs == 1) && j < cnt; j++, i++) {
chan = &dw->chan[i];
dt_region = devm_kzalloc(dev, sizeof(*dt_region), GFP_KERNEL);
if (!dt_region)
return -ENOMEM;
chan->vc.chan.private = dt_region;
chan->chip = chip;
chan->id = j;
chan->dir = write ? EDMA_DIR_WRITE : EDMA_DIR_READ;
chan->configured = false;
chan->request = EDMA_REQ_NONE;
chan->status = EDMA_ST_IDLE;
chan->ll_off = (ll_chunk * i);
chan->ll_max = (ll_chunk / EDMA_LL_SZ) - 1;
chan->dt_off = (dt_chunk * i);
dev_vdbg(dev, "L. List:\tChannel %s[%u] off=0x%.8lx, max_cnt=%u\n",
write ? "write" : "read", j,
chan->ll_off, chan->ll_max);
if (dw->nr_irqs == 1)
pos = 0;
else
pos = off_alloc + (j % alloc);
irq = &dw->irq[pos];
if (write)
irq->wr_mask |= BIT(j);
else
irq->rd_mask |= BIT(j);
irq->dw = dw;
memcpy(&chan->msi, &irq->msi, sizeof(chan->msi));
dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n",
write ? "write" : "read", j,
chan->msi.address_hi, chan->msi.address_lo,
chan->msi.data);
chan->vc.desc_free = vchan_free_desc;
vchan_init(&chan->vc, dma);
dt_region->paddr = dw->dt_region.paddr + chan->dt_off;
dt_region->vaddr = dw->dt_region.vaddr + chan->dt_off;
dt_region->sz = dt_chunk;
dev_vdbg(dev, "Data:\tChannel %s[%u] off=0x%.8lx\n",
write ? "write" : "read", j, chan->dt_off);
dw_edma_v0_core_device_config(chan);
}
/* Set DMA channel capabilities */
dma_cap_zero(dma->cap_mask);
dma_cap_set(DMA_SLAVE, dma->cap_mask);
dma_cap_set(DMA_CYCLIC, dma->cap_mask);
dma_cap_set(DMA_PRIVATE, dma->cap_mask);
dma->directions = BIT(write ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV);
dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
dma->chancnt = cnt;
/* Set DMA channel callbacks */
dma->dev = chip->dev;
dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources;
dma->device_free_chan_resources = dw_edma_free_chan_resources;
dma->device_config = dw_edma_device_config;
dma->device_pause = dw_edma_device_pause;
dma->device_resume = dw_edma_device_resume;
dma->device_terminate_all = dw_edma_device_terminate_all;
dma->device_issue_pending = dw_edma_device_issue_pending;
dma->device_tx_status = dw_edma_device_tx_status;
dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg;
dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic;
dma_set_max_seg_size(dma->dev, U32_MAX);
/* Register DMA device */
err = dma_async_device_register(dma);
return err;
}
static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt)
{
if (*nr_irqs && *alloc < cnt) {
(*alloc)++;
(*nr_irqs)--;
}
}
static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt)
{
while (*mask * alloc < cnt)
(*mask)++;
}
static int dw_edma_irq_request(struct dw_edma_chip *chip,
u32 *wr_alloc, u32 *rd_alloc)
{
struct device *dev = chip->dev;
struct dw_edma *dw = chip->dw;
u32 wr_mask = 1;
u32 rd_mask = 1;
int i, err = 0;
u32 ch_cnt;
int irq;
ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
if (dw->nr_irqs < 1)
return -EINVAL;
if (dw->nr_irqs == 1) {
/* Common IRQ shared among all channels */
irq = dw->ops->irq_vector(dev, 0);
err = request_irq(irq, dw_edma_interrupt_common,
IRQF_SHARED, dw->name, &dw->irq[0]);
if (err) {
dw->nr_irqs = 0;
return err;
}
if (irq_get_msi_desc(irq))
get_cached_msi_msg(irq, &dw->irq[0].msi);
} else {
/* Distribute IRQs equally among all channels */
int tmp = dw->nr_irqs;
while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) {
dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt);
dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt);
}
dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt);
dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt);
for (i = 0; i < (*wr_alloc + *rd_alloc); i++) {
irq = dw->ops->irq_vector(dev, i);
err = request_irq(irq,
i < *wr_alloc ?
dw_edma_interrupt_write :
dw_edma_interrupt_read,
IRQF_SHARED, dw->name,
&dw->irq[i]);
if (err) {
dw->nr_irqs = i;
return err;
}
if (irq_get_msi_desc(irq))
get_cached_msi_msg(irq, &dw->irq[i].msi);
}
dw->nr_irqs = i;
}
return err;
}
int dw_edma_probe(struct dw_edma_chip *chip)
{
struct device *dev;
struct dw_edma *dw;
u32 wr_alloc = 0;
u32 rd_alloc = 0;
int i, err;
if (!chip)
return -EINVAL;
dev = chip->dev;
if (!dev)
return -EINVAL;
dw = chip->dw;
if (!dw || !dw->irq || !dw->ops || !dw->ops->irq_vector)
return -EINVAL;
raw_spin_lock_init(&dw->lock);
/* Find out how many write channels are supported by hardware */
dw->wr_ch_cnt = dw_edma_v0_core_ch_count(dw, EDMA_DIR_WRITE);
if (!dw->wr_ch_cnt)
return -EINVAL;
/* Find out how many read channels are supported by hardware */
dw->rd_ch_cnt = dw_edma_v0_core_ch_count(dw, EDMA_DIR_READ);
if (!dw->rd_ch_cnt)
return -EINVAL;
dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n",
dw->wr_ch_cnt, dw->rd_ch_cnt);
/* Allocate channels */
dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt,
sizeof(*dw->chan), GFP_KERNEL);
if (!dw->chan)
return -ENOMEM;
snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%d", chip->id);
/* Disable eDMA, only to establish the ideal initial conditions */
dw_edma_v0_core_off(dw);
/* Request IRQs */
err = dw_edma_irq_request(chip, &wr_alloc, &rd_alloc);
if (err)
return err;
/* Setup write channels */
err = dw_edma_channel_setup(chip, true, wr_alloc, rd_alloc);
if (err)
goto err_irq_free;
/* Setup read channels */
err = dw_edma_channel_setup(chip, false, wr_alloc, rd_alloc);
if (err)
goto err_irq_free;
/* Power management */
pm_runtime_enable(dev);
/* Turn debugfs on */
dw_edma_v0_core_debugfs_on(chip);
return 0;
err_irq_free:
for (i = (dw->nr_irqs - 1); i >= 0; i--)
free_irq(dw->ops->irq_vector(dev, i), &dw->irq[i]);
dw->nr_irqs = 0;
return err;
}
EXPORT_SYMBOL_GPL(dw_edma_probe);
int dw_edma_remove(struct dw_edma_chip *chip)
{
struct dw_edma_chan *chan, *_chan;
struct device *dev = chip->dev;
struct dw_edma *dw = chip->dw;
int i;
/* Disable eDMA */
dw_edma_v0_core_off(dw);
/* Free irqs */
for (i = (dw->nr_irqs - 1); i >= 0; i--)
free_irq(dw->ops->irq_vector(dev, i), &dw->irq[i]);
/* Power management */
pm_runtime_disable(dev);
list_for_each_entry_safe(chan, _chan, &dw->wr_edma.channels,
vc.chan.device_node) {
list_del(&chan->vc.chan.device_node);
tasklet_kill(&chan->vc.task);
}
list_for_each_entry_safe(chan, _chan, &dw->rd_edma.channels,
vc.chan.device_node) {
list_del(&chan->vc.chan.device_node);
tasklet_kill(&chan->vc.task);
}
/* Deregister eDMA device */
dma_async_device_unregister(&dw->wr_edma);
dma_async_device_unregister(&dw->rd_edma);
/* Turn debugfs off */
dw_edma_v0_core_debugfs_off();
return 0;
}
EXPORT_SYMBOL_GPL(dw_edma_remove);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver");
MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>");