forked from Minki/linux
21a151d8ca
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
90 lines
2.6 KiB
C
90 lines
2.6 KiB
C
/*
|
|
* IEEE754 floating point
|
|
* double precision internal header file
|
|
*/
|
|
/*
|
|
* MIPS floating point support
|
|
* Copyright (C) 1994-2000 Algorithmics Ltd.
|
|
* http://www.algor.co.uk
|
|
*
|
|
* ########################################################################
|
|
*
|
|
* This program is free software; you can distribute it and/or modify it
|
|
* under the terms of the GNU General Public License (Version 2) as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
|
|
*
|
|
* ########################################################################
|
|
*/
|
|
|
|
|
|
#include "ieee754int.h"
|
|
|
|
#define assert(expr) ((void)0)
|
|
|
|
/* 3bit extended single precision sticky right shift */
|
|
#define SPXSRSXn(rs) \
|
|
(xe += rs, \
|
|
xm = (rs > (SP_MBITS+3))?1:((xm) >> (rs)) | ((xm) << (32-(rs)) != 0))
|
|
|
|
#define SPXSRSX1() \
|
|
(xe++, (xm = (xm >> 1) | (xm & 1)))
|
|
|
|
#define SPXSRSYn(rs) \
|
|
(ye+=rs, \
|
|
ym = (rs > (SP_MBITS+3))?1:((ym) >> (rs)) | ((ym) << (32-(rs)) != 0))
|
|
|
|
#define SPXSRSY1() \
|
|
(ye++, (ym = (ym >> 1) | (ym & 1)))
|
|
|
|
/* convert denormal to normalized with extended exponent */
|
|
#define SPDNORMx(m,e) \
|
|
while( (m >> SP_MBITS) == 0) { m <<= 1; e--; }
|
|
#define SPDNORMX SPDNORMx(xm, xe)
|
|
#define SPDNORMY SPDNORMx(ym, ye)
|
|
|
|
static __inline ieee754sp buildsp(int s, int bx, unsigned m)
|
|
{
|
|
ieee754sp r;
|
|
|
|
assert((s) == 0 || (s) == 1);
|
|
assert((bx) >= SP_EMIN - 1 + SP_EBIAS
|
|
&& (bx) <= SP_EMAX + 1 + SP_EBIAS);
|
|
assert(((m) >> SP_MBITS) == 0);
|
|
|
|
r.parts.sign = s;
|
|
r.parts.bexp = bx;
|
|
r.parts.mant = m;
|
|
|
|
return r;
|
|
}
|
|
|
|
extern int ieee754sp_isnan(ieee754sp);
|
|
extern int ieee754sp_issnan(ieee754sp);
|
|
extern int ieee754si_xcpt(int, const char *, ...);
|
|
extern s64 ieee754di_xcpt(s64, const char *, ...);
|
|
extern ieee754sp ieee754sp_xcpt(ieee754sp, const char *, ...);
|
|
extern ieee754sp ieee754sp_nanxcpt(ieee754sp, const char *, ...);
|
|
extern ieee754sp ieee754sp_bestnan(ieee754sp, ieee754sp);
|
|
extern ieee754sp ieee754sp_format(int, int, unsigned);
|
|
|
|
|
|
#define SPNORMRET2(s, e, m, name, a0, a1) \
|
|
{ \
|
|
ieee754sp V = ieee754sp_format(s, e, m); \
|
|
if(TSTX()) \
|
|
return ieee754sp_xcpt(V, name, a0, a1); \
|
|
else \
|
|
return V; \
|
|
}
|
|
|
|
#define SPNORMRET1(s, e, m, name, a0) SPNORMRET2(s, e, m, name, a0, a0)
|