Make sure that xen_swiotlb_init allocates buffers that are DMA capable when at least one memblock is available below 4G. Otherwise we assume that all devices on the SoC can cope with >4G addresses. We do this on ARM and ARM64, where dom0 is mapped 1:1, so pfn == mfn in this case. No functional changes on x86. From: Chen Baozi <baozich@gmail.com> Signed-off-by: Chen Baozi <baozich@gmail.com> Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Tested-by: Chen Baozi <baozich@gmail.com> Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: David Vrabel <david.vrabel@citrix.com>
		
			
				
	
	
		
			689 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			689 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright 2010
 | |
|  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
 | |
|  *
 | |
|  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License v2.0 as published by
 | |
|  * the Free Software Foundation
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * PV guests under Xen are running in an non-contiguous memory architecture.
 | |
|  *
 | |
|  * When PCI pass-through is utilized, this necessitates an IOMMU for
 | |
|  * translating bus (DMA) to virtual and vice-versa and also providing a
 | |
|  * mechanism to have contiguous pages for device drivers operations (say DMA
 | |
|  * operations).
 | |
|  *
 | |
|  * Specifically, under Xen the Linux idea of pages is an illusion. It
 | |
|  * assumes that pages start at zero and go up to the available memory. To
 | |
|  * help with that, the Linux Xen MMU provides a lookup mechanism to
 | |
|  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 | |
|  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 | |
|  * memory is not contiguous. Xen hypervisor stitches memory for guests
 | |
|  * from different pools, which means there is no guarantee that PFN==MFN
 | |
|  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 | |
|  * allocated in descending order (high to low), meaning the guest might
 | |
|  * never get any MFN's under the 4GB mark.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/export.h>
 | |
| #include <xen/swiotlb-xen.h>
 | |
| #include <xen/page.h>
 | |
| #include <xen/xen-ops.h>
 | |
| #include <xen/hvc-console.h>
 | |
| 
 | |
| #include <asm/dma-mapping.h>
 | |
| #include <asm/xen/page-coherent.h>
 | |
| 
 | |
| #include <trace/events/swiotlb.h>
 | |
| /*
 | |
|  * Used to do a quick range check in swiotlb_tbl_unmap_single and
 | |
|  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 | |
|  * API.
 | |
|  */
 | |
| 
 | |
| #ifndef CONFIG_X86
 | |
| static unsigned long dma_alloc_coherent_mask(struct device *dev,
 | |
| 					    gfp_t gfp)
 | |
| {
 | |
| 	unsigned long dma_mask = 0;
 | |
| 
 | |
| 	dma_mask = dev->coherent_dma_mask;
 | |
| 	if (!dma_mask)
 | |
| 		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
 | |
| 
 | |
| 	return dma_mask;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static char *xen_io_tlb_start, *xen_io_tlb_end;
 | |
| static unsigned long xen_io_tlb_nslabs;
 | |
| /*
 | |
|  * Quick lookup value of the bus address of the IOTLB.
 | |
|  */
 | |
| 
 | |
| static u64 start_dma_addr;
 | |
| 
 | |
| /*
 | |
|  * Both of these functions should avoid PFN_PHYS because phys_addr_t
 | |
|  * can be 32bit when dma_addr_t is 64bit leading to a loss in
 | |
|  * information if the shift is done before casting to 64bit.
 | |
|  */
 | |
| static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
 | |
| {
 | |
| 	unsigned long mfn = pfn_to_mfn(PFN_DOWN(paddr));
 | |
| 	dma_addr_t dma = (dma_addr_t)mfn << PAGE_SHIFT;
 | |
| 
 | |
| 	dma |= paddr & ~PAGE_MASK;
 | |
| 
 | |
| 	return dma;
 | |
| }
 | |
| 
 | |
| static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
 | |
| {
 | |
| 	unsigned long pfn = mfn_to_pfn(PFN_DOWN(baddr));
 | |
| 	dma_addr_t dma = (dma_addr_t)pfn << PAGE_SHIFT;
 | |
| 	phys_addr_t paddr = dma;
 | |
| 
 | |
| 	paddr |= baddr & ~PAGE_MASK;
 | |
| 
 | |
| 	return paddr;
 | |
| }
 | |
| 
 | |
| static inline dma_addr_t xen_virt_to_bus(void *address)
 | |
| {
 | |
| 	return xen_phys_to_bus(virt_to_phys(address));
 | |
| }
 | |
| 
 | |
| static int check_pages_physically_contiguous(unsigned long pfn,
 | |
| 					     unsigned int offset,
 | |
| 					     size_t length)
 | |
| {
 | |
| 	unsigned long next_mfn;
 | |
| 	int i;
 | |
| 	int nr_pages;
 | |
| 
 | |
| 	next_mfn = pfn_to_mfn(pfn);
 | |
| 	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
 | |
| 
 | |
| 	for (i = 1; i < nr_pages; i++) {
 | |
| 		if (pfn_to_mfn(++pfn) != ++next_mfn)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
 | |
| {
 | |
| 	unsigned long pfn = PFN_DOWN(p);
 | |
| 	unsigned int offset = p & ~PAGE_MASK;
 | |
| 
 | |
| 	if (offset + size <= PAGE_SIZE)
 | |
| 		return 0;
 | |
| 	if (check_pages_physically_contiguous(pfn, offset, size))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
 | |
| {
 | |
| 	unsigned long mfn = PFN_DOWN(dma_addr);
 | |
| 	unsigned long pfn = mfn_to_local_pfn(mfn);
 | |
| 	phys_addr_t paddr;
 | |
| 
 | |
| 	/* If the address is outside our domain, it CAN
 | |
| 	 * have the same virtual address as another address
 | |
| 	 * in our domain. Therefore _only_ check address within our domain.
 | |
| 	 */
 | |
| 	if (pfn_valid(pfn)) {
 | |
| 		paddr = PFN_PHYS(pfn);
 | |
| 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
 | |
| 		       paddr < virt_to_phys(xen_io_tlb_end);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int max_dma_bits = 32;
 | |
| 
 | |
| static int
 | |
| xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
 | |
| {
 | |
| 	int i, rc;
 | |
| 	int dma_bits;
 | |
| 	dma_addr_t dma_handle;
 | |
| 	phys_addr_t p = virt_to_phys(buf);
 | |
| 
 | |
| 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
 | |
| 
 | |
| 	i = 0;
 | |
| 	do {
 | |
| 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
 | |
| 
 | |
| 		do {
 | |
| 			rc = xen_create_contiguous_region(
 | |
| 				p + (i << IO_TLB_SHIFT),
 | |
| 				get_order(slabs << IO_TLB_SHIFT),
 | |
| 				dma_bits, &dma_handle);
 | |
| 		} while (rc && dma_bits++ < max_dma_bits);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		i += slabs;
 | |
| 	} while (i < nslabs);
 | |
| 	return 0;
 | |
| }
 | |
| static unsigned long xen_set_nslabs(unsigned long nr_tbl)
 | |
| {
 | |
| 	if (!nr_tbl) {
 | |
| 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
 | |
| 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
 | |
| 	} else
 | |
| 		xen_io_tlb_nslabs = nr_tbl;
 | |
| 
 | |
| 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
 | |
| }
 | |
| 
 | |
| enum xen_swiotlb_err {
 | |
| 	XEN_SWIOTLB_UNKNOWN = 0,
 | |
| 	XEN_SWIOTLB_ENOMEM,
 | |
| 	XEN_SWIOTLB_EFIXUP
 | |
| };
 | |
| 
 | |
| static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
 | |
| {
 | |
| 	switch (err) {
 | |
| 	case XEN_SWIOTLB_ENOMEM:
 | |
| 		return "Cannot allocate Xen-SWIOTLB buffer\n";
 | |
| 	case XEN_SWIOTLB_EFIXUP:
 | |
| 		return "Failed to get contiguous memory for DMA from Xen!\n"\
 | |
| 		    "You either: don't have the permissions, do not have"\
 | |
| 		    " enough free memory under 4GB, or the hypervisor memory"\
 | |
| 		    " is too fragmented!";
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return "";
 | |
| }
 | |
| int __ref xen_swiotlb_init(int verbose, bool early)
 | |
| {
 | |
| 	unsigned long bytes, order;
 | |
| 	int rc = -ENOMEM;
 | |
| 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
 | |
| 	unsigned int repeat = 3;
 | |
| 
 | |
| 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
 | |
| retry:
 | |
| 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
 | |
| 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
 | |
| 	/*
 | |
| 	 * Get IO TLB memory from any location.
 | |
| 	 */
 | |
| 	if (early)
 | |
| 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
 | |
| 	else {
 | |
| #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 | |
| #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 | |
| 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 | |
| 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
 | |
| 			if (xen_io_tlb_start)
 | |
| 				break;
 | |
| 			order--;
 | |
| 		}
 | |
| 		if (order != get_order(bytes)) {
 | |
| 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
 | |
| 				(PAGE_SIZE << order) >> 20);
 | |
| 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
 | |
| 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!xen_io_tlb_start) {
 | |
| 		m_ret = XEN_SWIOTLB_ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	xen_io_tlb_end = xen_io_tlb_start + bytes;
 | |
| 	/*
 | |
| 	 * And replace that memory with pages under 4GB.
 | |
| 	 */
 | |
| 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
 | |
| 			       bytes,
 | |
| 			       xen_io_tlb_nslabs);
 | |
| 	if (rc) {
 | |
| 		if (early)
 | |
| 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
 | |
| 		else {
 | |
| 			free_pages((unsigned long)xen_io_tlb_start, order);
 | |
| 			xen_io_tlb_start = NULL;
 | |
| 		}
 | |
| 		m_ret = XEN_SWIOTLB_EFIXUP;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
 | |
| 	if (early) {
 | |
| 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
 | |
| 			 verbose))
 | |
| 			panic("Cannot allocate SWIOTLB buffer");
 | |
| 		rc = 0;
 | |
| 	} else
 | |
| 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
 | |
| 	return rc;
 | |
| error:
 | |
| 	if (repeat--) {
 | |
| 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
 | |
| 					(xen_io_tlb_nslabs >> 1));
 | |
| 		pr_info("Lowering to %luMB\n",
 | |
| 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
 | |
| 	if (early)
 | |
| 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
 | |
| 	else
 | |
| 		free_pages((unsigned long)xen_io_tlb_start, order);
 | |
| 	return rc;
 | |
| }
 | |
| void *
 | |
| xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 | |
| 			   dma_addr_t *dma_handle, gfp_t flags,
 | |
| 			   struct dma_attrs *attrs)
 | |
| {
 | |
| 	void *ret;
 | |
| 	int order = get_order(size);
 | |
| 	u64 dma_mask = DMA_BIT_MASK(32);
 | |
| 	phys_addr_t phys;
 | |
| 	dma_addr_t dev_addr;
 | |
| 
 | |
| 	/*
 | |
| 	* Ignore region specifiers - the kernel's ideas of
 | |
| 	* pseudo-phys memory layout has nothing to do with the
 | |
| 	* machine physical layout.  We can't allocate highmem
 | |
| 	* because we can't return a pointer to it.
 | |
| 	*/
 | |
| 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
 | |
| 
 | |
| 	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	/* On ARM this function returns an ioremap'ped virtual address for
 | |
| 	 * which virt_to_phys doesn't return the corresponding physical
 | |
| 	 * address. In fact on ARM virt_to_phys only works for kernel direct
 | |
| 	 * mapped RAM memory. Also see comment below.
 | |
| 	 */
 | |
| 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (hwdev && hwdev->coherent_dma_mask)
 | |
| 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
 | |
| 
 | |
| 	/* At this point dma_handle is the physical address, next we are
 | |
| 	 * going to set it to the machine address.
 | |
| 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
 | |
| 	 * to *dma_handle. */
 | |
| 	phys = *dma_handle;
 | |
| 	dev_addr = xen_phys_to_bus(phys);
 | |
| 	if (((dev_addr + size - 1 <= dma_mask)) &&
 | |
| 	    !range_straddles_page_boundary(phys, size))
 | |
| 		*dma_handle = dev_addr;
 | |
| 	else {
 | |
| 		if (xen_create_contiguous_region(phys, order,
 | |
| 						 fls64(dma_mask), dma_handle) != 0) {
 | |
| 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	memset(ret, 0, size);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
 | |
| 
 | |
| void
 | |
| xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 | |
| 			  dma_addr_t dev_addr, struct dma_attrs *attrs)
 | |
| {
 | |
| 	int order = get_order(size);
 | |
| 	phys_addr_t phys;
 | |
| 	u64 dma_mask = DMA_BIT_MASK(32);
 | |
| 
 | |
| 	if (dma_release_from_coherent(hwdev, order, vaddr))
 | |
| 		return;
 | |
| 
 | |
| 	if (hwdev && hwdev->coherent_dma_mask)
 | |
| 		dma_mask = hwdev->coherent_dma_mask;
 | |
| 
 | |
| 	/* do not use virt_to_phys because on ARM it doesn't return you the
 | |
| 	 * physical address */
 | |
| 	phys = xen_bus_to_phys(dev_addr);
 | |
| 
 | |
| 	if (((dev_addr + size - 1 > dma_mask)) ||
 | |
| 	    range_straddles_page_boundary(phys, size))
 | |
| 		xen_destroy_contiguous_region(phys, order);
 | |
| 
 | |
| 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Map a single buffer of the indicated size for DMA in streaming mode.  The
 | |
|  * physical address to use is returned.
 | |
|  *
 | |
|  * Once the device is given the dma address, the device owns this memory until
 | |
|  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
 | |
|  */
 | |
| dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
 | |
| 				unsigned long offset, size_t size,
 | |
| 				enum dma_data_direction dir,
 | |
| 				struct dma_attrs *attrs)
 | |
| {
 | |
| 	phys_addr_t map, phys = page_to_phys(page) + offset;
 | |
| 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 	/*
 | |
| 	 * If the address happens to be in the device's DMA window,
 | |
| 	 * we can safely return the device addr and not worry about bounce
 | |
| 	 * buffering it.
 | |
| 	 */
 | |
| 	if (dma_capable(dev, dev_addr, size) &&
 | |
| 	    !range_straddles_page_boundary(phys, size) &&
 | |
| 		!xen_arch_need_swiotlb(dev, PFN_DOWN(phys), PFN_DOWN(dev_addr)) &&
 | |
| 		!swiotlb_force) {
 | |
| 		/* we are not interested in the dma_addr returned by
 | |
| 		 * xen_dma_map_page, only in the potential cache flushes executed
 | |
| 		 * by the function. */
 | |
| 		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
 | |
| 		return dev_addr;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Oh well, have to allocate and map a bounce buffer.
 | |
| 	 */
 | |
| 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 | |
| 
 | |
| 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
 | |
| 	if (map == SWIOTLB_MAP_ERROR)
 | |
| 		return DMA_ERROR_CODE;
 | |
| 
 | |
| 	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
 | |
| 					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
 | |
| 	dev_addr = xen_phys_to_bus(map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the address returned is DMA'ble
 | |
| 	 */
 | |
| 	if (!dma_capable(dev, dev_addr, size)) {
 | |
| 		swiotlb_tbl_unmap_single(dev, map, size, dir);
 | |
| 		dev_addr = 0;
 | |
| 	}
 | |
| 	return dev_addr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
 | |
| 
 | |
| /*
 | |
|  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 | |
|  * match what was provided for in a previous xen_swiotlb_map_page call.  All
 | |
|  * other usages are undefined.
 | |
|  *
 | |
|  * After this call, reads by the cpu to the buffer are guaranteed to see
 | |
|  * whatever the device wrote there.
 | |
|  */
 | |
| static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 			     size_t size, enum dma_data_direction dir,
 | |
| 				 struct dma_attrs *attrs)
 | |
| {
 | |
| 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 
 | |
| 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
 | |
| 
 | |
| 	/* NOTE: We use dev_addr here, not paddr! */
 | |
| 	if (is_xen_swiotlb_buffer(dev_addr)) {
 | |
| 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (dir != DMA_FROM_DEVICE)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * phys_to_virt doesn't work with hihgmem page but we could
 | |
| 	 * call dma_mark_clean() with hihgmem page here. However, we
 | |
| 	 * are fine since dma_mark_clean() is null on POWERPC. We can
 | |
| 	 * make dma_mark_clean() take a physical address if necessary.
 | |
| 	 */
 | |
| 	dma_mark_clean(phys_to_virt(paddr), size);
 | |
| }
 | |
| 
 | |
| void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 			    size_t size, enum dma_data_direction dir,
 | |
| 			    struct dma_attrs *attrs)
 | |
| {
 | |
| 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
 | |
| 
 | |
| /*
 | |
|  * Make physical memory consistent for a single streaming mode DMA translation
 | |
|  * after a transfer.
 | |
|  *
 | |
|  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
 | |
|  * using the cpu, yet do not wish to teardown the dma mapping, you must
 | |
|  * call this function before doing so.  At the next point you give the dma
 | |
|  * address back to the card, you must first perform a
 | |
|  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
 | |
|  */
 | |
| static void
 | |
| xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 			size_t size, enum dma_data_direction dir,
 | |
| 			enum dma_sync_target target)
 | |
| {
 | |
| 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 
 | |
| 	if (target == SYNC_FOR_CPU)
 | |
| 		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
 | |
| 
 | |
| 	/* NOTE: We use dev_addr here, not paddr! */
 | |
| 	if (is_xen_swiotlb_buffer(dev_addr))
 | |
| 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
 | |
| 
 | |
| 	if (target == SYNC_FOR_DEVICE)
 | |
| 		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
 | |
| 
 | |
| 	if (dir != DMA_FROM_DEVICE)
 | |
| 		return;
 | |
| 
 | |
| 	dma_mark_clean(phys_to_virt(paddr), size);
 | |
| }
 | |
| 
 | |
| void
 | |
| xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 				size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
 | |
| 
 | |
| void
 | |
| xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 				   size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
 | |
| 
 | |
| /*
 | |
|  * Map a set of buffers described by scatterlist in streaming mode for DMA.
 | |
|  * This is the scatter-gather version of the above xen_swiotlb_map_page
 | |
|  * interface.  Here the scatter gather list elements are each tagged with the
 | |
|  * appropriate dma address and length.  They are obtained via
 | |
|  * sg_dma_{address,length}(SG).
 | |
|  *
 | |
|  * NOTE: An implementation may be able to use a smaller number of
 | |
|  *       DMA address/length pairs than there are SG table elements.
 | |
|  *       (for example via virtual mapping capabilities)
 | |
|  *       The routine returns the number of addr/length pairs actually
 | |
|  *       used, at most nents.
 | |
|  *
 | |
|  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
 | |
|  * same here.
 | |
|  */
 | |
| int
 | |
| xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 | |
| 			 int nelems, enum dma_data_direction dir,
 | |
| 			 struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 
 | |
| 	for_each_sg(sgl, sg, nelems, i) {
 | |
| 		phys_addr_t paddr = sg_phys(sg);
 | |
| 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
 | |
| 
 | |
| 		if (swiotlb_force ||
 | |
| 		    xen_arch_need_swiotlb(hwdev, PFN_DOWN(paddr), PFN_DOWN(dev_addr)) ||
 | |
| 		    !dma_capable(hwdev, dev_addr, sg->length) ||
 | |
| 		    range_straddles_page_boundary(paddr, sg->length)) {
 | |
| 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
 | |
| 								 start_dma_addr,
 | |
| 								 sg_phys(sg),
 | |
| 								 sg->length,
 | |
| 								 dir);
 | |
| 			if (map == SWIOTLB_MAP_ERROR) {
 | |
| 				dev_warn(hwdev, "swiotlb buffer is full\n");
 | |
| 				/* Don't panic here, we expect map_sg users
 | |
| 				   to do proper error handling. */
 | |
| 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 | |
| 							   attrs);
 | |
| 				sg_dma_len(sgl) = 0;
 | |
| 				return 0;
 | |
| 			}
 | |
| 			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
 | |
| 						dev_addr,
 | |
| 						map & ~PAGE_MASK,
 | |
| 						sg->length,
 | |
| 						dir,
 | |
| 						attrs);
 | |
| 			sg->dma_address = xen_phys_to_bus(map);
 | |
| 		} else {
 | |
| 			/* we are not interested in the dma_addr returned by
 | |
| 			 * xen_dma_map_page, only in the potential cache flushes executed
 | |
| 			 * by the function. */
 | |
| 			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
 | |
| 						dev_addr,
 | |
| 						paddr & ~PAGE_MASK,
 | |
| 						sg->length,
 | |
| 						dir,
 | |
| 						attrs);
 | |
| 			sg->dma_address = dev_addr;
 | |
| 		}
 | |
| 		sg_dma_len(sg) = sg->length;
 | |
| 	}
 | |
| 	return nelems;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
 | |
| 
 | |
| /*
 | |
|  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 | |
|  * concerning calls here are the same as for swiotlb_unmap_page() above.
 | |
|  */
 | |
| void
 | |
| xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 | |
| 			   int nelems, enum dma_data_direction dir,
 | |
| 			   struct dma_attrs *attrs)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 
 | |
| 	for_each_sg(sgl, sg, nelems, i)
 | |
| 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
 | |
| 
 | |
| /*
 | |
|  * Make physical memory consistent for a set of streaming mode DMA translations
 | |
|  * after a transfer.
 | |
|  *
 | |
|  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 | |
|  * and usage.
 | |
|  */
 | |
| static void
 | |
| xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 | |
| 		    int nelems, enum dma_data_direction dir,
 | |
| 		    enum dma_sync_target target)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sgl, sg, nelems, i)
 | |
| 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
 | |
| 					sg_dma_len(sg), dir, target);
 | |
| }
 | |
| 
 | |
| void
 | |
| xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
 | |
| 			    int nelems, enum dma_data_direction dir)
 | |
| {
 | |
| 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
 | |
| 
 | |
| void
 | |
| xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
 | |
| 			       int nelems, enum dma_data_direction dir)
 | |
| {
 | |
| 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
 | |
| 
 | |
| int
 | |
| xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
 | |
| {
 | |
| 	return !dma_addr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
 | |
| 
 | |
| /*
 | |
|  * Return whether the given device DMA address mask can be supported
 | |
|  * properly.  For example, if your device can only drive the low 24-bits
 | |
|  * during bus mastering, then you would pass 0x00ffffff as the mask to
 | |
|  * this function.
 | |
|  */
 | |
| int
 | |
| xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
 | |
| {
 | |
| 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
 | |
| 
 | |
| int
 | |
| xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
 | |
| {
 | |
| 	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	*dev->dma_mask = dma_mask;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);
 |