1ea644c8f9
Panic if Xen provides a memory map with 0 entries. Although this is unlikely, it is better to catch the error at the point of seeing the map than later on as a symptom of some other crash. Signed-off-by: Martin Kelly <martkell@amazon.com> Signed-off-by: David Vrabel <david.vrabel@citrix.com>
863 lines
24 KiB
C
863 lines
24 KiB
C
/*
|
|
* Machine specific setup for xen
|
|
*
|
|
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/cpufreq.h>
|
|
|
|
#include <asm/elf.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/acpi.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/xen/hypervisor.h>
|
|
#include <asm/xen/hypercall.h>
|
|
|
|
#include <xen/xen.h>
|
|
#include <xen/page.h>
|
|
#include <xen/interface/callback.h>
|
|
#include <xen/interface/memory.h>
|
|
#include <xen/interface/physdev.h>
|
|
#include <xen/features.h>
|
|
#include "xen-ops.h"
|
|
#include "vdso.h"
|
|
#include "p2m.h"
|
|
|
|
/* These are code, but not functions. Defined in entry.S */
|
|
extern const char xen_hypervisor_callback[];
|
|
extern const char xen_failsafe_callback[];
|
|
#ifdef CONFIG_X86_64
|
|
extern asmlinkage void nmi(void);
|
|
#endif
|
|
extern void xen_sysenter_target(void);
|
|
extern void xen_syscall_target(void);
|
|
extern void xen_syscall32_target(void);
|
|
|
|
/* Amount of extra memory space we add to the e820 ranges */
|
|
struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
|
|
|
|
/* Number of pages released from the initial allocation. */
|
|
unsigned long xen_released_pages;
|
|
|
|
/* Buffer used to remap identity mapped pages */
|
|
unsigned long xen_remap_buf[P2M_PER_PAGE] __initdata;
|
|
|
|
/*
|
|
* The maximum amount of extra memory compared to the base size. The
|
|
* main scaling factor is the size of struct page. At extreme ratios
|
|
* of base:extra, all the base memory can be filled with page
|
|
* structures for the extra memory, leaving no space for anything
|
|
* else.
|
|
*
|
|
* 10x seems like a reasonable balance between scaling flexibility and
|
|
* leaving a practically usable system.
|
|
*/
|
|
#define EXTRA_MEM_RATIO (10)
|
|
|
|
static void __init xen_add_extra_mem(u64 start, u64 size)
|
|
{
|
|
unsigned long pfn;
|
|
int i;
|
|
|
|
for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
|
|
/* Add new region. */
|
|
if (xen_extra_mem[i].size == 0) {
|
|
xen_extra_mem[i].start = start;
|
|
xen_extra_mem[i].size = size;
|
|
break;
|
|
}
|
|
/* Append to existing region. */
|
|
if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
|
|
xen_extra_mem[i].size += size;
|
|
break;
|
|
}
|
|
}
|
|
if (i == XEN_EXTRA_MEM_MAX_REGIONS)
|
|
printk(KERN_WARNING "Warning: not enough extra memory regions\n");
|
|
|
|
memblock_reserve(start, size);
|
|
|
|
xen_max_p2m_pfn = PFN_DOWN(start + size);
|
|
for (pfn = PFN_DOWN(start); pfn < xen_max_p2m_pfn; pfn++) {
|
|
unsigned long mfn = pfn_to_mfn(pfn);
|
|
|
|
if (WARN_ONCE(mfn == pfn, "Trying to over-write 1-1 mapping (pfn: %lx)\n", pfn))
|
|
continue;
|
|
WARN_ONCE(mfn != INVALID_P2M_ENTRY, "Trying to remove %lx which has %lx mfn!\n",
|
|
pfn, mfn);
|
|
|
|
__set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
|
|
}
|
|
}
|
|
|
|
static unsigned long __init xen_do_chunk(unsigned long start,
|
|
unsigned long end, bool release)
|
|
{
|
|
struct xen_memory_reservation reservation = {
|
|
.address_bits = 0,
|
|
.extent_order = 0,
|
|
.domid = DOMID_SELF
|
|
};
|
|
unsigned long len = 0;
|
|
unsigned long pfn;
|
|
int ret;
|
|
|
|
for (pfn = start; pfn < end; pfn++) {
|
|
unsigned long frame;
|
|
unsigned long mfn = pfn_to_mfn(pfn);
|
|
|
|
if (release) {
|
|
/* Make sure pfn exists to start with */
|
|
if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
|
|
continue;
|
|
frame = mfn;
|
|
} else {
|
|
if (mfn != INVALID_P2M_ENTRY)
|
|
continue;
|
|
frame = pfn;
|
|
}
|
|
set_xen_guest_handle(reservation.extent_start, &frame);
|
|
reservation.nr_extents = 1;
|
|
|
|
ret = HYPERVISOR_memory_op(release ? XENMEM_decrease_reservation : XENMEM_populate_physmap,
|
|
&reservation);
|
|
WARN(ret != 1, "Failed to %s pfn %lx err=%d\n",
|
|
release ? "release" : "populate", pfn, ret);
|
|
|
|
if (ret == 1) {
|
|
if (!early_set_phys_to_machine(pfn, release ? INVALID_P2M_ENTRY : frame)) {
|
|
if (release)
|
|
break;
|
|
set_xen_guest_handle(reservation.extent_start, &frame);
|
|
reservation.nr_extents = 1;
|
|
ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation,
|
|
&reservation);
|
|
break;
|
|
}
|
|
len++;
|
|
} else
|
|
break;
|
|
}
|
|
if (len)
|
|
printk(KERN_INFO "%s %lx-%lx pfn range: %lu pages %s\n",
|
|
release ? "Freeing" : "Populating",
|
|
start, end, len,
|
|
release ? "freed" : "added");
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Finds the next RAM pfn available in the E820 map after min_pfn.
|
|
* This function updates min_pfn with the pfn found and returns
|
|
* the size of that range or zero if not found.
|
|
*/
|
|
static unsigned long __init xen_find_pfn_range(
|
|
const struct e820entry *list, size_t map_size,
|
|
unsigned long *min_pfn)
|
|
{
|
|
const struct e820entry *entry;
|
|
unsigned int i;
|
|
unsigned long done = 0;
|
|
|
|
for (i = 0, entry = list; i < map_size; i++, entry++) {
|
|
unsigned long s_pfn;
|
|
unsigned long e_pfn;
|
|
|
|
if (entry->type != E820_RAM)
|
|
continue;
|
|
|
|
e_pfn = PFN_DOWN(entry->addr + entry->size);
|
|
|
|
/* We only care about E820 after this */
|
|
if (e_pfn < *min_pfn)
|
|
continue;
|
|
|
|
s_pfn = PFN_UP(entry->addr);
|
|
|
|
/* If min_pfn falls within the E820 entry, we want to start
|
|
* at the min_pfn PFN.
|
|
*/
|
|
if (s_pfn <= *min_pfn) {
|
|
done = e_pfn - *min_pfn;
|
|
} else {
|
|
done = e_pfn - s_pfn;
|
|
*min_pfn = s_pfn;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
/*
|
|
* This releases a chunk of memory and then does the identity map. It's used as
|
|
* as a fallback if the remapping fails.
|
|
*/
|
|
static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
|
|
unsigned long end_pfn, unsigned long nr_pages, unsigned long *identity,
|
|
unsigned long *released)
|
|
{
|
|
WARN_ON(start_pfn > end_pfn);
|
|
|
|
/* Need to release pages first */
|
|
*released += xen_do_chunk(start_pfn, min(end_pfn, nr_pages), true);
|
|
*identity += set_phys_range_identity(start_pfn, end_pfn);
|
|
}
|
|
|
|
/*
|
|
* Helper function to update both the p2m and m2p tables.
|
|
*/
|
|
static unsigned long __init xen_update_mem_tables(unsigned long pfn,
|
|
unsigned long mfn)
|
|
{
|
|
struct mmu_update update = {
|
|
.ptr = ((unsigned long long)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
|
|
.val = pfn
|
|
};
|
|
|
|
/* Update p2m */
|
|
if (!early_set_phys_to_machine(pfn, mfn)) {
|
|
WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
|
|
pfn, mfn);
|
|
return false;
|
|
}
|
|
|
|
/* Update m2p */
|
|
if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
|
|
WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
|
|
mfn, pfn);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This function updates the p2m and m2p tables with an identity map from
|
|
* start_pfn to start_pfn+size and remaps the underlying RAM of the original
|
|
* allocation at remap_pfn. It must do so carefully in P2M_PER_PAGE sized blocks
|
|
* to not exhaust the reserved brk space. Doing it in properly aligned blocks
|
|
* ensures we only allocate the minimum required leaf pages in the p2m table. It
|
|
* copies the existing mfns from the p2m table under the 1:1 map, overwrites
|
|
* them with the identity map and then updates the p2m and m2p tables with the
|
|
* remapped memory.
|
|
*/
|
|
static unsigned long __init xen_do_set_identity_and_remap_chunk(
|
|
unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
|
|
{
|
|
unsigned long ident_pfn_iter, remap_pfn_iter;
|
|
unsigned long ident_start_pfn_align, remap_start_pfn_align;
|
|
unsigned long ident_end_pfn_align, remap_end_pfn_align;
|
|
unsigned long ident_boundary_pfn, remap_boundary_pfn;
|
|
unsigned long ident_cnt = 0;
|
|
unsigned long remap_cnt = 0;
|
|
unsigned long left = size;
|
|
unsigned long mod;
|
|
int i;
|
|
|
|
WARN_ON(size == 0);
|
|
|
|
BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
|
|
|
|
/*
|
|
* Determine the proper alignment to remap memory in P2M_PER_PAGE sized
|
|
* blocks. We need to keep track of both the existing pfn mapping and
|
|
* the new pfn remapping.
|
|
*/
|
|
mod = start_pfn % P2M_PER_PAGE;
|
|
ident_start_pfn_align =
|
|
mod ? (start_pfn - mod + P2M_PER_PAGE) : start_pfn;
|
|
mod = remap_pfn % P2M_PER_PAGE;
|
|
remap_start_pfn_align =
|
|
mod ? (remap_pfn - mod + P2M_PER_PAGE) : remap_pfn;
|
|
mod = (start_pfn + size) % P2M_PER_PAGE;
|
|
ident_end_pfn_align = start_pfn + size - mod;
|
|
mod = (remap_pfn + size) % P2M_PER_PAGE;
|
|
remap_end_pfn_align = remap_pfn + size - mod;
|
|
|
|
/* Iterate over each p2m leaf node in each range */
|
|
for (ident_pfn_iter = ident_start_pfn_align, remap_pfn_iter = remap_start_pfn_align;
|
|
ident_pfn_iter < ident_end_pfn_align && remap_pfn_iter < remap_end_pfn_align;
|
|
ident_pfn_iter += P2M_PER_PAGE, remap_pfn_iter += P2M_PER_PAGE) {
|
|
/* Check we aren't past the end */
|
|
BUG_ON(ident_pfn_iter + P2M_PER_PAGE > start_pfn + size);
|
|
BUG_ON(remap_pfn_iter + P2M_PER_PAGE > remap_pfn + size);
|
|
|
|
/* Save p2m mappings */
|
|
for (i = 0; i < P2M_PER_PAGE; i++)
|
|
xen_remap_buf[i] = pfn_to_mfn(ident_pfn_iter + i);
|
|
|
|
/* Set identity map which will free a p2m leaf */
|
|
ident_cnt += set_phys_range_identity(ident_pfn_iter,
|
|
ident_pfn_iter + P2M_PER_PAGE);
|
|
|
|
#ifdef DEBUG
|
|
/* Helps verify a p2m leaf has been freed */
|
|
for (i = 0; i < P2M_PER_PAGE; i++) {
|
|
unsigned int pfn = ident_pfn_iter + i;
|
|
BUG_ON(pfn_to_mfn(pfn) != pfn);
|
|
}
|
|
#endif
|
|
/* Now remap memory */
|
|
for (i = 0; i < P2M_PER_PAGE; i++) {
|
|
unsigned long mfn = xen_remap_buf[i];
|
|
|
|
/* This will use the p2m leaf freed above */
|
|
if (!xen_update_mem_tables(remap_pfn_iter + i, mfn)) {
|
|
WARN(1, "Failed to update mem mapping for pfn=%ld mfn=%ld\n",
|
|
remap_pfn_iter + i, mfn);
|
|
return 0;
|
|
}
|
|
|
|
remap_cnt++;
|
|
}
|
|
|
|
left -= P2M_PER_PAGE;
|
|
}
|
|
|
|
/* Max boundary space possible */
|
|
BUG_ON(left > (P2M_PER_PAGE - 1) * 2);
|
|
|
|
/* Now handle the boundary conditions */
|
|
ident_boundary_pfn = start_pfn;
|
|
remap_boundary_pfn = remap_pfn;
|
|
for (i = 0; i < left; i++) {
|
|
unsigned long mfn;
|
|
|
|
/* These two checks move from the start to end boundaries */
|
|
if (ident_boundary_pfn == ident_start_pfn_align)
|
|
ident_boundary_pfn = ident_pfn_iter;
|
|
if (remap_boundary_pfn == remap_start_pfn_align)
|
|
remap_boundary_pfn = remap_pfn_iter;
|
|
|
|
/* Check we aren't past the end */
|
|
BUG_ON(ident_boundary_pfn >= start_pfn + size);
|
|
BUG_ON(remap_boundary_pfn >= remap_pfn + size);
|
|
|
|
mfn = pfn_to_mfn(ident_boundary_pfn);
|
|
|
|
if (!xen_update_mem_tables(remap_boundary_pfn, mfn)) {
|
|
WARN(1, "Failed to update mem mapping for pfn=%ld mfn=%ld\n",
|
|
remap_pfn_iter + i, mfn);
|
|
return 0;
|
|
}
|
|
remap_cnt++;
|
|
|
|
ident_boundary_pfn++;
|
|
remap_boundary_pfn++;
|
|
}
|
|
|
|
/* Finish up the identity map */
|
|
if (ident_start_pfn_align >= ident_end_pfn_align) {
|
|
/*
|
|
* In this case we have an identity range which does not span an
|
|
* aligned block so everything needs to be identity mapped here.
|
|
* If we didn't check this we might remap too many pages since
|
|
* the align boundaries are not meaningful in this case.
|
|
*/
|
|
ident_cnt += set_phys_range_identity(start_pfn,
|
|
start_pfn + size);
|
|
} else {
|
|
/* Remapped above so check each end of the chunk */
|
|
if (start_pfn < ident_start_pfn_align)
|
|
ident_cnt += set_phys_range_identity(start_pfn,
|
|
ident_start_pfn_align);
|
|
if (start_pfn + size > ident_pfn_iter)
|
|
ident_cnt += set_phys_range_identity(ident_pfn_iter,
|
|
start_pfn + size);
|
|
}
|
|
|
|
BUG_ON(ident_cnt != size);
|
|
BUG_ON(remap_cnt != size);
|
|
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* This function takes a contiguous pfn range that needs to be identity mapped
|
|
* and:
|
|
*
|
|
* 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
|
|
* 2) Calls the do_ function to actually do the mapping/remapping work.
|
|
*
|
|
* The goal is to not allocate additional memory but to remap the existing
|
|
* pages. In the case of an error the underlying memory is simply released back
|
|
* to Xen and not remapped.
|
|
*/
|
|
static unsigned long __init xen_set_identity_and_remap_chunk(
|
|
const struct e820entry *list, size_t map_size, unsigned long start_pfn,
|
|
unsigned long end_pfn, unsigned long nr_pages, unsigned long remap_pfn,
|
|
unsigned long *identity, unsigned long *remapped,
|
|
unsigned long *released)
|
|
{
|
|
unsigned long pfn;
|
|
unsigned long i = 0;
|
|
unsigned long n = end_pfn - start_pfn;
|
|
|
|
while (i < n) {
|
|
unsigned long cur_pfn = start_pfn + i;
|
|
unsigned long left = n - i;
|
|
unsigned long size = left;
|
|
unsigned long remap_range_size;
|
|
|
|
/* Do not remap pages beyond the current allocation */
|
|
if (cur_pfn >= nr_pages) {
|
|
/* Identity map remaining pages */
|
|
*identity += set_phys_range_identity(cur_pfn,
|
|
cur_pfn + size);
|
|
break;
|
|
}
|
|
if (cur_pfn + size > nr_pages)
|
|
size = nr_pages - cur_pfn;
|
|
|
|
remap_range_size = xen_find_pfn_range(list, map_size,
|
|
&remap_pfn);
|
|
if (!remap_range_size) {
|
|
pr_warning("Unable to find available pfn range, not remapping identity pages\n");
|
|
xen_set_identity_and_release_chunk(cur_pfn,
|
|
cur_pfn + left, nr_pages, identity, released);
|
|
break;
|
|
}
|
|
/* Adjust size to fit in current e820 RAM region */
|
|
if (size > remap_range_size)
|
|
size = remap_range_size;
|
|
|
|
if (!xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn)) {
|
|
WARN(1, "Failed to remap 1:1 memory cur_pfn=%ld size=%ld remap_pfn=%ld\n",
|
|
cur_pfn, size, remap_pfn);
|
|
xen_set_identity_and_release_chunk(cur_pfn,
|
|
cur_pfn + left, nr_pages, identity, released);
|
|
break;
|
|
}
|
|
|
|
/* Update variables to reflect new mappings. */
|
|
i += size;
|
|
remap_pfn += size;
|
|
*identity += size;
|
|
*remapped += size;
|
|
}
|
|
|
|
/*
|
|
* If the PFNs are currently mapped, the VA mapping also needs
|
|
* to be updated to be 1:1.
|
|
*/
|
|
for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
|
|
(void)HYPERVISOR_update_va_mapping(
|
|
(unsigned long)__va(pfn << PAGE_SHIFT),
|
|
mfn_pte(pfn, PAGE_KERNEL_IO), 0);
|
|
|
|
return remap_pfn;
|
|
}
|
|
|
|
static unsigned long __init xen_set_identity_and_remap(
|
|
const struct e820entry *list, size_t map_size, unsigned long nr_pages,
|
|
unsigned long *released)
|
|
{
|
|
phys_addr_t start = 0;
|
|
unsigned long identity = 0;
|
|
unsigned long remapped = 0;
|
|
unsigned long last_pfn = nr_pages;
|
|
const struct e820entry *entry;
|
|
unsigned long num_released = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Combine non-RAM regions and gaps until a RAM region (or the
|
|
* end of the map) is reached, then set the 1:1 map and
|
|
* remap the memory in those non-RAM regions.
|
|
*
|
|
* The combined non-RAM regions are rounded to a whole number
|
|
* of pages so any partial pages are accessible via the 1:1
|
|
* mapping. This is needed for some BIOSes that put (for
|
|
* example) the DMI tables in a reserved region that begins on
|
|
* a non-page boundary.
|
|
*/
|
|
for (i = 0, entry = list; i < map_size; i++, entry++) {
|
|
phys_addr_t end = entry->addr + entry->size;
|
|
if (entry->type == E820_RAM || i == map_size - 1) {
|
|
unsigned long start_pfn = PFN_DOWN(start);
|
|
unsigned long end_pfn = PFN_UP(end);
|
|
|
|
if (entry->type == E820_RAM)
|
|
end_pfn = PFN_UP(entry->addr);
|
|
|
|
if (start_pfn < end_pfn)
|
|
last_pfn = xen_set_identity_and_remap_chunk(
|
|
list, map_size, start_pfn,
|
|
end_pfn, nr_pages, last_pfn,
|
|
&identity, &remapped,
|
|
&num_released);
|
|
start = end;
|
|
}
|
|
}
|
|
|
|
*released = num_released;
|
|
|
|
pr_info("Set %ld page(s) to 1-1 mapping\n", identity);
|
|
pr_info("Remapped %ld page(s), last_pfn=%ld\n", remapped,
|
|
last_pfn);
|
|
pr_info("Released %ld page(s)\n", num_released);
|
|
|
|
return last_pfn;
|
|
}
|
|
static unsigned long __init xen_get_max_pages(void)
|
|
{
|
|
unsigned long max_pages = MAX_DOMAIN_PAGES;
|
|
domid_t domid = DOMID_SELF;
|
|
int ret;
|
|
|
|
/*
|
|
* For the initial domain we use the maximum reservation as
|
|
* the maximum page.
|
|
*
|
|
* For guest domains the current maximum reservation reflects
|
|
* the current maximum rather than the static maximum. In this
|
|
* case the e820 map provided to us will cover the static
|
|
* maximum region.
|
|
*/
|
|
if (xen_initial_domain()) {
|
|
ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
|
|
if (ret > 0)
|
|
max_pages = ret;
|
|
}
|
|
|
|
return min(max_pages, MAX_DOMAIN_PAGES);
|
|
}
|
|
|
|
static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
|
|
{
|
|
u64 end = start + size;
|
|
|
|
/* Align RAM regions to page boundaries. */
|
|
if (type == E820_RAM) {
|
|
start = PAGE_ALIGN(start);
|
|
end &= ~((u64)PAGE_SIZE - 1);
|
|
}
|
|
|
|
e820_add_region(start, end - start, type);
|
|
}
|
|
|
|
void xen_ignore_unusable(struct e820entry *list, size_t map_size)
|
|
{
|
|
struct e820entry *entry;
|
|
unsigned int i;
|
|
|
|
for (i = 0, entry = list; i < map_size; i++, entry++) {
|
|
if (entry->type == E820_UNUSABLE)
|
|
entry->type = E820_RAM;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* machine_specific_memory_setup - Hook for machine specific memory setup.
|
|
**/
|
|
char * __init xen_memory_setup(void)
|
|
{
|
|
static struct e820entry map[E820MAX] __initdata;
|
|
|
|
unsigned long max_pfn = xen_start_info->nr_pages;
|
|
unsigned long long mem_end;
|
|
int rc;
|
|
struct xen_memory_map memmap;
|
|
unsigned long max_pages;
|
|
unsigned long last_pfn = 0;
|
|
unsigned long extra_pages = 0;
|
|
int i;
|
|
int op;
|
|
|
|
max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
|
|
mem_end = PFN_PHYS(max_pfn);
|
|
|
|
memmap.nr_entries = E820MAX;
|
|
set_xen_guest_handle(memmap.buffer, map);
|
|
|
|
op = xen_initial_domain() ?
|
|
XENMEM_machine_memory_map :
|
|
XENMEM_memory_map;
|
|
rc = HYPERVISOR_memory_op(op, &memmap);
|
|
if (rc == -ENOSYS) {
|
|
BUG_ON(xen_initial_domain());
|
|
memmap.nr_entries = 1;
|
|
map[0].addr = 0ULL;
|
|
map[0].size = mem_end;
|
|
/* 8MB slack (to balance backend allocations). */
|
|
map[0].size += 8ULL << 20;
|
|
map[0].type = E820_RAM;
|
|
rc = 0;
|
|
}
|
|
BUG_ON(rc);
|
|
BUG_ON(memmap.nr_entries == 0);
|
|
|
|
/*
|
|
* Xen won't allow a 1:1 mapping to be created to UNUSABLE
|
|
* regions, so if we're using the machine memory map leave the
|
|
* region as RAM as it is in the pseudo-physical map.
|
|
*
|
|
* UNUSABLE regions in domUs are not handled and will need
|
|
* a patch in the future.
|
|
*/
|
|
if (xen_initial_domain())
|
|
xen_ignore_unusable(map, memmap.nr_entries);
|
|
|
|
/* Make sure the Xen-supplied memory map is well-ordered. */
|
|
sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
|
|
|
|
max_pages = xen_get_max_pages();
|
|
if (max_pages > max_pfn)
|
|
extra_pages += max_pages - max_pfn;
|
|
|
|
/*
|
|
* Set identity map on non-RAM pages and remap the underlying RAM.
|
|
*/
|
|
last_pfn = xen_set_identity_and_remap(map, memmap.nr_entries, max_pfn,
|
|
&xen_released_pages);
|
|
|
|
extra_pages += xen_released_pages;
|
|
|
|
if (last_pfn > max_pfn) {
|
|
max_pfn = min(MAX_DOMAIN_PAGES, last_pfn);
|
|
mem_end = PFN_PHYS(max_pfn);
|
|
}
|
|
/*
|
|
* Clamp the amount of extra memory to a EXTRA_MEM_RATIO
|
|
* factor the base size. On non-highmem systems, the base
|
|
* size is the full initial memory allocation; on highmem it
|
|
* is limited to the max size of lowmem, so that it doesn't
|
|
* get completely filled.
|
|
*
|
|
* In principle there could be a problem in lowmem systems if
|
|
* the initial memory is also very large with respect to
|
|
* lowmem, but we won't try to deal with that here.
|
|
*/
|
|
extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
|
|
extra_pages);
|
|
i = 0;
|
|
while (i < memmap.nr_entries) {
|
|
u64 addr = map[i].addr;
|
|
u64 size = map[i].size;
|
|
u32 type = map[i].type;
|
|
|
|
if (type == E820_RAM) {
|
|
if (addr < mem_end) {
|
|
size = min(size, mem_end - addr);
|
|
} else if (extra_pages) {
|
|
size = min(size, (u64)extra_pages * PAGE_SIZE);
|
|
extra_pages -= size / PAGE_SIZE;
|
|
xen_add_extra_mem(addr, size);
|
|
} else
|
|
type = E820_UNUSABLE;
|
|
}
|
|
|
|
xen_align_and_add_e820_region(addr, size, type);
|
|
|
|
map[i].addr += size;
|
|
map[i].size -= size;
|
|
if (map[i].size == 0)
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Set the rest as identity mapped, in case PCI BARs are
|
|
* located here.
|
|
*
|
|
* PFNs above MAX_P2M_PFN are considered identity mapped as
|
|
* well.
|
|
*/
|
|
set_phys_range_identity(map[i-1].addr / PAGE_SIZE, ~0ul);
|
|
|
|
/*
|
|
* In domU, the ISA region is normal, usable memory, but we
|
|
* reserve ISA memory anyway because too many things poke
|
|
* about in there.
|
|
*/
|
|
e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
|
|
E820_RESERVED);
|
|
|
|
/*
|
|
* Reserve Xen bits:
|
|
* - mfn_list
|
|
* - xen_start_info
|
|
* See comment above "struct start_info" in <xen/interface/xen.h>
|
|
* We tried to make the the memblock_reserve more selective so
|
|
* that it would be clear what region is reserved. Sadly we ran
|
|
* in the problem wherein on a 64-bit hypervisor with a 32-bit
|
|
* initial domain, the pt_base has the cr3 value which is not
|
|
* neccessarily where the pagetable starts! As Jan put it: "
|
|
* Actually, the adjustment turns out to be correct: The page
|
|
* tables for a 32-on-64 dom0 get allocated in the order "first L1",
|
|
* "first L2", "first L3", so the offset to the page table base is
|
|
* indeed 2. When reading xen/include/public/xen.h's comment
|
|
* very strictly, this is not a violation (since there nothing is said
|
|
* that the first thing in the page table space is pointed to by
|
|
* pt_base; I admit that this seems to be implied though, namely
|
|
* do I think that it is implied that the page table space is the
|
|
* range [pt_base, pt_base + nt_pt_frames), whereas that
|
|
* range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames),
|
|
* which - without a priori knowledge - the kernel would have
|
|
* difficulty to figure out)." - so lets just fall back to the
|
|
* easy way and reserve the whole region.
|
|
*/
|
|
memblock_reserve(__pa(xen_start_info->mfn_list),
|
|
xen_start_info->pt_base - xen_start_info->mfn_list);
|
|
|
|
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
|
|
|
|
return "Xen";
|
|
}
|
|
|
|
/*
|
|
* Machine specific memory setup for auto-translated guests.
|
|
*/
|
|
char * __init xen_auto_xlated_memory_setup(void)
|
|
{
|
|
static struct e820entry map[E820MAX] __initdata;
|
|
|
|
struct xen_memory_map memmap;
|
|
int i;
|
|
int rc;
|
|
|
|
memmap.nr_entries = E820MAX;
|
|
set_xen_guest_handle(memmap.buffer, map);
|
|
|
|
rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
|
|
if (rc < 0)
|
|
panic("No memory map (%d)\n", rc);
|
|
|
|
sanitize_e820_map(map, ARRAY_SIZE(map), &memmap.nr_entries);
|
|
|
|
for (i = 0; i < memmap.nr_entries; i++)
|
|
e820_add_region(map[i].addr, map[i].size, map[i].type);
|
|
|
|
memblock_reserve(__pa(xen_start_info->mfn_list),
|
|
xen_start_info->pt_base - xen_start_info->mfn_list);
|
|
|
|
return "Xen";
|
|
}
|
|
|
|
/*
|
|
* Set the bit indicating "nosegneg" library variants should be used.
|
|
* We only need to bother in pure 32-bit mode; compat 32-bit processes
|
|
* can have un-truncated segments, so wrapping around is allowed.
|
|
*/
|
|
static void __init fiddle_vdso(void)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* This could be called before selected_vdso32 is initialized, so
|
|
* just fiddle with both possible images. vdso_image_32_syscall
|
|
* can't be selected, since it only exists on 64-bit systems.
|
|
*/
|
|
u32 *mask;
|
|
mask = vdso_image_32_int80.data +
|
|
vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
|
|
*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
|
|
mask = vdso_image_32_sysenter.data +
|
|
vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
|
|
*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
|
|
#endif
|
|
}
|
|
|
|
static int register_callback(unsigned type, const void *func)
|
|
{
|
|
struct callback_register callback = {
|
|
.type = type,
|
|
.address = XEN_CALLBACK(__KERNEL_CS, func),
|
|
.flags = CALLBACKF_mask_events,
|
|
};
|
|
|
|
return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
|
|
}
|
|
|
|
void xen_enable_sysenter(void)
|
|
{
|
|
int ret;
|
|
unsigned sysenter_feature;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
sysenter_feature = X86_FEATURE_SEP;
|
|
#else
|
|
sysenter_feature = X86_FEATURE_SYSENTER32;
|
|
#endif
|
|
|
|
if (!boot_cpu_has(sysenter_feature))
|
|
return;
|
|
|
|
ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
|
|
if(ret != 0)
|
|
setup_clear_cpu_cap(sysenter_feature);
|
|
}
|
|
|
|
void xen_enable_syscall(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
int ret;
|
|
|
|
ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
|
|
if (ret != 0) {
|
|
printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
|
|
/* Pretty fatal; 64-bit userspace has no other
|
|
mechanism for syscalls. */
|
|
}
|
|
|
|
if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
|
|
ret = register_callback(CALLBACKTYPE_syscall32,
|
|
xen_syscall32_target);
|
|
if (ret != 0)
|
|
setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
|
|
}
|
|
#endif /* CONFIG_X86_64 */
|
|
}
|
|
|
|
void __init xen_pvmmu_arch_setup(void)
|
|
{
|
|
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
|
|
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
|
|
|
|
HYPERVISOR_vm_assist(VMASST_CMD_enable,
|
|
VMASST_TYPE_pae_extended_cr3);
|
|
|
|
if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
|
|
register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
|
|
BUG();
|
|
|
|
xen_enable_sysenter();
|
|
xen_enable_syscall();
|
|
}
|
|
|
|
/* This function is not called for HVM domains */
|
|
void __init xen_arch_setup(void)
|
|
{
|
|
xen_panic_handler_init();
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap))
|
|
xen_pvmmu_arch_setup();
|
|
|
|
#ifdef CONFIG_ACPI
|
|
if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
|
|
printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
|
|
disable_acpi();
|
|
}
|
|
#endif
|
|
|
|
memcpy(boot_command_line, xen_start_info->cmd_line,
|
|
MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
|
|
COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
|
|
|
|
/* Set up idle, making sure it calls safe_halt() pvop */
|
|
disable_cpuidle();
|
|
disable_cpufreq();
|
|
WARN_ON(xen_set_default_idle());
|
|
fiddle_vdso();
|
|
#ifdef CONFIG_NUMA
|
|
numa_off = 1;
|
|
#endif
|
|
}
|