forked from Minki/linux
991d9fa02d
Initial EXPERIMENTAL implementation of device-mapper thin provisioning with snapshot support. The 'thin' target is used to create instances of the virtual devices that are hosted in the 'thin-pool' target. The thin-pool target provides data sharing among devices. This sharing is made possible using the persistent-data library in the previous patch. The main highlight of this implementation, compared to the previous implementation of snapshots, is that it allows many virtual devices to be stored on the same data volume, simplifying administration and allowing sharing of data between volumes (thus reducing disk usage). Another big feature is support for arbitrary depth of recursive snapshots (snapshots of snapshots of snapshots ...). The previous implementation of snapshots did this by chaining together lookup tables, and so performance was O(depth). This new implementation uses a single data structure so we don't get this degradation with depth. For further information and examples of how to use this, please read Documentation/device-mapper/thin-provisioning.txt Signed-off-by: Joe Thornber <thornber@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
286 lines
9.7 KiB
Plaintext
286 lines
9.7 KiB
Plaintext
Introduction
|
|
============
|
|
|
|
This document descibes a collection of device-mapper targets that
|
|
between them implement thin-provisioning and snapshots.
|
|
|
|
The main highlight of this implementation, compared to the previous
|
|
implementation of snapshots, is that it allows many virtual devices to
|
|
be stored on the same data volume. This simplifies administration and
|
|
allows the sharing of data between volumes, thus reducing disk usage.
|
|
|
|
Another significant feature is support for an arbitrary depth of
|
|
recursive snapshots (snapshots of snapshots of snapshots ...). The
|
|
previous implementation of snapshots did this by chaining together
|
|
lookup tables, and so performance was O(depth). This new
|
|
implementation uses a single data structure to avoid this degradation
|
|
with depth. Fragmentation may still be an issue, however, in some
|
|
scenarios.
|
|
|
|
Metadata is stored on a separate device from data, giving the
|
|
administrator some freedom, for example to:
|
|
|
|
- Improve metadata resilience by storing metadata on a mirrored volume
|
|
but data on a non-mirrored one.
|
|
|
|
- Improve performance by storing the metadata on SSD.
|
|
|
|
Status
|
|
======
|
|
|
|
These targets are very much still in the EXPERIMENTAL state. Please
|
|
do not yet rely on them in production. But do experiment and offer us
|
|
feedback. Different use cases will have different performance
|
|
characteristics, for example due to fragmentation of the data volume.
|
|
|
|
If you find this software is not performing as expected please mail
|
|
dm-devel@redhat.com with details and we'll try our best to improve
|
|
things for you.
|
|
|
|
Userspace tools for checking and repairing the metadata are under
|
|
development.
|
|
|
|
Cookbook
|
|
========
|
|
|
|
This section describes some quick recipes for using thin provisioning.
|
|
They use the dmsetup program to control the device-mapper driver
|
|
directly. End users will be advised to use a higher-level volume
|
|
manager such as LVM2 once support has been added.
|
|
|
|
Pool device
|
|
-----------
|
|
|
|
The pool device ties together the metadata volume and the data volume.
|
|
It maps I/O linearly to the data volume and updates the metadata via
|
|
two mechanisms:
|
|
|
|
- Function calls from the thin targets
|
|
|
|
- Device-mapper 'messages' from userspace which control the creation of new
|
|
virtual devices amongst other things.
|
|
|
|
Setting up a fresh pool device
|
|
------------------------------
|
|
|
|
Setting up a pool device requires a valid metadata device, and a
|
|
data device. If you do not have an existing metadata device you can
|
|
make one by zeroing the first 4k to indicate empty metadata.
|
|
|
|
dd if=/dev/zero of=$metadata_dev bs=4096 count=1
|
|
|
|
The amount of metadata you need will vary according to how many blocks
|
|
are shared between thin devices (i.e. through snapshots). If you have
|
|
less sharing than average you'll need a larger-than-average metadata device.
|
|
|
|
As a guide, we suggest you calculate the number of bytes to use in the
|
|
metadata device as 48 * $data_dev_size / $data_block_size but round it up
|
|
to 2MB if the answer is smaller. The largest size supported is 16GB.
|
|
|
|
If you're creating large numbers of snapshots which are recording large
|
|
amounts of change, you may need find you need to increase this.
|
|
|
|
Reloading a pool table
|
|
----------------------
|
|
|
|
You may reload a pool's table, indeed this is how the pool is resized
|
|
if it runs out of space. (N.B. While specifying a different metadata
|
|
device when reloading is not forbidden at the moment, things will go
|
|
wrong if it does not route I/O to exactly the same on-disk location as
|
|
previously.)
|
|
|
|
Using an existing pool device
|
|
-----------------------------
|
|
|
|
dmsetup create pool \
|
|
--table "0 20971520 thin-pool $metadata_dev $data_dev \
|
|
$data_block_size $low_water_mark"
|
|
|
|
$data_block_size gives the smallest unit of disk space that can be
|
|
allocated at a time expressed in units of 512-byte sectors. People
|
|
primarily interested in thin provisioning may want to use a value such
|
|
as 1024 (512KB). People doing lots of snapshotting may want a smaller value
|
|
such as 128 (64KB). If you are not zeroing newly-allocated data,
|
|
a larger $data_block_size in the region of 256000 (128MB) is suggested.
|
|
$data_block_size must be the same for the lifetime of the
|
|
metadata device.
|
|
|
|
$low_water_mark is expressed in blocks of size $data_block_size. If
|
|
free space on the data device drops below this level then a dm event
|
|
will be triggered which a userspace daemon should catch allowing it to
|
|
extend the pool device. Only one such event will be sent.
|
|
Resuming a device with a new table itself triggers an event so the
|
|
userspace daemon can use this to detect a situation where a new table
|
|
already exceeds the threshold.
|
|
|
|
Thin provisioning
|
|
-----------------
|
|
|
|
i) Creating a new thinly-provisioned volume.
|
|
|
|
To create a new thinly- provisioned volume you must send a message to an
|
|
active pool device, /dev/mapper/pool in this example.
|
|
|
|
dmsetup message /dev/mapper/pool 0 "create_thin 0"
|
|
|
|
Here '0' is an identifier for the volume, a 24-bit number. It's up
|
|
to the caller to allocate and manage these identifiers. If the
|
|
identifier is already in use, the message will fail with -EEXIST.
|
|
|
|
ii) Using a thinly-provisioned volume.
|
|
|
|
Thinly-provisioned volumes are activated using the 'thin' target:
|
|
|
|
dmsetup create thin --table "0 2097152 thin /dev/mapper/pool 0"
|
|
|
|
The last parameter is the identifier for the thinp device.
|
|
|
|
Internal snapshots
|
|
------------------
|
|
|
|
i) Creating an internal snapshot.
|
|
|
|
Snapshots are created with another message to the pool.
|
|
|
|
N.B. If the origin device that you wish to snapshot is active, you
|
|
must suspend it before creating the snapshot to avoid corruption.
|
|
This is NOT enforced at the moment, so please be careful!
|
|
|
|
dmsetup suspend /dev/mapper/thin
|
|
dmsetup message /dev/mapper/pool 0 "create_snap 1 0"
|
|
dmsetup resume /dev/mapper/thin
|
|
|
|
Here '1' is the identifier for the volume, a 24-bit number. '0' is the
|
|
identifier for the origin device.
|
|
|
|
ii) Using an internal snapshot.
|
|
|
|
Once created, the user doesn't have to worry about any connection
|
|
between the origin and the snapshot. Indeed the snapshot is no
|
|
different from any other thinly-provisioned device and can be
|
|
snapshotted itself via the same method. It's perfectly legal to
|
|
have only one of them active, and there's no ordering requirement on
|
|
activating or removing them both. (This differs from conventional
|
|
device-mapper snapshots.)
|
|
|
|
Activate it exactly the same way as any other thinly-provisioned volume:
|
|
|
|
dmsetup create snap --table "0 2097152 thin /dev/mapper/pool 1"
|
|
|
|
Deactivation
|
|
------------
|
|
|
|
All devices using a pool must be deactivated before the pool itself
|
|
can be.
|
|
|
|
dmsetup remove thin
|
|
dmsetup remove snap
|
|
dmsetup remove pool
|
|
|
|
Reference
|
|
=========
|
|
|
|
'thin-pool' target
|
|
------------------
|
|
|
|
i) Constructor
|
|
|
|
thin-pool <metadata dev> <data dev> <data block size (sectors)> \
|
|
<low water mark (blocks)> [<number of feature args> [<arg>]*]
|
|
|
|
Optional feature arguments:
|
|
- 'skip_block_zeroing': skips the zeroing of newly-provisioned blocks.
|
|
|
|
Data block size must be between 64KB (128 sectors) and 1GB
|
|
(2097152 sectors) inclusive.
|
|
|
|
|
|
ii) Status
|
|
|
|
<transaction id> <used metadata blocks>/<total metadata blocks>
|
|
<used data blocks>/<total data blocks> <held metadata root>
|
|
|
|
|
|
transaction id:
|
|
A 64-bit number used by userspace to help synchronise with metadata
|
|
from volume managers.
|
|
|
|
used data blocks / total data blocks
|
|
If the number of free blocks drops below the pool's low water mark a
|
|
dm event will be sent to userspace. This event is edge-triggered and
|
|
it will occur only once after each resume so volume manager writers
|
|
should register for the event and then check the target's status.
|
|
|
|
held metadata root:
|
|
The location, in sectors, of the metadata root that has been
|
|
'held' for userspace read access. '-' indicates there is no
|
|
held root. This feature is not yet implemented so '-' is
|
|
always returned.
|
|
|
|
iii) Messages
|
|
|
|
create_thin <dev id>
|
|
|
|
Create a new thinly-provisioned device.
|
|
<dev id> is an arbitrary unique 24-bit identifier chosen by
|
|
the caller.
|
|
|
|
create_snap <dev id> <origin id>
|
|
|
|
Create a new snapshot of another thinly-provisioned device.
|
|
<dev id> is an arbitrary unique 24-bit identifier chosen by
|
|
the caller.
|
|
<origin id> is the identifier of the thinly-provisioned device
|
|
of which the new device will be a snapshot.
|
|
|
|
delete <dev id>
|
|
|
|
Deletes a thin device. Irreversible.
|
|
|
|
trim <dev id> <new size in sectors>
|
|
|
|
Delete mappings from the end of a thin device. Irreversible.
|
|
You might want to use this if you're reducing the size of
|
|
your thinly-provisioned device. In many cases, due to the
|
|
sharing of blocks between devices, it is not possible to
|
|
determine in advance how much space 'trim' will release. (In
|
|
future a userspace tool might be able to perform this
|
|
calculation.)
|
|
|
|
set_transaction_id <current id> <new id>
|
|
|
|
Userland volume managers, such as LVM, need a way to
|
|
synchronise their external metadata with the internal metadata of the
|
|
pool target. The thin-pool target offers to store an
|
|
arbitrary 64-bit transaction id and return it on the target's
|
|
status line. To avoid races you must provide what you think
|
|
the current transaction id is when you change it with this
|
|
compare-and-swap message.
|
|
|
|
'thin' target
|
|
-------------
|
|
|
|
i) Constructor
|
|
|
|
thin <pool dev> <dev id>
|
|
|
|
pool dev:
|
|
the thin-pool device, e.g. /dev/mapper/my_pool or 253:0
|
|
|
|
dev id:
|
|
the internal device identifier of the device to be
|
|
activated.
|
|
|
|
The pool doesn't store any size against the thin devices. If you
|
|
load a thin target that is smaller than you've been using previously,
|
|
then you'll have no access to blocks mapped beyond the end. If you
|
|
load a target that is bigger than before, then extra blocks will be
|
|
provisioned as and when needed.
|
|
|
|
If you wish to reduce the size of your thin device and potentially
|
|
regain some space then send the 'trim' message to the pool.
|
|
|
|
ii) Status
|
|
|
|
<nr mapped sectors> <highest mapped sector>
|