15472423ce
While the implementation of the "slices" address space allows a significant amount of high slices, it limits the number of low slices to 16 due to the use of a single u64 low_slices_psize element in struct mm_context_t On the 8xx, the minimum slice size is the size of the area covered by a single PMD entry, ie 4M in 4K pages mode and 64M in 16K pages mode. This means we could have at least 64 slices. In order to override this limitation, this patch switches the handling of low_slices_psize to char array as done already for high_slices_psize. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
330 lines
9.3 KiB
ArmAsm
330 lines
9.3 KiB
ArmAsm
/*
|
|
* Low-level SLB routines
|
|
*
|
|
* Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
|
|
*
|
|
* Based on earlier C version:
|
|
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
|
|
* Copyright (c) 2001 Dave Engebretsen
|
|
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/ppc_asm.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/page.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/firmware.h>
|
|
|
|
/*
|
|
* This macro generates asm code to compute the VSID scramble
|
|
* function. Used in slb_allocate() and do_stab_bolted. The function
|
|
* computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
|
|
*
|
|
* rt = register containing the proto-VSID and into which the
|
|
* VSID will be stored
|
|
* rx = scratch register (clobbered)
|
|
* rf = flags
|
|
*
|
|
* - rt and rx must be different registers
|
|
* - The answer will end up in the low VSID_BITS bits of rt. The higher
|
|
* bits may contain other garbage, so you may need to mask the
|
|
* result.
|
|
*/
|
|
#define ASM_VSID_SCRAMBLE(rt, rx, rf, size) \
|
|
lis rx,VSID_MULTIPLIER_##size@h; \
|
|
ori rx,rx,VSID_MULTIPLIER_##size@l; \
|
|
mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
|
|
/* \
|
|
* powermac get slb fault before feature fixup, so make 65 bit part \
|
|
* the default part of feature fixup \
|
|
*/ \
|
|
BEGIN_MMU_FTR_SECTION \
|
|
srdi rx,rt,VSID_BITS_65_##size; \
|
|
clrldi rt,rt,(64-VSID_BITS_65_##size); \
|
|
add rt,rt,rx; \
|
|
addi rx,rt,1; \
|
|
srdi rx,rx,VSID_BITS_65_##size; \
|
|
add rt,rt,rx; \
|
|
rldimi rf,rt,SLB_VSID_SHIFT_##size,(64 - (SLB_VSID_SHIFT_##size + VSID_BITS_65_##size)); \
|
|
MMU_FTR_SECTION_ELSE \
|
|
srdi rx,rt,VSID_BITS_##size; \
|
|
clrldi rt,rt,(64-VSID_BITS_##size); \
|
|
add rt,rt,rx; /* add high and low bits */ \
|
|
addi rx,rt,1; \
|
|
srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
|
|
add rt,rt,rx; \
|
|
rldimi rf,rt,SLB_VSID_SHIFT_##size,(64 - (SLB_VSID_SHIFT_##size + VSID_BITS_##size)); \
|
|
ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_68_BIT_VA)
|
|
|
|
|
|
/* void slb_allocate(unsigned long ea);
|
|
*
|
|
* Create an SLB entry for the given EA (user or kernel).
|
|
* r3 = faulting address, r13 = PACA
|
|
* r9, r10, r11 are clobbered by this function
|
|
* r3 is preserved.
|
|
* No other registers are examined or changed.
|
|
*/
|
|
_GLOBAL(slb_allocate)
|
|
/*
|
|
* check for bad kernel/user address
|
|
* (ea & ~REGION_MASK) >= PGTABLE_RANGE
|
|
*/
|
|
rldicr. r9,r3,4,(63 - H_PGTABLE_EADDR_SIZE - 4)
|
|
bne- 8f
|
|
|
|
srdi r9,r3,60 /* get region */
|
|
srdi r10,r3,SID_SHIFT /* get esid */
|
|
cmpldi cr7,r9,0xc /* cmp PAGE_OFFSET for later use */
|
|
|
|
/* r3 = address, r10 = esid, cr7 = <> PAGE_OFFSET */
|
|
blt cr7,0f /* user or kernel? */
|
|
|
|
/* Check if hitting the linear mapping or some other kernel space
|
|
*/
|
|
bne cr7,1f
|
|
|
|
/* Linear mapping encoding bits, the "li" instruction below will
|
|
* be patched by the kernel at boot
|
|
*/
|
|
.globl slb_miss_kernel_load_linear
|
|
slb_miss_kernel_load_linear:
|
|
li r11,0
|
|
/*
|
|
* context = (ea >> 60) - (0xc - 1)
|
|
* r9 = region id.
|
|
*/
|
|
subi r9,r9,KERNEL_REGION_CONTEXT_OFFSET
|
|
|
|
BEGIN_FTR_SECTION
|
|
b .Lslb_finish_load
|
|
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
|
|
b .Lslb_finish_load_1T
|
|
|
|
1:
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
cmpldi cr0,r9,0xf
|
|
bne 1f
|
|
/* Check virtual memmap region. To be patched at kernel boot */
|
|
.globl slb_miss_kernel_load_vmemmap
|
|
slb_miss_kernel_load_vmemmap:
|
|
li r11,0
|
|
b 6f
|
|
1:
|
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
/*
|
|
* r10 contains the ESID, which is the original faulting EA shifted
|
|
* right by 28 bits. We need to compare that with (H_VMALLOC_END >> 28)
|
|
* which is 0xd00038000. That can't be used as an immediate, even if we
|
|
* ignored the 0xd, so we have to load it into a register, and we only
|
|
* have one register free. So we must load all of (H_VMALLOC_END >> 28)
|
|
* into a register and compare ESID against that.
|
|
*/
|
|
lis r11,(H_VMALLOC_END >> 32)@h // r11 = 0xffffffffd0000000
|
|
ori r11,r11,(H_VMALLOC_END >> 32)@l // r11 = 0xffffffffd0003800
|
|
// Rotate left 4, then mask with 0xffffffff0
|
|
rldic r11,r11,4,28 // r11 = 0xd00038000
|
|
cmpld r10,r11 // if r10 >= r11
|
|
bge 5f // goto io_mapping
|
|
|
|
/*
|
|
* vmalloc mapping gets the encoding from the PACA as the mapping
|
|
* can be demoted from 64K -> 4K dynamically on some machines.
|
|
*/
|
|
lhz r11,PACAVMALLOCSLLP(r13)
|
|
b 6f
|
|
5:
|
|
/* IO mapping */
|
|
.globl slb_miss_kernel_load_io
|
|
slb_miss_kernel_load_io:
|
|
li r11,0
|
|
6:
|
|
/*
|
|
* context = (ea >> 60) - (0xc - 1)
|
|
* r9 = region id.
|
|
*/
|
|
subi r9,r9,KERNEL_REGION_CONTEXT_OFFSET
|
|
|
|
BEGIN_FTR_SECTION
|
|
b .Lslb_finish_load
|
|
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_1T_SEGMENT)
|
|
b .Lslb_finish_load_1T
|
|
|
|
0: /*
|
|
* For userspace addresses, make sure this is region 0.
|
|
*/
|
|
cmpdi r9, 0
|
|
bne- 8f
|
|
/*
|
|
* user space make sure we are within the allowed limit
|
|
*/
|
|
ld r11,PACA_SLB_ADDR_LIMIT(r13)
|
|
cmpld r3,r11
|
|
bge- 8f
|
|
|
|
/* when using slices, we extract the psize off the slice bitmaps
|
|
* and then we need to get the sllp encoding off the mmu_psize_defs
|
|
* array.
|
|
*
|
|
* XXX This is a bit inefficient especially for the normal case,
|
|
* so we should try to implement a fast path for the standard page
|
|
* size using the old sllp value so we avoid the array. We cannot
|
|
* really do dynamic patching unfortunately as processes might flip
|
|
* between 4k and 64k standard page size
|
|
*/
|
|
#ifdef CONFIG_PPC_MM_SLICES
|
|
/* r10 have esid */
|
|
cmpldi r10,16
|
|
/* below SLICE_LOW_TOP */
|
|
blt 5f
|
|
/*
|
|
* Handle hpsizes,
|
|
* r9 is get_paca()->context.high_slices_psize[index], r11 is mask_index
|
|
*/
|
|
srdi r11,r10,(SLICE_HIGH_SHIFT - SLICE_LOW_SHIFT + 1) /* index */
|
|
addi r9,r11,PACAHIGHSLICEPSIZE
|
|
lbzx r9,r13,r9 /* r9 is hpsizes[r11] */
|
|
/* r11 = (r10 >> (SLICE_HIGH_SHIFT - SLICE_LOW_SHIFT)) & 0x1 */
|
|
rldicl r11,r10,(64 - (SLICE_HIGH_SHIFT - SLICE_LOW_SHIFT)),63
|
|
b 6f
|
|
|
|
5:
|
|
/*
|
|
* Handle lpsizes
|
|
* r9 is get_paca()->context.low_slices_psize[index], r11 is mask_index
|
|
*/
|
|
srdi r11,r10,1 /* index */
|
|
addi r9,r11,PACALOWSLICESPSIZE
|
|
lbzx r9,r13,r9 /* r9 is lpsizes[r11] */
|
|
rldicl r11,r10,0,63 /* r11 = r10 & 0x1 */
|
|
6:
|
|
sldi r11,r11,2 /* index * 4 */
|
|
/* Extract the psize and multiply to get an array offset */
|
|
srd r9,r9,r11
|
|
andi. r9,r9,0xf
|
|
mulli r9,r9,MMUPSIZEDEFSIZE
|
|
|
|
/* Now get to the array and obtain the sllp
|
|
*/
|
|
ld r11,PACATOC(r13)
|
|
ld r11,mmu_psize_defs@got(r11)
|
|
add r11,r11,r9
|
|
ld r11,MMUPSIZESLLP(r11)
|
|
ori r11,r11,SLB_VSID_USER
|
|
#else
|
|
/* paca context sllp already contains the SLB_VSID_USER bits */
|
|
lhz r11,PACACONTEXTSLLP(r13)
|
|
#endif /* CONFIG_PPC_MM_SLICES */
|
|
|
|
ld r9,PACACONTEXTID(r13)
|
|
BEGIN_FTR_SECTION
|
|
cmpldi r10,0x1000
|
|
bge .Lslb_finish_load_1T
|
|
END_MMU_FTR_SECTION_IFSET(MMU_FTR_1T_SEGMENT)
|
|
b .Lslb_finish_load
|
|
|
|
8: /* invalid EA - return an error indication */
|
|
crset 4*cr0+eq /* indicate failure */
|
|
blr
|
|
|
|
/*
|
|
* Finish loading of an SLB entry and return
|
|
*
|
|
* r3 = EA, r9 = context, r10 = ESID, r11 = flags, clobbers r9, cr7 = <> PAGE_OFFSET
|
|
*/
|
|
.Lslb_finish_load:
|
|
rldimi r10,r9,ESID_BITS,0
|
|
ASM_VSID_SCRAMBLE(r10,r9,r11,256M)
|
|
/* r3 = EA, r11 = VSID data */
|
|
/*
|
|
* Find a slot, round robin. Previously we tried to find a
|
|
* free slot first but that took too long. Unfortunately we
|
|
* dont have any LRU information to help us choose a slot.
|
|
*/
|
|
|
|
mr r9,r3
|
|
|
|
/* slb_finish_load_1T continues here. r9=EA with non-ESID bits clear */
|
|
7: ld r10,PACASTABRR(r13)
|
|
addi r10,r10,1
|
|
/* This gets soft patched on boot. */
|
|
.globl slb_compare_rr_to_size
|
|
slb_compare_rr_to_size:
|
|
cmpldi r10,0
|
|
|
|
blt+ 4f
|
|
li r10,SLB_NUM_BOLTED
|
|
|
|
4:
|
|
std r10,PACASTABRR(r13)
|
|
|
|
3:
|
|
rldimi r9,r10,0,36 /* r9 = EA[0:35] | entry */
|
|
oris r10,r9,SLB_ESID_V@h /* r10 = r9 | SLB_ESID_V */
|
|
|
|
/* r9 = ESID data, r11 = VSID data */
|
|
|
|
/*
|
|
* No need for an isync before or after this slbmte. The exception
|
|
* we enter with and the rfid we exit with are context synchronizing.
|
|
*/
|
|
slbmte r11,r10
|
|
|
|
/* we're done for kernel addresses */
|
|
crclr 4*cr0+eq /* set result to "success" */
|
|
bgelr cr7
|
|
|
|
/* Update the slb cache */
|
|
lhz r9,PACASLBCACHEPTR(r13) /* offset = paca->slb_cache_ptr */
|
|
cmpldi r9,SLB_CACHE_ENTRIES
|
|
bge 1f
|
|
|
|
/* still room in the slb cache */
|
|
sldi r11,r9,2 /* r11 = offset * sizeof(u32) */
|
|
srdi r10,r10,28 /* get the 36 bits of the ESID */
|
|
add r11,r11,r13 /* r11 = (u32 *)paca + offset */
|
|
stw r10,PACASLBCACHE(r11) /* paca->slb_cache[offset] = esid */
|
|
addi r9,r9,1 /* offset++ */
|
|
b 2f
|
|
1: /* offset >= SLB_CACHE_ENTRIES */
|
|
li r9,SLB_CACHE_ENTRIES+1
|
|
2:
|
|
sth r9,PACASLBCACHEPTR(r13) /* paca->slb_cache_ptr = offset */
|
|
crclr 4*cr0+eq /* set result to "success" */
|
|
blr
|
|
|
|
/*
|
|
* Finish loading of a 1T SLB entry (for the kernel linear mapping) and return.
|
|
*
|
|
* r3 = EA, r9 = context, r10 = ESID(256MB), r11 = flags, clobbers r9
|
|
*/
|
|
.Lslb_finish_load_1T:
|
|
srdi r10,r10,(SID_SHIFT_1T - SID_SHIFT) /* get 1T ESID */
|
|
rldimi r10,r9,ESID_BITS_1T,0
|
|
ASM_VSID_SCRAMBLE(r10,r9,r11,1T)
|
|
|
|
li r10,MMU_SEGSIZE_1T
|
|
rldimi r11,r10,SLB_VSID_SSIZE_SHIFT,0 /* insert segment size */
|
|
|
|
/* r3 = EA, r11 = VSID data */
|
|
clrrdi r9,r3,SID_SHIFT_1T /* clear out non-ESID bits */
|
|
b 7b
|
|
|
|
|
|
_ASM_NOKPROBE_SYMBOL(slb_allocate)
|
|
_ASM_NOKPROBE_SYMBOL(slb_miss_kernel_load_linear)
|
|
_ASM_NOKPROBE_SYMBOL(slb_miss_kernel_load_io)
|
|
_ASM_NOKPROBE_SYMBOL(slb_compare_rr_to_size)
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
_ASM_NOKPROBE_SYMBOL(slb_miss_kernel_load_vmemmap)
|
|
#endif
|