linux/drivers/gpu/drm/msm/disp/dpu1/dpu_plane.h
Jeykumar Sankaran 25fdd5933e drm/msm: Add SDM845 DPU support
SDM845 SoC includes the Mobile Display Sub System (MDSS) which is a
top level wrapper consisting of Display Processing Unit (DPU) and
display peripheral modules such as Display Serial Interface (DSI)
and DisplayPort (DP).

MDSS functions essentially as a back-end composition engine. It blends
video and graphic images stored in the frame buffers and scans out the
composed image to a display sink (over DSI/DP).

The following diagram represents hardware blocks for a simple pipeline
(two planes are present on a given crtc which is connected to a DSI
connector):

       MDSS
      +---------------------------------+
      | +-----------------------------+ |
      | | DPU                         | |
      | |  +--------+  +--------+     | |
      | |  |  SSPP  |  |  SSPP  |     | |
      | |  +----+---+  +----+---+     | |
      | |       |           |         | |
      | |  +----v-----------v---+     | |
      | |  |  Layer Mixer (LM)  |     | |
      | |  +--------------------+     | |
      | |  +--------------------+     | |
      | |  |    PingPong (PP)   |     | |
      | |  +--------------------+     | |
      | |  +--------------------+     | |
      | |  |  INTERFACE (VIDEO) |     | |
      | |  +---+----------------+     | |
      | +------|----------------------+ |
      |        |                        |
      | +------|---------------------+  |
      | |      | DISPLAY PERIPHERALS |  |
      | |  +---v-+      +-----+      |  |
      | |  | DSI |      |  DP |      |  |
      | |  +-----+      +-----+      |  |
      | +----------------------------+  |
      +---------------------------------+

The number of DPU sub-blocks (i.e. SSPPs, LMs, PP blocks and INTFs)
depends on SoC capabilities.

Overview of DPU sub-blocks:
---------------------------
* Source Surface Processor (SSPP):
 Refers to any of hardware pipes like ViG, DMA etc. Only ViG pipes are
 capable of performing format conversion, scaling and quality improvement
 for source surfaces.

* Layer Mixer (LM):
 Blend source surfaces together (in requested zorder)

* PingPong (PP):
 This block controls frame done interrupt output, EOL and EOF generation,
 overflow/underflow control.

* Display interface (INTF):
 Timing generator and interface connecting the display peripherals.

DRM components mapping to DPU architecture:
------------------------------------------
PLANEs maps to SSPPs
CRTC maps to LMs
Encoder maps to PPs, INTFs

Data flow setup:
---------------
MDSS hardware can support various data flows (e.g.):
  - Dual pipe: Output from two LMs combined to single display.
  - Split display: Output from two LMs connected to two separate
                   interfaces.

The hardware capabilities determine the number of concurrent data paths
possible. Any control path (i.e. pipeline w/i DPU) can be routed to any
of the hardware data paths. A given control path can be triggered,
flushed and controlled independently.

Changes in v3:
- Move msm_media_info.h from uapi to dpu/ subdir
- Remove preclose callback dpu (it's handled in core)
- Fix kbuild warnings with parent_ops
- Remove unused functions from dpu_core_irq
- Rename mdss_phys to mdss
- Rename mdp_phys address space to mdp
- Drop _phys from vbif and regdma binding names

Signed-off-by: Abhinav Kumar <abhinavk@codeaurora.org>
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Signed-off-by: Chandan Uddaraju <chandanu@codeaurora.org>
Signed-off-by: Jeykumar Sankaran <jsanka@codeaurora.org>
Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org>
Signed-off-by: Rajesh Yadav <ryadav@codeaurora.org>
Signed-off-by: Sravanthi Kollukuduru <skolluku@codeaurora.org>
Signed-off-by: Sean Paul <seanpaul@chromium.org>
[robclark minor rebase]
Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-07-26 10:45:04 -04:00

176 lines
5.6 KiB
C

/*
* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _DPU_PLANE_H_
#define _DPU_PLANE_H_
#include <drm/drm_crtc.h>
#include "dpu_kms.h"
#include "dpu_hw_mdss.h"
#include "dpu_hw_sspp.h"
/**
* struct dpu_plane_state: Define dpu extension of drm plane state object
* @base: base drm plane state object
* @property_state: Local storage for msm_prop properties
* @property_values: cached plane property values
* @aspace: pointer to address space for input/output buffers
* @input_fence: dereferenced input fence pointer
* @stage: assigned by crtc blender
* @multirect_index: index of the rectangle of SSPP
* @multirect_mode: parallel or time multiplex multirect mode
* @pending: whether the current update is still pending
* @scaler3_cfg: configuration data for scaler3
* @pixel_ext: configuration data for pixel extensions
* @scaler_check_state: indicates status of user provided pixel extension data
* @cdp_cfg: CDP configuration
*/
struct dpu_plane_state {
struct drm_plane_state base;
struct msm_gem_address_space *aspace;
void *input_fence;
enum dpu_stage stage;
uint32_t multirect_index;
uint32_t multirect_mode;
bool pending;
/* scaler configuration */
struct dpu_hw_scaler3_cfg scaler3_cfg;
struct dpu_hw_pixel_ext pixel_ext;
struct dpu_hw_pipe_cdp_cfg cdp_cfg;
};
/**
* struct dpu_multirect_plane_states: Defines multirect pair of drm plane states
* @r0: drm plane configured on rect 0
* @r1: drm plane configured on rect 1
*/
struct dpu_multirect_plane_states {
const struct drm_plane_state *r0;
const struct drm_plane_state *r1;
};
#define to_dpu_plane_state(x) \
container_of(x, struct dpu_plane_state, base)
/**
* dpu_plane_pipe - return sspp identifier for the given plane
* @plane: Pointer to DRM plane object
* Returns: sspp identifier of the given plane
*/
enum dpu_sspp dpu_plane_pipe(struct drm_plane *plane);
/**
* is_dpu_plane_virtual - check for virtual plane
* @plane: Pointer to DRM plane object
* returns: true - if the plane is virtual
* false - if the plane is primary
*/
bool is_dpu_plane_virtual(struct drm_plane *plane);
/**
* dpu_plane_get_ctl_flush - get control flush mask
* @plane: Pointer to DRM plane object
* @ctl: Pointer to control hardware
* @flush_sspp: Pointer to sspp flush control word
*/
void dpu_plane_get_ctl_flush(struct drm_plane *plane, struct dpu_hw_ctl *ctl,
u32 *flush_sspp);
/**
* dpu_plane_restore - restore hw state if previously power collapsed
* @plane: Pointer to drm plane structure
*/
void dpu_plane_restore(struct drm_plane *plane);
/**
* dpu_plane_flush - final plane operations before commit flush
* @plane: Pointer to drm plane structure
*/
void dpu_plane_flush(struct drm_plane *plane);
/**
* dpu_plane_kickoff - final plane operations before commit kickoff
* @plane: Pointer to drm plane structure
*/
void dpu_plane_kickoff(struct drm_plane *plane);
/**
* dpu_plane_set_error: enable/disable error condition
* @plane: pointer to drm_plane structure
*/
void dpu_plane_set_error(struct drm_plane *plane, bool error);
/**
* dpu_plane_init - create new dpu plane for the given pipe
* @dev: Pointer to DRM device
* @pipe: dpu hardware pipe identifier
* @primary_plane: true if this pipe is primary plane for crtc
* @possible_crtcs: bitmask of crtc that can be attached to the given pipe
* @master_plane_id: primary plane id of a multirect pipe. 0 value passed for
* a regular plane initialization. A non-zero primary plane
* id will be passed for a virtual pipe initialization.
*
*/
struct drm_plane *dpu_plane_init(struct drm_device *dev,
uint32_t pipe, bool primary_plane,
unsigned long possible_crtcs, u32 master_plane_id);
/**
* dpu_plane_validate_multirecti_v2 - validate the multirect planes
* against hw limitations
* @plane: drm plate states of the multirect pair
*/
int dpu_plane_validate_multirect_v2(struct dpu_multirect_plane_states *plane);
/**
* dpu_plane_clear_multirect - clear multirect bits for the given pipe
* @drm_state: Pointer to DRM plane state
*/
void dpu_plane_clear_multirect(const struct drm_plane_state *drm_state);
/**
* dpu_plane_wait_input_fence - wait for input fence object
* @plane: Pointer to DRM plane object
* @wait_ms: Wait timeout value
* Returns: Zero on success
*/
int dpu_plane_wait_input_fence(struct drm_plane *plane, uint32_t wait_ms);
/**
* dpu_plane_color_fill - enables color fill on plane
* @plane: Pointer to DRM plane object
* @color: RGB fill color value, [23..16] Blue, [15..8] Green, [7..0] Red
* @alpha: 8-bit fill alpha value, 255 selects 100% alpha
* Returns: 0 on success
*/
int dpu_plane_color_fill(struct drm_plane *plane,
uint32_t color, uint32_t alpha);
/**
* dpu_plane_set_revalidate - sets revalidate flag which forces a full
* validation of the plane properties in the next atomic check
* @plane: Pointer to DRM plane object
* @enable: Boolean to set/unset the flag
*/
void dpu_plane_set_revalidate(struct drm_plane *plane, bool enable);
#endif /* _DPU_PLANE_H_ */