b2e1a3f091
This patch cleanups all PCIE, RSS & FW related macros/register defines that are defined in t4fw_api.h and the affected files. Signed-off-by: Hariprasad Shenai <hariprasad@chelsio.com> Signed-off-by: David S. Miller <davem@davemloft.net>
4166 lines
128 KiB
C
4166 lines
128 KiB
C
/*
|
|
* This file is part of the Chelsio T4 Ethernet driver for Linux.
|
|
*
|
|
* Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include "cxgb4.h"
|
|
#include "t4_regs.h"
|
|
#include "t4fw_api.h"
|
|
|
|
/**
|
|
* t4_wait_op_done_val - wait until an operation is completed
|
|
* @adapter: the adapter performing the operation
|
|
* @reg: the register to check for completion
|
|
* @mask: a single-bit field within @reg that indicates completion
|
|
* @polarity: the value of the field when the operation is completed
|
|
* @attempts: number of check iterations
|
|
* @delay: delay in usecs between iterations
|
|
* @valp: where to store the value of the register at completion time
|
|
*
|
|
* Wait until an operation is completed by checking a bit in a register
|
|
* up to @attempts times. If @valp is not NULL the value of the register
|
|
* at the time it indicated completion is stored there. Returns 0 if the
|
|
* operation completes and -EAGAIN otherwise.
|
|
*/
|
|
static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
|
|
int polarity, int attempts, int delay, u32 *valp)
|
|
{
|
|
while (1) {
|
|
u32 val = t4_read_reg(adapter, reg);
|
|
|
|
if (!!(val & mask) == polarity) {
|
|
if (valp)
|
|
*valp = val;
|
|
return 0;
|
|
}
|
|
if (--attempts == 0)
|
|
return -EAGAIN;
|
|
if (delay)
|
|
udelay(delay);
|
|
}
|
|
}
|
|
|
|
static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
|
|
int polarity, int attempts, int delay)
|
|
{
|
|
return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
|
|
delay, NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_set_reg_field - set a register field to a value
|
|
* @adapter: the adapter to program
|
|
* @addr: the register address
|
|
* @mask: specifies the portion of the register to modify
|
|
* @val: the new value for the register field
|
|
*
|
|
* Sets a register field specified by the supplied mask to the
|
|
* given value.
|
|
*/
|
|
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
|
|
u32 val)
|
|
{
|
|
u32 v = t4_read_reg(adapter, addr) & ~mask;
|
|
|
|
t4_write_reg(adapter, addr, v | val);
|
|
(void) t4_read_reg(adapter, addr); /* flush */
|
|
}
|
|
|
|
/**
|
|
* t4_read_indirect - read indirectly addressed registers
|
|
* @adap: the adapter
|
|
* @addr_reg: register holding the indirect address
|
|
* @data_reg: register holding the value of the indirect register
|
|
* @vals: where the read register values are stored
|
|
* @nregs: how many indirect registers to read
|
|
* @start_idx: index of first indirect register to read
|
|
*
|
|
* Reads registers that are accessed indirectly through an address/data
|
|
* register pair.
|
|
*/
|
|
void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
|
|
unsigned int data_reg, u32 *vals,
|
|
unsigned int nregs, unsigned int start_idx)
|
|
{
|
|
while (nregs--) {
|
|
t4_write_reg(adap, addr_reg, start_idx);
|
|
*vals++ = t4_read_reg(adap, data_reg);
|
|
start_idx++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_write_indirect - write indirectly addressed registers
|
|
* @adap: the adapter
|
|
* @addr_reg: register holding the indirect addresses
|
|
* @data_reg: register holding the value for the indirect registers
|
|
* @vals: values to write
|
|
* @nregs: how many indirect registers to write
|
|
* @start_idx: address of first indirect register to write
|
|
*
|
|
* Writes a sequential block of registers that are accessed indirectly
|
|
* through an address/data register pair.
|
|
*/
|
|
void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
|
|
unsigned int data_reg, const u32 *vals,
|
|
unsigned int nregs, unsigned int start_idx)
|
|
{
|
|
while (nregs--) {
|
|
t4_write_reg(adap, addr_reg, start_idx++);
|
|
t4_write_reg(adap, data_reg, *vals++);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
|
|
* mechanism. This guarantees that we get the real value even if we're
|
|
* operating within a Virtual Machine and the Hypervisor is trapping our
|
|
* Configuration Space accesses.
|
|
*/
|
|
void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
|
|
{
|
|
u32 req = ENABLE | FUNCTION(adap->fn) | reg;
|
|
|
|
if (is_t4(adap->params.chip))
|
|
req |= F_LOCALCFG;
|
|
|
|
t4_write_reg(adap, PCIE_CFG_SPACE_REQ, req);
|
|
*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA);
|
|
|
|
/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
|
|
* Configuration Space read. (None of the other fields matter when
|
|
* ENABLE is 0 so a simple register write is easier than a
|
|
* read-modify-write via t4_set_reg_field().)
|
|
*/
|
|
t4_write_reg(adap, PCIE_CFG_SPACE_REQ, 0);
|
|
}
|
|
|
|
/*
|
|
* t4_report_fw_error - report firmware error
|
|
* @adap: the adapter
|
|
*
|
|
* The adapter firmware can indicate error conditions to the host.
|
|
* If the firmware has indicated an error, print out the reason for
|
|
* the firmware error.
|
|
*/
|
|
static void t4_report_fw_error(struct adapter *adap)
|
|
{
|
|
static const char *const reason[] = {
|
|
"Crash", /* PCIE_FW_EVAL_CRASH */
|
|
"During Device Preparation", /* PCIE_FW_EVAL_PREP */
|
|
"During Device Configuration", /* PCIE_FW_EVAL_CONF */
|
|
"During Device Initialization", /* PCIE_FW_EVAL_INIT */
|
|
"Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
|
|
"Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
|
|
"Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
|
|
"Reserved", /* reserved */
|
|
};
|
|
u32 pcie_fw;
|
|
|
|
pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
|
|
if (pcie_fw & PCIE_FW_ERR)
|
|
dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
|
|
reason[PCIE_FW_EVAL_G(pcie_fw)]);
|
|
}
|
|
|
|
/*
|
|
* Get the reply to a mailbox command and store it in @rpl in big-endian order.
|
|
*/
|
|
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
|
|
u32 mbox_addr)
|
|
{
|
|
for ( ; nflit; nflit--, mbox_addr += 8)
|
|
*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
|
|
}
|
|
|
|
/*
|
|
* Handle a FW assertion reported in a mailbox.
|
|
*/
|
|
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
|
|
{
|
|
struct fw_debug_cmd asrt;
|
|
|
|
get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
|
|
dev_alert(adap->pdev_dev,
|
|
"FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
|
|
asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
|
|
ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
|
|
}
|
|
|
|
static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
|
|
{
|
|
dev_err(adap->pdev_dev,
|
|
"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
|
|
(unsigned long long)t4_read_reg64(adap, data_reg),
|
|
(unsigned long long)t4_read_reg64(adap, data_reg + 8),
|
|
(unsigned long long)t4_read_reg64(adap, data_reg + 16),
|
|
(unsigned long long)t4_read_reg64(adap, data_reg + 24),
|
|
(unsigned long long)t4_read_reg64(adap, data_reg + 32),
|
|
(unsigned long long)t4_read_reg64(adap, data_reg + 40),
|
|
(unsigned long long)t4_read_reg64(adap, data_reg + 48),
|
|
(unsigned long long)t4_read_reg64(adap, data_reg + 56));
|
|
}
|
|
|
|
/**
|
|
* t4_wr_mbox_meat - send a command to FW through the given mailbox
|
|
* @adap: the adapter
|
|
* @mbox: index of the mailbox to use
|
|
* @cmd: the command to write
|
|
* @size: command length in bytes
|
|
* @rpl: where to optionally store the reply
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Sends the given command to FW through the selected mailbox and waits
|
|
* for the FW to execute the command. If @rpl is not %NULL it is used to
|
|
* store the FW's reply to the command. The command and its optional
|
|
* reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
|
|
* to respond. @sleep_ok determines whether we may sleep while awaiting
|
|
* the response. If sleeping is allowed we use progressive backoff
|
|
* otherwise we spin.
|
|
*
|
|
* The return value is 0 on success or a negative errno on failure. A
|
|
* failure can happen either because we are not able to execute the
|
|
* command or FW executes it but signals an error. In the latter case
|
|
* the return value is the error code indicated by FW (negated).
|
|
*/
|
|
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
|
|
void *rpl, bool sleep_ok)
|
|
{
|
|
static const int delay[] = {
|
|
1, 1, 3, 5, 10, 10, 20, 50, 100, 200
|
|
};
|
|
|
|
u32 v;
|
|
u64 res;
|
|
int i, ms, delay_idx;
|
|
const __be64 *p = cmd;
|
|
u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
|
|
u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
|
|
|
|
if ((size & 15) || size > MBOX_LEN)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If the device is off-line, as in EEH, commands will time out.
|
|
* Fail them early so we don't waste time waiting.
|
|
*/
|
|
if (adap->pdev->error_state != pci_channel_io_normal)
|
|
return -EIO;
|
|
|
|
v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
|
|
for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
|
|
v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
|
|
|
|
if (v != MBOX_OWNER_DRV)
|
|
return v ? -EBUSY : -ETIMEDOUT;
|
|
|
|
for (i = 0; i < size; i += 8)
|
|
t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
|
|
|
|
t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
|
|
t4_read_reg(adap, ctl_reg); /* flush write */
|
|
|
|
delay_idx = 0;
|
|
ms = delay[0];
|
|
|
|
for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
|
|
if (sleep_ok) {
|
|
ms = delay[delay_idx]; /* last element may repeat */
|
|
if (delay_idx < ARRAY_SIZE(delay) - 1)
|
|
delay_idx++;
|
|
msleep(ms);
|
|
} else
|
|
mdelay(ms);
|
|
|
|
v = t4_read_reg(adap, ctl_reg);
|
|
if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
|
|
if (!(v & MBMSGVALID)) {
|
|
t4_write_reg(adap, ctl_reg, 0);
|
|
continue;
|
|
}
|
|
|
|
res = t4_read_reg64(adap, data_reg);
|
|
if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
|
|
fw_asrt(adap, data_reg);
|
|
res = FW_CMD_RETVAL_V(EIO);
|
|
} else if (rpl) {
|
|
get_mbox_rpl(adap, rpl, size / 8, data_reg);
|
|
}
|
|
|
|
if (FW_CMD_RETVAL_G((int)res))
|
|
dump_mbox(adap, mbox, data_reg);
|
|
t4_write_reg(adap, ctl_reg, 0);
|
|
return -FW_CMD_RETVAL_G((int)res);
|
|
}
|
|
}
|
|
|
|
dump_mbox(adap, mbox, data_reg);
|
|
dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
|
|
*(const u8 *)cmd, mbox);
|
|
t4_report_fw_error(adap);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/**
|
|
* t4_mc_read - read from MC through backdoor accesses
|
|
* @adap: the adapter
|
|
* @addr: address of first byte requested
|
|
* @idx: which MC to access
|
|
* @data: 64 bytes of data containing the requested address
|
|
* @ecc: where to store the corresponding 64-bit ECC word
|
|
*
|
|
* Read 64 bytes of data from MC starting at a 64-byte-aligned address
|
|
* that covers the requested address @addr. If @parity is not %NULL it
|
|
* is assigned the 64-bit ECC word for the read data.
|
|
*/
|
|
int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
|
|
{
|
|
int i;
|
|
u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
|
|
u32 mc_bist_status_rdata, mc_bist_data_pattern;
|
|
|
|
if (is_t4(adap->params.chip)) {
|
|
mc_bist_cmd = MC_BIST_CMD;
|
|
mc_bist_cmd_addr = MC_BIST_CMD_ADDR;
|
|
mc_bist_cmd_len = MC_BIST_CMD_LEN;
|
|
mc_bist_status_rdata = MC_BIST_STATUS_RDATA;
|
|
mc_bist_data_pattern = MC_BIST_DATA_PATTERN;
|
|
} else {
|
|
mc_bist_cmd = MC_REG(MC_P_BIST_CMD, idx);
|
|
mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR, idx);
|
|
mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN, idx);
|
|
mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA, idx);
|
|
mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN, idx);
|
|
}
|
|
|
|
if (t4_read_reg(adap, mc_bist_cmd) & START_BIST)
|
|
return -EBUSY;
|
|
t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
|
|
t4_write_reg(adap, mc_bist_cmd_len, 64);
|
|
t4_write_reg(adap, mc_bist_data_pattern, 0xc);
|
|
t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE(1) | START_BIST |
|
|
BIST_CMD_GAP(1));
|
|
i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST, 0, 10, 1);
|
|
if (i)
|
|
return i;
|
|
|
|
#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
|
|
|
|
for (i = 15; i >= 0; i--)
|
|
*data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
|
|
if (ecc)
|
|
*ecc = t4_read_reg64(adap, MC_DATA(16));
|
|
#undef MC_DATA
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_edc_read - read from EDC through backdoor accesses
|
|
* @adap: the adapter
|
|
* @idx: which EDC to access
|
|
* @addr: address of first byte requested
|
|
* @data: 64 bytes of data containing the requested address
|
|
* @ecc: where to store the corresponding 64-bit ECC word
|
|
*
|
|
* Read 64 bytes of data from EDC starting at a 64-byte-aligned address
|
|
* that covers the requested address @addr. If @parity is not %NULL it
|
|
* is assigned the 64-bit ECC word for the read data.
|
|
*/
|
|
int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
|
|
{
|
|
int i;
|
|
u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
|
|
u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
|
|
|
|
if (is_t4(adap->params.chip)) {
|
|
edc_bist_cmd = EDC_REG(EDC_BIST_CMD, idx);
|
|
edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR, idx);
|
|
edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN, idx);
|
|
edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN,
|
|
idx);
|
|
edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA,
|
|
idx);
|
|
} else {
|
|
edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD, idx);
|
|
edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx);
|
|
edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx);
|
|
edc_bist_cmd_data_pattern =
|
|
EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx);
|
|
edc_bist_status_rdata =
|
|
EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx);
|
|
}
|
|
|
|
if (t4_read_reg(adap, edc_bist_cmd) & START_BIST)
|
|
return -EBUSY;
|
|
t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
|
|
t4_write_reg(adap, edc_bist_cmd_len, 64);
|
|
t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
|
|
t4_write_reg(adap, edc_bist_cmd,
|
|
BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
|
|
i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST, 0, 10, 1);
|
|
if (i)
|
|
return i;
|
|
|
|
#define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
|
|
|
|
for (i = 15; i >= 0; i--)
|
|
*data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
|
|
if (ecc)
|
|
*ecc = t4_read_reg64(adap, EDC_DATA(16));
|
|
#undef EDC_DATA
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
|
|
* @adap: the adapter
|
|
* @win: PCI-E Memory Window to use
|
|
* @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
|
|
* @addr: address within indicated memory type
|
|
* @len: amount of memory to transfer
|
|
* @buf: host memory buffer
|
|
* @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
|
|
*
|
|
* Reads/writes an [almost] arbitrary memory region in the firmware: the
|
|
* firmware memory address and host buffer must be aligned on 32-bit
|
|
* boudaries; the length may be arbitrary. The memory is transferred as
|
|
* a raw byte sequence from/to the firmware's memory. If this memory
|
|
* contains data structures which contain multi-byte integers, it's the
|
|
* caller's responsibility to perform appropriate byte order conversions.
|
|
*/
|
|
int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
|
|
u32 len, __be32 *buf, int dir)
|
|
{
|
|
u32 pos, offset, resid, memoffset;
|
|
u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
|
|
|
|
/* Argument sanity checks ...
|
|
*/
|
|
if (addr & 0x3)
|
|
return -EINVAL;
|
|
|
|
/* It's convenient to be able to handle lengths which aren't a
|
|
* multiple of 32-bits because we often end up transferring files to
|
|
* the firmware. So we'll handle that by normalizing the length here
|
|
* and then handling any residual transfer at the end.
|
|
*/
|
|
resid = len & 0x3;
|
|
len -= resid;
|
|
|
|
/* Offset into the region of memory which is being accessed
|
|
* MEM_EDC0 = 0
|
|
* MEM_EDC1 = 1
|
|
* MEM_MC = 2 -- T4
|
|
* MEM_MC0 = 2 -- For T5
|
|
* MEM_MC1 = 3 -- For T5
|
|
*/
|
|
edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
|
|
if (mtype != MEM_MC1)
|
|
memoffset = (mtype * (edc_size * 1024 * 1024));
|
|
else {
|
|
mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
|
|
MA_EXT_MEMORY1_BAR_A));
|
|
memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
|
|
}
|
|
|
|
/* Determine the PCIE_MEM_ACCESS_OFFSET */
|
|
addr = addr + memoffset;
|
|
|
|
/* Each PCI-E Memory Window is programmed with a window size -- or
|
|
* "aperture" -- which controls the granularity of its mapping onto
|
|
* adapter memory. We need to grab that aperture in order to know
|
|
* how to use the specified window. The window is also programmed
|
|
* with the base address of the Memory Window in BAR0's address
|
|
* space. For T4 this is an absolute PCI-E Bus Address. For T5
|
|
* the address is relative to BAR0.
|
|
*/
|
|
mem_reg = t4_read_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN,
|
|
win));
|
|
mem_aperture = 1 << (GET_WINDOW(mem_reg) + 10);
|
|
mem_base = GET_PCIEOFST(mem_reg) << 10;
|
|
if (is_t4(adap->params.chip))
|
|
mem_base -= adap->t4_bar0;
|
|
win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
|
|
|
|
/* Calculate our initial PCI-E Memory Window Position and Offset into
|
|
* that Window.
|
|
*/
|
|
pos = addr & ~(mem_aperture-1);
|
|
offset = addr - pos;
|
|
|
|
/* Set up initial PCI-E Memory Window to cover the start of our
|
|
* transfer. (Read it back to ensure that changes propagate before we
|
|
* attempt to use the new value.)
|
|
*/
|
|
t4_write_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win),
|
|
pos | win_pf);
|
|
t4_read_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win));
|
|
|
|
/* Transfer data to/from the adapter as long as there's an integral
|
|
* number of 32-bit transfers to complete.
|
|
*/
|
|
while (len > 0) {
|
|
if (dir == T4_MEMORY_READ)
|
|
*buf++ = (__force __be32) t4_read_reg(adap,
|
|
mem_base + offset);
|
|
else
|
|
t4_write_reg(adap, mem_base + offset,
|
|
(__force u32) *buf++);
|
|
offset += sizeof(__be32);
|
|
len -= sizeof(__be32);
|
|
|
|
/* If we've reached the end of our current window aperture,
|
|
* move the PCI-E Memory Window on to the next. Note that
|
|
* doing this here after "len" may be 0 allows us to set up
|
|
* the PCI-E Memory Window for a possible final residual
|
|
* transfer below ...
|
|
*/
|
|
if (offset == mem_aperture) {
|
|
pos += mem_aperture;
|
|
offset = 0;
|
|
t4_write_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET,
|
|
win), pos | win_pf);
|
|
t4_read_reg(adap,
|
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET,
|
|
win));
|
|
}
|
|
}
|
|
|
|
/* If the original transfer had a length which wasn't a multiple of
|
|
* 32-bits, now's where we need to finish off the transfer of the
|
|
* residual amount. The PCI-E Memory Window has already been moved
|
|
* above (if necessary) to cover this final transfer.
|
|
*/
|
|
if (resid) {
|
|
union {
|
|
__be32 word;
|
|
char byte[4];
|
|
} last;
|
|
unsigned char *bp;
|
|
int i;
|
|
|
|
if (dir == T4_MEMORY_READ) {
|
|
last.word = (__force __be32) t4_read_reg(adap,
|
|
mem_base + offset);
|
|
for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
|
|
bp[i] = last.byte[i];
|
|
} else {
|
|
last.word = *buf;
|
|
for (i = resid; i < 4; i++)
|
|
last.byte[i] = 0;
|
|
t4_write_reg(adap, mem_base + offset,
|
|
(__force u32) last.word);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define EEPROM_STAT_ADDR 0x7bfc
|
|
#define VPD_BASE 0x400
|
|
#define VPD_BASE_OLD 0
|
|
#define VPD_LEN 1024
|
|
#define CHELSIO_VPD_UNIQUE_ID 0x82
|
|
|
|
/**
|
|
* t4_seeprom_wp - enable/disable EEPROM write protection
|
|
* @adapter: the adapter
|
|
* @enable: whether to enable or disable write protection
|
|
*
|
|
* Enables or disables write protection on the serial EEPROM.
|
|
*/
|
|
int t4_seeprom_wp(struct adapter *adapter, bool enable)
|
|
{
|
|
unsigned int v = enable ? 0xc : 0;
|
|
int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
/**
|
|
* get_vpd_params - read VPD parameters from VPD EEPROM
|
|
* @adapter: adapter to read
|
|
* @p: where to store the parameters
|
|
*
|
|
* Reads card parameters stored in VPD EEPROM.
|
|
*/
|
|
int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
|
|
{
|
|
u32 cclk_param, cclk_val;
|
|
int i, ret, addr;
|
|
int ec, sn, pn;
|
|
u8 *vpd, csum;
|
|
unsigned int vpdr_len, kw_offset, id_len;
|
|
|
|
vpd = vmalloc(VPD_LEN);
|
|
if (!vpd)
|
|
return -ENOMEM;
|
|
|
|
ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/* The VPD shall have a unique identifier specified by the PCI SIG.
|
|
* For chelsio adapters, the identifier is 0x82. The first byte of a VPD
|
|
* shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
|
|
* is expected to automatically put this entry at the
|
|
* beginning of the VPD.
|
|
*/
|
|
addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
|
|
|
|
ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
|
|
dev_err(adapter->pdev_dev, "missing VPD ID string\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
id_len = pci_vpd_lrdt_size(vpd);
|
|
if (id_len > ID_LEN)
|
|
id_len = ID_LEN;
|
|
|
|
i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
|
|
if (i < 0) {
|
|
dev_err(adapter->pdev_dev, "missing VPD-R section\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
|
|
kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
|
|
if (vpdr_len + kw_offset > VPD_LEN) {
|
|
dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
#define FIND_VPD_KW(var, name) do { \
|
|
var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
|
|
if (var < 0) { \
|
|
dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
|
|
ret = -EINVAL; \
|
|
goto out; \
|
|
} \
|
|
var += PCI_VPD_INFO_FLD_HDR_SIZE; \
|
|
} while (0)
|
|
|
|
FIND_VPD_KW(i, "RV");
|
|
for (csum = 0; i >= 0; i--)
|
|
csum += vpd[i];
|
|
|
|
if (csum) {
|
|
dev_err(adapter->pdev_dev,
|
|
"corrupted VPD EEPROM, actual csum %u\n", csum);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
FIND_VPD_KW(ec, "EC");
|
|
FIND_VPD_KW(sn, "SN");
|
|
FIND_VPD_KW(pn, "PN");
|
|
#undef FIND_VPD_KW
|
|
|
|
memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
|
|
strim(p->id);
|
|
memcpy(p->ec, vpd + ec, EC_LEN);
|
|
strim(p->ec);
|
|
i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
|
|
memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
|
|
strim(p->sn);
|
|
i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
|
|
memcpy(p->pn, vpd + pn, min(i, PN_LEN));
|
|
strim(p->pn);
|
|
|
|
/*
|
|
* Ask firmware for the Core Clock since it knows how to translate the
|
|
* Reference Clock ('V2') VPD field into a Core Clock value ...
|
|
*/
|
|
cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
|
|
ret = t4_query_params(adapter, adapter->mbox, 0, 0,
|
|
1, &cclk_param, &cclk_val);
|
|
|
|
out:
|
|
vfree(vpd);
|
|
if (ret)
|
|
return ret;
|
|
p->cclk = cclk_val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* serial flash and firmware constants */
|
|
enum {
|
|
SF_ATTEMPTS = 10, /* max retries for SF operations */
|
|
|
|
/* flash command opcodes */
|
|
SF_PROG_PAGE = 2, /* program page */
|
|
SF_WR_DISABLE = 4, /* disable writes */
|
|
SF_RD_STATUS = 5, /* read status register */
|
|
SF_WR_ENABLE = 6, /* enable writes */
|
|
SF_RD_DATA_FAST = 0xb, /* read flash */
|
|
SF_RD_ID = 0x9f, /* read ID */
|
|
SF_ERASE_SECTOR = 0xd8, /* erase sector */
|
|
|
|
FW_MAX_SIZE = 16 * SF_SEC_SIZE,
|
|
};
|
|
|
|
/**
|
|
* sf1_read - read data from the serial flash
|
|
* @adapter: the adapter
|
|
* @byte_cnt: number of bytes to read
|
|
* @cont: whether another operation will be chained
|
|
* @lock: whether to lock SF for PL access only
|
|
* @valp: where to store the read data
|
|
*
|
|
* Reads up to 4 bytes of data from the serial flash. The location of
|
|
* the read needs to be specified prior to calling this by issuing the
|
|
* appropriate commands to the serial flash.
|
|
*/
|
|
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
|
|
int lock, u32 *valp)
|
|
{
|
|
int ret;
|
|
|
|
if (!byte_cnt || byte_cnt > 4)
|
|
return -EINVAL;
|
|
if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
|
|
return -EBUSY;
|
|
cont = cont ? SF_CONT : 0;
|
|
lock = lock ? SF_LOCK : 0;
|
|
t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
|
|
ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
|
|
if (!ret)
|
|
*valp = t4_read_reg(adapter, SF_DATA);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sf1_write - write data to the serial flash
|
|
* @adapter: the adapter
|
|
* @byte_cnt: number of bytes to write
|
|
* @cont: whether another operation will be chained
|
|
* @lock: whether to lock SF for PL access only
|
|
* @val: value to write
|
|
*
|
|
* Writes up to 4 bytes of data to the serial flash. The location of
|
|
* the write needs to be specified prior to calling this by issuing the
|
|
* appropriate commands to the serial flash.
|
|
*/
|
|
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
|
|
int lock, u32 val)
|
|
{
|
|
if (!byte_cnt || byte_cnt > 4)
|
|
return -EINVAL;
|
|
if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
|
|
return -EBUSY;
|
|
cont = cont ? SF_CONT : 0;
|
|
lock = lock ? SF_LOCK : 0;
|
|
t4_write_reg(adapter, SF_DATA, val);
|
|
t4_write_reg(adapter, SF_OP, lock |
|
|
cont | BYTECNT(byte_cnt - 1) | OP_WR);
|
|
return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
|
|
}
|
|
|
|
/**
|
|
* flash_wait_op - wait for a flash operation to complete
|
|
* @adapter: the adapter
|
|
* @attempts: max number of polls of the status register
|
|
* @delay: delay between polls in ms
|
|
*
|
|
* Wait for a flash operation to complete by polling the status register.
|
|
*/
|
|
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
|
|
{
|
|
int ret;
|
|
u32 status;
|
|
|
|
while (1) {
|
|
if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
|
|
(ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
|
|
return ret;
|
|
if (!(status & 1))
|
|
return 0;
|
|
if (--attempts == 0)
|
|
return -EAGAIN;
|
|
if (delay)
|
|
msleep(delay);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_read_flash - read words from serial flash
|
|
* @adapter: the adapter
|
|
* @addr: the start address for the read
|
|
* @nwords: how many 32-bit words to read
|
|
* @data: where to store the read data
|
|
* @byte_oriented: whether to store data as bytes or as words
|
|
*
|
|
* Read the specified number of 32-bit words from the serial flash.
|
|
* If @byte_oriented is set the read data is stored as a byte array
|
|
* (i.e., big-endian), otherwise as 32-bit words in the platform's
|
|
* natural endianess.
|
|
*/
|
|
static int t4_read_flash(struct adapter *adapter, unsigned int addr,
|
|
unsigned int nwords, u32 *data, int byte_oriented)
|
|
{
|
|
int ret;
|
|
|
|
if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
|
|
return -EINVAL;
|
|
|
|
addr = swab32(addr) | SF_RD_DATA_FAST;
|
|
|
|
if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
|
|
(ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
|
|
return ret;
|
|
|
|
for ( ; nwords; nwords--, data++) {
|
|
ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
|
|
if (nwords == 1)
|
|
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
|
|
if (ret)
|
|
return ret;
|
|
if (byte_oriented)
|
|
*data = (__force __u32) (htonl(*data));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_write_flash - write up to a page of data to the serial flash
|
|
* @adapter: the adapter
|
|
* @addr: the start address to write
|
|
* @n: length of data to write in bytes
|
|
* @data: the data to write
|
|
*
|
|
* Writes up to a page of data (256 bytes) to the serial flash starting
|
|
* at the given address. All the data must be written to the same page.
|
|
*/
|
|
static int t4_write_flash(struct adapter *adapter, unsigned int addr,
|
|
unsigned int n, const u8 *data)
|
|
{
|
|
int ret;
|
|
u32 buf[64];
|
|
unsigned int i, c, left, val, offset = addr & 0xff;
|
|
|
|
if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
val = swab32(addr) | SF_PROG_PAGE;
|
|
|
|
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
|
|
(ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
|
|
goto unlock;
|
|
|
|
for (left = n; left; left -= c) {
|
|
c = min(left, 4U);
|
|
for (val = 0, i = 0; i < c; ++i)
|
|
val = (val << 8) + *data++;
|
|
|
|
ret = sf1_write(adapter, c, c != left, 1, val);
|
|
if (ret)
|
|
goto unlock;
|
|
}
|
|
ret = flash_wait_op(adapter, 8, 1);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
|
|
|
|
/* Read the page to verify the write succeeded */
|
|
ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (memcmp(data - n, (u8 *)buf + offset, n)) {
|
|
dev_err(adapter->pdev_dev,
|
|
"failed to correctly write the flash page at %#x\n",
|
|
addr);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
|
|
unlock:
|
|
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_get_fw_version - read the firmware version
|
|
* @adapter: the adapter
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the FW version from flash.
|
|
*/
|
|
int t4_get_fw_version(struct adapter *adapter, u32 *vers)
|
|
{
|
|
return t4_read_flash(adapter, FLASH_FW_START +
|
|
offsetof(struct fw_hdr, fw_ver), 1,
|
|
vers, 0);
|
|
}
|
|
|
|
/**
|
|
* t4_get_tp_version - read the TP microcode version
|
|
* @adapter: the adapter
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the TP microcode version from flash.
|
|
*/
|
|
int t4_get_tp_version(struct adapter *adapter, u32 *vers)
|
|
{
|
|
return t4_read_flash(adapter, FLASH_FW_START +
|
|
offsetof(struct fw_hdr, tp_microcode_ver),
|
|
1, vers, 0);
|
|
}
|
|
|
|
/* Is the given firmware API compatible with the one the driver was compiled
|
|
* with?
|
|
*/
|
|
static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
|
|
{
|
|
|
|
/* short circuit if it's the exact same firmware version */
|
|
if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
|
|
return 1;
|
|
|
|
#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
|
|
if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
|
|
SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
|
|
return 1;
|
|
#undef SAME_INTF
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The firmware in the filesystem is usable, but should it be installed?
|
|
* This routine explains itself in detail if it indicates the filesystem
|
|
* firmware should be installed.
|
|
*/
|
|
static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
|
|
int k, int c)
|
|
{
|
|
const char *reason;
|
|
|
|
if (!card_fw_usable) {
|
|
reason = "incompatible or unusable";
|
|
goto install;
|
|
}
|
|
|
|
if (k > c) {
|
|
reason = "older than the version supported with this driver";
|
|
goto install;
|
|
}
|
|
|
|
return 0;
|
|
|
|
install:
|
|
dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
|
|
"installing firmware %u.%u.%u.%u on card.\n",
|
|
FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
|
|
FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
|
|
FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
|
|
FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
|
|
|
|
return 1;
|
|
}
|
|
|
|
int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
|
|
const u8 *fw_data, unsigned int fw_size,
|
|
struct fw_hdr *card_fw, enum dev_state state,
|
|
int *reset)
|
|
{
|
|
int ret, card_fw_usable, fs_fw_usable;
|
|
const struct fw_hdr *fs_fw;
|
|
const struct fw_hdr *drv_fw;
|
|
|
|
drv_fw = &fw_info->fw_hdr;
|
|
|
|
/* Read the header of the firmware on the card */
|
|
ret = -t4_read_flash(adap, FLASH_FW_START,
|
|
sizeof(*card_fw) / sizeof(uint32_t),
|
|
(uint32_t *)card_fw, 1);
|
|
if (ret == 0) {
|
|
card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
|
|
} else {
|
|
dev_err(adap->pdev_dev,
|
|
"Unable to read card's firmware header: %d\n", ret);
|
|
card_fw_usable = 0;
|
|
}
|
|
|
|
if (fw_data != NULL) {
|
|
fs_fw = (const void *)fw_data;
|
|
fs_fw_usable = fw_compatible(drv_fw, fs_fw);
|
|
} else {
|
|
fs_fw = NULL;
|
|
fs_fw_usable = 0;
|
|
}
|
|
|
|
if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
|
|
(!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
|
|
/* Common case: the firmware on the card is an exact match and
|
|
* the filesystem one is an exact match too, or the filesystem
|
|
* one is absent/incompatible.
|
|
*/
|
|
} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
|
|
should_install_fs_fw(adap, card_fw_usable,
|
|
be32_to_cpu(fs_fw->fw_ver),
|
|
be32_to_cpu(card_fw->fw_ver))) {
|
|
ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
|
|
fw_size, 0);
|
|
if (ret != 0) {
|
|
dev_err(adap->pdev_dev,
|
|
"failed to install firmware: %d\n", ret);
|
|
goto bye;
|
|
}
|
|
|
|
/* Installed successfully, update the cached header too. */
|
|
memcpy(card_fw, fs_fw, sizeof(*card_fw));
|
|
card_fw_usable = 1;
|
|
*reset = 0; /* already reset as part of load_fw */
|
|
}
|
|
|
|
if (!card_fw_usable) {
|
|
uint32_t d, c, k;
|
|
|
|
d = be32_to_cpu(drv_fw->fw_ver);
|
|
c = be32_to_cpu(card_fw->fw_ver);
|
|
k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
|
|
|
|
dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
|
|
"chip state %d, "
|
|
"driver compiled with %d.%d.%d.%d, "
|
|
"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
|
|
state,
|
|
FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
|
|
FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
|
|
FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
|
|
FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
|
|
FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
|
|
FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
|
|
ret = EINVAL;
|
|
goto bye;
|
|
}
|
|
|
|
/* We're using whatever's on the card and it's known to be good. */
|
|
adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
|
|
adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
|
|
|
|
bye:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_flash_erase_sectors - erase a range of flash sectors
|
|
* @adapter: the adapter
|
|
* @start: the first sector to erase
|
|
* @end: the last sector to erase
|
|
*
|
|
* Erases the sectors in the given inclusive range.
|
|
*/
|
|
static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (end >= adapter->params.sf_nsec)
|
|
return -EINVAL;
|
|
|
|
while (start <= end) {
|
|
if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
|
|
(ret = sf1_write(adapter, 4, 0, 1,
|
|
SF_ERASE_SECTOR | (start << 8))) != 0 ||
|
|
(ret = flash_wait_op(adapter, 14, 500)) != 0) {
|
|
dev_err(adapter->pdev_dev,
|
|
"erase of flash sector %d failed, error %d\n",
|
|
start, ret);
|
|
break;
|
|
}
|
|
start++;
|
|
}
|
|
t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_flash_cfg_addr - return the address of the flash configuration file
|
|
* @adapter: the adapter
|
|
*
|
|
* Return the address within the flash where the Firmware Configuration
|
|
* File is stored.
|
|
*/
|
|
unsigned int t4_flash_cfg_addr(struct adapter *adapter)
|
|
{
|
|
if (adapter->params.sf_size == 0x100000)
|
|
return FLASH_FPGA_CFG_START;
|
|
else
|
|
return FLASH_CFG_START;
|
|
}
|
|
|
|
/**
|
|
* t4_load_fw - download firmware
|
|
* @adap: the adapter
|
|
* @fw_data: the firmware image to write
|
|
* @size: image size
|
|
*
|
|
* Write the supplied firmware image to the card's serial flash.
|
|
*/
|
|
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
|
|
{
|
|
u32 csum;
|
|
int ret, addr;
|
|
unsigned int i;
|
|
u8 first_page[SF_PAGE_SIZE];
|
|
const __be32 *p = (const __be32 *)fw_data;
|
|
const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
|
|
unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
|
|
unsigned int fw_img_start = adap->params.sf_fw_start;
|
|
unsigned int fw_start_sec = fw_img_start / sf_sec_size;
|
|
|
|
if (!size) {
|
|
dev_err(adap->pdev_dev, "FW image has no data\n");
|
|
return -EINVAL;
|
|
}
|
|
if (size & 511) {
|
|
dev_err(adap->pdev_dev,
|
|
"FW image size not multiple of 512 bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
if (ntohs(hdr->len512) * 512 != size) {
|
|
dev_err(adap->pdev_dev,
|
|
"FW image size differs from size in FW header\n");
|
|
return -EINVAL;
|
|
}
|
|
if (size > FW_MAX_SIZE) {
|
|
dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
|
|
FW_MAX_SIZE);
|
|
return -EFBIG;
|
|
}
|
|
|
|
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
|
|
csum += ntohl(p[i]);
|
|
|
|
if (csum != 0xffffffff) {
|
|
dev_err(adap->pdev_dev,
|
|
"corrupted firmware image, checksum %#x\n", csum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
|
|
ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* We write the correct version at the end so the driver can see a bad
|
|
* version if the FW write fails. Start by writing a copy of the
|
|
* first page with a bad version.
|
|
*/
|
|
memcpy(first_page, fw_data, SF_PAGE_SIZE);
|
|
((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
|
|
ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
|
|
if (ret)
|
|
goto out;
|
|
|
|
addr = fw_img_start;
|
|
for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
|
|
addr += SF_PAGE_SIZE;
|
|
fw_data += SF_PAGE_SIZE;
|
|
ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = t4_write_flash(adap,
|
|
fw_img_start + offsetof(struct fw_hdr, fw_ver),
|
|
sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
|
|
out:
|
|
if (ret)
|
|
dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
|
|
FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
|
|
FW_PORT_CAP_ANEG)
|
|
|
|
/**
|
|
* t4_link_start - apply link configuration to MAC/PHY
|
|
* @phy: the PHY to setup
|
|
* @mac: the MAC to setup
|
|
* @lc: the requested link configuration
|
|
*
|
|
* Set up a port's MAC and PHY according to a desired link configuration.
|
|
* - If the PHY can auto-negotiate first decide what to advertise, then
|
|
* enable/disable auto-negotiation as desired, and reset.
|
|
* - If the PHY does not auto-negotiate just reset it.
|
|
* - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
|
|
* otherwise do it later based on the outcome of auto-negotiation.
|
|
*/
|
|
int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
|
|
struct link_config *lc)
|
|
{
|
|
struct fw_port_cmd c;
|
|
unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
|
|
|
|
lc->link_ok = 0;
|
|
if (lc->requested_fc & PAUSE_RX)
|
|
fc |= FW_PORT_CAP_FC_RX;
|
|
if (lc->requested_fc & PAUSE_TX)
|
|
fc |= FW_PORT_CAP_FC_TX;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
|
|
c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
|
|
FW_LEN16(c));
|
|
|
|
if (!(lc->supported & FW_PORT_CAP_ANEG)) {
|
|
c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
|
|
lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
|
|
} else if (lc->autoneg == AUTONEG_DISABLE) {
|
|
c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
|
|
lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
|
|
} else
|
|
c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
|
|
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_restart_aneg - restart autonegotiation
|
|
* @adap: the adapter
|
|
* @mbox: mbox to use for the FW command
|
|
* @port: the port id
|
|
*
|
|
* Restarts autonegotiation for the selected port.
|
|
*/
|
|
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
|
|
{
|
|
struct fw_port_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
|
|
c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
|
|
FW_LEN16(c));
|
|
c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
typedef void (*int_handler_t)(struct adapter *adap);
|
|
|
|
struct intr_info {
|
|
unsigned int mask; /* bits to check in interrupt status */
|
|
const char *msg; /* message to print or NULL */
|
|
short stat_idx; /* stat counter to increment or -1 */
|
|
unsigned short fatal; /* whether the condition reported is fatal */
|
|
int_handler_t int_handler; /* platform-specific int handler */
|
|
};
|
|
|
|
/**
|
|
* t4_handle_intr_status - table driven interrupt handler
|
|
* @adapter: the adapter that generated the interrupt
|
|
* @reg: the interrupt status register to process
|
|
* @acts: table of interrupt actions
|
|
*
|
|
* A table driven interrupt handler that applies a set of masks to an
|
|
* interrupt status word and performs the corresponding actions if the
|
|
* interrupts described by the mask have occurred. The actions include
|
|
* optionally emitting a warning or alert message. The table is terminated
|
|
* by an entry specifying mask 0. Returns the number of fatal interrupt
|
|
* conditions.
|
|
*/
|
|
static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
|
|
const struct intr_info *acts)
|
|
{
|
|
int fatal = 0;
|
|
unsigned int mask = 0;
|
|
unsigned int status = t4_read_reg(adapter, reg);
|
|
|
|
for ( ; acts->mask; ++acts) {
|
|
if (!(status & acts->mask))
|
|
continue;
|
|
if (acts->fatal) {
|
|
fatal++;
|
|
dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
|
|
status & acts->mask);
|
|
} else if (acts->msg && printk_ratelimit())
|
|
dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
|
|
status & acts->mask);
|
|
if (acts->int_handler)
|
|
acts->int_handler(adapter);
|
|
mask |= acts->mask;
|
|
}
|
|
status &= mask;
|
|
if (status) /* clear processed interrupts */
|
|
t4_write_reg(adapter, reg, status);
|
|
return fatal;
|
|
}
|
|
|
|
/*
|
|
* Interrupt handler for the PCIE module.
|
|
*/
|
|
static void pcie_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info sysbus_intr_info[] = {
|
|
{ RNPP, "RXNP array parity error", -1, 1 },
|
|
{ RPCP, "RXPC array parity error", -1, 1 },
|
|
{ RCIP, "RXCIF array parity error", -1, 1 },
|
|
{ RCCP, "Rx completions control array parity error", -1, 1 },
|
|
{ RFTP, "RXFT array parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info pcie_port_intr_info[] = {
|
|
{ TPCP, "TXPC array parity error", -1, 1 },
|
|
{ TNPP, "TXNP array parity error", -1, 1 },
|
|
{ TFTP, "TXFT array parity error", -1, 1 },
|
|
{ TCAP, "TXCA array parity error", -1, 1 },
|
|
{ TCIP, "TXCIF array parity error", -1, 1 },
|
|
{ RCAP, "RXCA array parity error", -1, 1 },
|
|
{ OTDD, "outbound request TLP discarded", -1, 1 },
|
|
{ RDPE, "Rx data parity error", -1, 1 },
|
|
{ TDUE, "Tx uncorrectable data error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info pcie_intr_info[] = {
|
|
{ MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
|
|
{ MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
|
|
{ MSIDATAPERR, "MSI data parity error", -1, 1 },
|
|
{ MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
|
|
{ MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
|
|
{ MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
|
|
{ MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
|
|
{ PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
|
|
{ PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
|
|
{ TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
|
|
{ CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
|
|
{ CREQPERR, "PCI CMD channel request parity error", -1, 1 },
|
|
{ CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
|
|
{ DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
|
|
{ DREQPERR, "PCI DMA channel request parity error", -1, 1 },
|
|
{ DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
|
|
{ HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
|
|
{ HREQPERR, "PCI HMA channel request parity error", -1, 1 },
|
|
{ HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
|
|
{ CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
|
|
{ FIDPERR, "PCI FID parity error", -1, 1 },
|
|
{ INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
|
|
{ MATAGPERR, "PCI MA tag parity error", -1, 1 },
|
|
{ PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
|
|
{ RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
|
|
{ RXWRPERR, "PCI Rx write parity error", -1, 1 },
|
|
{ RPLPERR, "PCI replay buffer parity error", -1, 1 },
|
|
{ PCIESINT, "PCI core secondary fault", -1, 1 },
|
|
{ PCIEPINT, "PCI core primary fault", -1, 1 },
|
|
{ UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
|
|
{ 0 }
|
|
};
|
|
|
|
static struct intr_info t5_pcie_intr_info[] = {
|
|
{ MSTGRPPERR, "Master Response Read Queue parity error",
|
|
-1, 1 },
|
|
{ MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
|
|
{ MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
|
|
{ MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
|
|
{ MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
|
|
{ MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
|
|
{ MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
|
|
{ PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
|
|
-1, 1 },
|
|
{ PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
|
|
-1, 1 },
|
|
{ TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
|
|
{ MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
|
|
{ CREQPERR, "PCI CMD channel request parity error", -1, 1 },
|
|
{ CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
|
|
{ DREQWRPERR, "PCI DMA channel write request parity error",
|
|
-1, 1 },
|
|
{ DREQPERR, "PCI DMA channel request parity error", -1, 1 },
|
|
{ DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
|
|
{ HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
|
|
{ HREQPERR, "PCI HMA channel request parity error", -1, 1 },
|
|
{ HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
|
|
{ CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
|
|
{ FIDPERR, "PCI FID parity error", -1, 1 },
|
|
{ VFIDPERR, "PCI INTx clear parity error", -1, 1 },
|
|
{ MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
|
|
{ PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
|
|
{ IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
|
|
-1, 1 },
|
|
{ IPRXDATAGRPPERR, "PCI IP Rx data group parity error", -1, 1 },
|
|
{ RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
|
|
{ IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
|
|
{ TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
|
|
{ READRSPERR, "Outbound read error", -1, 0 },
|
|
{ 0 }
|
|
};
|
|
|
|
int fat;
|
|
|
|
if (is_t4(adapter->params.chip))
|
|
fat = t4_handle_intr_status(adapter,
|
|
PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
|
|
sysbus_intr_info) +
|
|
t4_handle_intr_status(adapter,
|
|
PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
|
|
pcie_port_intr_info) +
|
|
t4_handle_intr_status(adapter, PCIE_INT_CAUSE,
|
|
pcie_intr_info);
|
|
else
|
|
fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE,
|
|
t5_pcie_intr_info);
|
|
|
|
if (fat)
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* TP interrupt handler.
|
|
*/
|
|
static void tp_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info tp_intr_info[] = {
|
|
{ 0x3fffffff, "TP parity error", -1, 1 },
|
|
{ FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* SGE interrupt handler.
|
|
*/
|
|
static void sge_intr_handler(struct adapter *adapter)
|
|
{
|
|
u64 v;
|
|
|
|
static const struct intr_info sge_intr_info[] = {
|
|
{ ERR_CPL_EXCEED_IQE_SIZE,
|
|
"SGE received CPL exceeding IQE size", -1, 1 },
|
|
{ ERR_INVALID_CIDX_INC,
|
|
"SGE GTS CIDX increment too large", -1, 0 },
|
|
{ ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
|
|
{ DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
|
|
{ DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
|
|
{ ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
|
|
{ ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
|
|
"SGE IQID > 1023 received CPL for FL", -1, 0 },
|
|
{ ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
|
|
0 },
|
|
{ ERR_ING_CTXT_PRIO,
|
|
"SGE too many priority ingress contexts", -1, 0 },
|
|
{ ERR_EGR_CTXT_PRIO,
|
|
"SGE too many priority egress contexts", -1, 0 },
|
|
{ INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
|
|
{ EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
|
|
{ 0 }
|
|
};
|
|
|
|
v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
|
|
((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
|
|
if (v) {
|
|
dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
|
|
(unsigned long long)v);
|
|
t4_write_reg(adapter, SGE_INT_CAUSE1, v);
|
|
t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
|
|
}
|
|
|
|
if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
|
|
v != 0)
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* CIM interrupt handler.
|
|
*/
|
|
static void cim_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info cim_intr_info[] = {
|
|
{ PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
|
|
{ OBQPARERR, "CIM OBQ parity error", -1, 1 },
|
|
{ IBQPARERR, "CIM IBQ parity error", -1, 1 },
|
|
{ MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
|
|
{ MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
|
|
{ TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
|
|
{ TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info cim_upintr_info[] = {
|
|
{ RSVDSPACEINT, "CIM reserved space access", -1, 1 },
|
|
{ ILLTRANSINT, "CIM illegal transaction", -1, 1 },
|
|
{ ILLWRINT, "CIM illegal write", -1, 1 },
|
|
{ ILLRDINT, "CIM illegal read", -1, 1 },
|
|
{ ILLRDBEINT, "CIM illegal read BE", -1, 1 },
|
|
{ ILLWRBEINT, "CIM illegal write BE", -1, 1 },
|
|
{ SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
|
|
{ SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
|
|
{ BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
|
|
{ SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
|
|
{ SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
|
|
{ BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
|
|
{ SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
|
|
{ SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
|
|
{ BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
|
|
{ BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
|
|
{ SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
|
|
{ SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
|
|
{ BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
|
|
{ BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
|
|
{ SGLRDPLINT , "CIM single read from PL space", -1, 1 },
|
|
{ SGLWRPLINT , "CIM single write to PL space", -1, 1 },
|
|
{ BLKRDPLINT , "CIM block read from PL space", -1, 1 },
|
|
{ BLKWRPLINT , "CIM block write to PL space", -1, 1 },
|
|
{ REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
|
|
{ RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
|
|
{ TIMEOUTINT , "CIM PIF timeout", -1, 1 },
|
|
{ TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
int fat;
|
|
|
|
if (t4_read_reg(adapter, MA_PCIE_FW) & PCIE_FW_ERR)
|
|
t4_report_fw_error(adapter);
|
|
|
|
fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
|
|
cim_intr_info) +
|
|
t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
|
|
cim_upintr_info);
|
|
if (fat)
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* ULP RX interrupt handler.
|
|
*/
|
|
static void ulprx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info ulprx_intr_info[] = {
|
|
{ 0x1800000, "ULPRX context error", -1, 1 },
|
|
{ 0x7fffff, "ULPRX parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* ULP TX interrupt handler.
|
|
*/
|
|
static void ulptx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info ulptx_intr_info[] = {
|
|
{ PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
|
|
0 },
|
|
{ PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
|
|
0 },
|
|
{ PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
|
|
0 },
|
|
{ PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
|
|
0 },
|
|
{ 0xfffffff, "ULPTX parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* PM TX interrupt handler.
|
|
*/
|
|
static void pmtx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info pmtx_intr_info[] = {
|
|
{ PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
|
|
{ PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
|
|
{ PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
|
|
{ ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
|
|
{ PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
|
|
{ OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
|
|
{ DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
|
|
{ ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
|
|
{ C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* PM RX interrupt handler.
|
|
*/
|
|
static void pmrx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info pmrx_intr_info[] = {
|
|
{ ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
|
|
{ PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
|
|
{ OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
|
|
{ DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
|
|
{ IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
|
|
{ E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* CPL switch interrupt handler.
|
|
*/
|
|
static void cplsw_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info cplsw_intr_info[] = {
|
|
{ CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
|
|
{ CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
|
|
{ TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
|
|
{ SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
|
|
{ CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
|
|
{ ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* LE interrupt handler.
|
|
*/
|
|
static void le_intr_handler(struct adapter *adap)
|
|
{
|
|
static const struct intr_info le_intr_info[] = {
|
|
{ LIPMISS, "LE LIP miss", -1, 0 },
|
|
{ LIP0, "LE 0 LIP error", -1, 0 },
|
|
{ PARITYERR, "LE parity error", -1, 1 },
|
|
{ UNKNOWNCMD, "LE unknown command", -1, 1 },
|
|
{ REQQPARERR, "LE request queue parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
/*
|
|
* MPS interrupt handler.
|
|
*/
|
|
static void mps_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info mps_rx_intr_info[] = {
|
|
{ 0xffffff, "MPS Rx parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_tx_intr_info[] = {
|
|
{ TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
|
|
{ NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
|
|
{ TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
|
|
{ TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
|
|
{ BUBBLE, "MPS Tx underflow", -1, 1 },
|
|
{ SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
|
|
{ FRMERR, "MPS Tx framing error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_trc_intr_info[] = {
|
|
{ FILTMEM, "MPS TRC filter parity error", -1, 1 },
|
|
{ PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
|
|
{ MISCPERR, "MPS TRC misc parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_stat_sram_intr_info[] = {
|
|
{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_stat_tx_intr_info[] = {
|
|
{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_stat_rx_intr_info[] = {
|
|
{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
static const struct intr_info mps_cls_intr_info[] = {
|
|
{ MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
|
|
{ MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
|
|
{ HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
int fat;
|
|
|
|
fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
|
|
mps_rx_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
|
|
mps_tx_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
|
|
mps_trc_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
|
|
mps_stat_sram_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
|
|
mps_stat_tx_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
|
|
mps_stat_rx_intr_info) +
|
|
t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
|
|
mps_cls_intr_info);
|
|
|
|
t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
|
|
RXINT | TXINT | STATINT);
|
|
t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
|
|
if (fat)
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
#define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
|
|
|
|
/*
|
|
* EDC/MC interrupt handler.
|
|
*/
|
|
static void mem_intr_handler(struct adapter *adapter, int idx)
|
|
{
|
|
static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
|
|
|
|
unsigned int addr, cnt_addr, v;
|
|
|
|
if (idx <= MEM_EDC1) {
|
|
addr = EDC_REG(EDC_INT_CAUSE, idx);
|
|
cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
|
|
} else if (idx == MEM_MC) {
|
|
if (is_t4(adapter->params.chip)) {
|
|
addr = MC_INT_CAUSE;
|
|
cnt_addr = MC_ECC_STATUS;
|
|
} else {
|
|
addr = MC_P_INT_CAUSE;
|
|
cnt_addr = MC_P_ECC_STATUS;
|
|
}
|
|
} else {
|
|
addr = MC_REG(MC_P_INT_CAUSE, 1);
|
|
cnt_addr = MC_REG(MC_P_ECC_STATUS, 1);
|
|
}
|
|
|
|
v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
|
|
if (v & PERR_INT_CAUSE)
|
|
dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
|
|
name[idx]);
|
|
if (v & ECC_CE_INT_CAUSE) {
|
|
u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
|
|
|
|
t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
|
|
if (printk_ratelimit())
|
|
dev_warn(adapter->pdev_dev,
|
|
"%u %s correctable ECC data error%s\n",
|
|
cnt, name[idx], cnt > 1 ? "s" : "");
|
|
}
|
|
if (v & ECC_UE_INT_CAUSE)
|
|
dev_alert(adapter->pdev_dev,
|
|
"%s uncorrectable ECC data error\n", name[idx]);
|
|
|
|
t4_write_reg(adapter, addr, v);
|
|
if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
|
|
t4_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* MA interrupt handler.
|
|
*/
|
|
static void ma_intr_handler(struct adapter *adap)
|
|
{
|
|
u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
|
|
|
|
if (status & MEM_PERR_INT_CAUSE) {
|
|
dev_alert(adap->pdev_dev,
|
|
"MA parity error, parity status %#x\n",
|
|
t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
|
|
if (is_t5(adap->params.chip))
|
|
dev_alert(adap->pdev_dev,
|
|
"MA parity error, parity status %#x\n",
|
|
t4_read_reg(adap,
|
|
MA_PARITY_ERROR_STATUS2));
|
|
}
|
|
if (status & MEM_WRAP_INT_CAUSE) {
|
|
v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
|
|
dev_alert(adap->pdev_dev, "MA address wrap-around error by "
|
|
"client %u to address %#x\n",
|
|
MEM_WRAP_CLIENT_NUM_GET(v),
|
|
MEM_WRAP_ADDRESS_GET(v) << 4);
|
|
}
|
|
t4_write_reg(adap, MA_INT_CAUSE, status);
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
/*
|
|
* SMB interrupt handler.
|
|
*/
|
|
static void smb_intr_handler(struct adapter *adap)
|
|
{
|
|
static const struct intr_info smb_intr_info[] = {
|
|
{ MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
|
|
{ MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
|
|
{ SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
/*
|
|
* NC-SI interrupt handler.
|
|
*/
|
|
static void ncsi_intr_handler(struct adapter *adap)
|
|
{
|
|
static const struct intr_info ncsi_intr_info[] = {
|
|
{ CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
|
|
{ MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
|
|
{ TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
|
|
{ RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
/*
|
|
* XGMAC interrupt handler.
|
|
*/
|
|
static void xgmac_intr_handler(struct adapter *adap, int port)
|
|
{
|
|
u32 v, int_cause_reg;
|
|
|
|
if (is_t4(adap->params.chip))
|
|
int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE);
|
|
else
|
|
int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE);
|
|
|
|
v = t4_read_reg(adap, int_cause_reg);
|
|
|
|
v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
|
|
if (!v)
|
|
return;
|
|
|
|
if (v & TXFIFO_PRTY_ERR)
|
|
dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
|
|
port);
|
|
if (v & RXFIFO_PRTY_ERR)
|
|
dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
|
|
port);
|
|
t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
/*
|
|
* PL interrupt handler.
|
|
*/
|
|
static void pl_intr_handler(struct adapter *adap)
|
|
{
|
|
static const struct intr_info pl_intr_info[] = {
|
|
{ FATALPERR, "T4 fatal parity error", -1, 1 },
|
|
{ PERRVFID, "PL VFID_MAP parity error", -1, 1 },
|
|
{ 0 }
|
|
};
|
|
|
|
if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
|
|
t4_fatal_err(adap);
|
|
}
|
|
|
|
#define PF_INTR_MASK (PFSW)
|
|
#define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
|
|
EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
|
|
CPL_SWITCH | SGE | ULP_TX)
|
|
|
|
/**
|
|
* t4_slow_intr_handler - control path interrupt handler
|
|
* @adapter: the adapter
|
|
*
|
|
* T4 interrupt handler for non-data global interrupt events, e.g., errors.
|
|
* The designation 'slow' is because it involves register reads, while
|
|
* data interrupts typically don't involve any MMIOs.
|
|
*/
|
|
int t4_slow_intr_handler(struct adapter *adapter)
|
|
{
|
|
u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
|
|
|
|
if (!(cause & GLBL_INTR_MASK))
|
|
return 0;
|
|
if (cause & CIM)
|
|
cim_intr_handler(adapter);
|
|
if (cause & MPS)
|
|
mps_intr_handler(adapter);
|
|
if (cause & NCSI)
|
|
ncsi_intr_handler(adapter);
|
|
if (cause & PL)
|
|
pl_intr_handler(adapter);
|
|
if (cause & SMB)
|
|
smb_intr_handler(adapter);
|
|
if (cause & XGMAC0)
|
|
xgmac_intr_handler(adapter, 0);
|
|
if (cause & XGMAC1)
|
|
xgmac_intr_handler(adapter, 1);
|
|
if (cause & XGMAC_KR0)
|
|
xgmac_intr_handler(adapter, 2);
|
|
if (cause & XGMAC_KR1)
|
|
xgmac_intr_handler(adapter, 3);
|
|
if (cause & PCIE)
|
|
pcie_intr_handler(adapter);
|
|
if (cause & MC)
|
|
mem_intr_handler(adapter, MEM_MC);
|
|
if (!is_t4(adapter->params.chip) && (cause & MC1))
|
|
mem_intr_handler(adapter, MEM_MC1);
|
|
if (cause & EDC0)
|
|
mem_intr_handler(adapter, MEM_EDC0);
|
|
if (cause & EDC1)
|
|
mem_intr_handler(adapter, MEM_EDC1);
|
|
if (cause & LE)
|
|
le_intr_handler(adapter);
|
|
if (cause & TP)
|
|
tp_intr_handler(adapter);
|
|
if (cause & MA)
|
|
ma_intr_handler(adapter);
|
|
if (cause & PM_TX)
|
|
pmtx_intr_handler(adapter);
|
|
if (cause & PM_RX)
|
|
pmrx_intr_handler(adapter);
|
|
if (cause & ULP_RX)
|
|
ulprx_intr_handler(adapter);
|
|
if (cause & CPL_SWITCH)
|
|
cplsw_intr_handler(adapter);
|
|
if (cause & SGE)
|
|
sge_intr_handler(adapter);
|
|
if (cause & ULP_TX)
|
|
ulptx_intr_handler(adapter);
|
|
|
|
/* Clear the interrupts just processed for which we are the master. */
|
|
t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
|
|
(void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* t4_intr_enable - enable interrupts
|
|
* @adapter: the adapter whose interrupts should be enabled
|
|
*
|
|
* Enable PF-specific interrupts for the calling function and the top-level
|
|
* interrupt concentrator for global interrupts. Interrupts are already
|
|
* enabled at each module, here we just enable the roots of the interrupt
|
|
* hierarchies.
|
|
*
|
|
* Note: this function should be called only when the driver manages
|
|
* non PF-specific interrupts from the various HW modules. Only one PCI
|
|
* function at a time should be doing this.
|
|
*/
|
|
void t4_intr_enable(struct adapter *adapter)
|
|
{
|
|
u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
|
|
|
|
t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
|
|
ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
|
|
ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
|
|
ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
|
|
ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
|
|
ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
|
|
ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
|
|
DBFIFO_HP_INT | DBFIFO_LP_INT |
|
|
EGRESS_SIZE_ERR);
|
|
t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
|
|
t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
|
|
}
|
|
|
|
/**
|
|
* t4_intr_disable - disable interrupts
|
|
* @adapter: the adapter whose interrupts should be disabled
|
|
*
|
|
* Disable interrupts. We only disable the top-level interrupt
|
|
* concentrators. The caller must be a PCI function managing global
|
|
* interrupts.
|
|
*/
|
|
void t4_intr_disable(struct adapter *adapter)
|
|
{
|
|
u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
|
|
|
|
t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
|
|
t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
|
|
}
|
|
|
|
/**
|
|
* hash_mac_addr - return the hash value of a MAC address
|
|
* @addr: the 48-bit Ethernet MAC address
|
|
*
|
|
* Hashes a MAC address according to the hash function used by HW inexact
|
|
* (hash) address matching.
|
|
*/
|
|
static int hash_mac_addr(const u8 *addr)
|
|
{
|
|
u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
|
|
u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
|
|
a ^= b;
|
|
a ^= (a >> 12);
|
|
a ^= (a >> 6);
|
|
return a & 0x3f;
|
|
}
|
|
|
|
/**
|
|
* t4_config_rss_range - configure a portion of the RSS mapping table
|
|
* @adapter: the adapter
|
|
* @mbox: mbox to use for the FW command
|
|
* @viid: virtual interface whose RSS subtable is to be written
|
|
* @start: start entry in the table to write
|
|
* @n: how many table entries to write
|
|
* @rspq: values for the response queue lookup table
|
|
* @nrspq: number of values in @rspq
|
|
*
|
|
* Programs the selected part of the VI's RSS mapping table with the
|
|
* provided values. If @nrspq < @n the supplied values are used repeatedly
|
|
* until the full table range is populated.
|
|
*
|
|
* The caller must ensure the values in @rspq are in the range allowed for
|
|
* @viid.
|
|
*/
|
|
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
|
|
int start, int n, const u16 *rspq, unsigned int nrspq)
|
|
{
|
|
int ret;
|
|
const u16 *rsp = rspq;
|
|
const u16 *rsp_end = rspq + nrspq;
|
|
struct fw_rss_ind_tbl_cmd cmd;
|
|
|
|
memset(&cmd, 0, sizeof(cmd));
|
|
cmd.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_RSS_IND_TBL_CMD_VIID_V(viid));
|
|
cmd.retval_len16 = htonl(FW_LEN16(cmd));
|
|
|
|
/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
|
|
while (n > 0) {
|
|
int nq = min(n, 32);
|
|
__be32 *qp = &cmd.iq0_to_iq2;
|
|
|
|
cmd.niqid = htons(nq);
|
|
cmd.startidx = htons(start);
|
|
|
|
start += nq;
|
|
n -= nq;
|
|
|
|
while (nq > 0) {
|
|
unsigned int v;
|
|
|
|
v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
|
|
if (++rsp >= rsp_end)
|
|
rsp = rspq;
|
|
v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
|
|
if (++rsp >= rsp_end)
|
|
rsp = rspq;
|
|
v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
|
|
if (++rsp >= rsp_end)
|
|
rsp = rspq;
|
|
|
|
*qp++ = htonl(v);
|
|
nq -= 3;
|
|
}
|
|
|
|
ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_config_glbl_rss - configure the global RSS mode
|
|
* @adapter: the adapter
|
|
* @mbox: mbox to use for the FW command
|
|
* @mode: global RSS mode
|
|
* @flags: mode-specific flags
|
|
*
|
|
* Sets the global RSS mode.
|
|
*/
|
|
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
|
|
unsigned int flags)
|
|
{
|
|
struct fw_rss_glb_config_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_write = htonl(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
|
|
c.retval_len16 = htonl(FW_LEN16(c));
|
|
if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
|
|
c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
|
|
} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
|
|
c.u.basicvirtual.mode_pkd =
|
|
htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
|
|
c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
|
|
} else
|
|
return -EINVAL;
|
|
return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_tp_get_tcp_stats - read TP's TCP MIB counters
|
|
* @adap: the adapter
|
|
* @v4: holds the TCP/IP counter values
|
|
* @v6: holds the TCP/IPv6 counter values
|
|
*
|
|
* Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
|
|
* Either @v4 or @v6 may be %NULL to skip the corresponding stats.
|
|
*/
|
|
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
|
|
struct tp_tcp_stats *v6)
|
|
{
|
|
u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
|
|
|
|
#define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
|
|
#define STAT(x) val[STAT_IDX(x)]
|
|
#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
|
|
|
|
if (v4) {
|
|
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
|
|
ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
|
|
v4->tcpOutRsts = STAT(OUT_RST);
|
|
v4->tcpInSegs = STAT64(IN_SEG);
|
|
v4->tcpOutSegs = STAT64(OUT_SEG);
|
|
v4->tcpRetransSegs = STAT64(RXT_SEG);
|
|
}
|
|
if (v6) {
|
|
t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
|
|
ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
|
|
v6->tcpOutRsts = STAT(OUT_RST);
|
|
v6->tcpInSegs = STAT64(IN_SEG);
|
|
v6->tcpOutSegs = STAT64(OUT_SEG);
|
|
v6->tcpRetransSegs = STAT64(RXT_SEG);
|
|
}
|
|
#undef STAT64
|
|
#undef STAT
|
|
#undef STAT_IDX
|
|
}
|
|
|
|
/**
|
|
* t4_read_mtu_tbl - returns the values in the HW path MTU table
|
|
* @adap: the adapter
|
|
* @mtus: where to store the MTU values
|
|
* @mtu_log: where to store the MTU base-2 log (may be %NULL)
|
|
*
|
|
* Reads the HW path MTU table.
|
|
*/
|
|
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
|
|
{
|
|
u32 v;
|
|
int i;
|
|
|
|
for (i = 0; i < NMTUS; ++i) {
|
|
t4_write_reg(adap, TP_MTU_TABLE,
|
|
MTUINDEX(0xff) | MTUVALUE(i));
|
|
v = t4_read_reg(adap, TP_MTU_TABLE);
|
|
mtus[i] = MTUVALUE_GET(v);
|
|
if (mtu_log)
|
|
mtu_log[i] = MTUWIDTH_GET(v);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
|
|
* @adap: the adapter
|
|
* @addr: the indirect TP register address
|
|
* @mask: specifies the field within the register to modify
|
|
* @val: new value for the field
|
|
*
|
|
* Sets a field of an indirect TP register to the given value.
|
|
*/
|
|
void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
|
|
unsigned int mask, unsigned int val)
|
|
{
|
|
t4_write_reg(adap, TP_PIO_ADDR, addr);
|
|
val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
|
|
t4_write_reg(adap, TP_PIO_DATA, val);
|
|
}
|
|
|
|
/**
|
|
* init_cong_ctrl - initialize congestion control parameters
|
|
* @a: the alpha values for congestion control
|
|
* @b: the beta values for congestion control
|
|
*
|
|
* Initialize the congestion control parameters.
|
|
*/
|
|
static void init_cong_ctrl(unsigned short *a, unsigned short *b)
|
|
{
|
|
a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
|
|
a[9] = 2;
|
|
a[10] = 3;
|
|
a[11] = 4;
|
|
a[12] = 5;
|
|
a[13] = 6;
|
|
a[14] = 7;
|
|
a[15] = 8;
|
|
a[16] = 9;
|
|
a[17] = 10;
|
|
a[18] = 14;
|
|
a[19] = 17;
|
|
a[20] = 21;
|
|
a[21] = 25;
|
|
a[22] = 30;
|
|
a[23] = 35;
|
|
a[24] = 45;
|
|
a[25] = 60;
|
|
a[26] = 80;
|
|
a[27] = 100;
|
|
a[28] = 200;
|
|
a[29] = 300;
|
|
a[30] = 400;
|
|
a[31] = 500;
|
|
|
|
b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
|
|
b[9] = b[10] = 1;
|
|
b[11] = b[12] = 2;
|
|
b[13] = b[14] = b[15] = b[16] = 3;
|
|
b[17] = b[18] = b[19] = b[20] = b[21] = 4;
|
|
b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
|
|
b[28] = b[29] = 6;
|
|
b[30] = b[31] = 7;
|
|
}
|
|
|
|
/* The minimum additive increment value for the congestion control table */
|
|
#define CC_MIN_INCR 2U
|
|
|
|
/**
|
|
* t4_load_mtus - write the MTU and congestion control HW tables
|
|
* @adap: the adapter
|
|
* @mtus: the values for the MTU table
|
|
* @alpha: the values for the congestion control alpha parameter
|
|
* @beta: the values for the congestion control beta parameter
|
|
*
|
|
* Write the HW MTU table with the supplied MTUs and the high-speed
|
|
* congestion control table with the supplied alpha, beta, and MTUs.
|
|
* We write the two tables together because the additive increments
|
|
* depend on the MTUs.
|
|
*/
|
|
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
|
|
const unsigned short *alpha, const unsigned short *beta)
|
|
{
|
|
static const unsigned int avg_pkts[NCCTRL_WIN] = {
|
|
2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
|
|
896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
|
|
28672, 40960, 57344, 81920, 114688, 163840, 229376
|
|
};
|
|
|
|
unsigned int i, w;
|
|
|
|
for (i = 0; i < NMTUS; ++i) {
|
|
unsigned int mtu = mtus[i];
|
|
unsigned int log2 = fls(mtu);
|
|
|
|
if (!(mtu & ((1 << log2) >> 2))) /* round */
|
|
log2--;
|
|
t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
|
|
MTUWIDTH(log2) | MTUVALUE(mtu));
|
|
|
|
for (w = 0; w < NCCTRL_WIN; ++w) {
|
|
unsigned int inc;
|
|
|
|
inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
|
|
CC_MIN_INCR);
|
|
|
|
t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
|
|
(w << 16) | (beta[w] << 13) | inc);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* get_mps_bg_map - return the buffer groups associated with a port
|
|
* @adap: the adapter
|
|
* @idx: the port index
|
|
*
|
|
* Returns a bitmap indicating which MPS buffer groups are associated
|
|
* with the given port. Bit i is set if buffer group i is used by the
|
|
* port.
|
|
*/
|
|
static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
|
|
{
|
|
u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
|
|
|
|
if (n == 0)
|
|
return idx == 0 ? 0xf : 0;
|
|
if (n == 1)
|
|
return idx < 2 ? (3 << (2 * idx)) : 0;
|
|
return 1 << idx;
|
|
}
|
|
|
|
/**
|
|
* t4_get_port_type_description - return Port Type string description
|
|
* @port_type: firmware Port Type enumeration
|
|
*/
|
|
const char *t4_get_port_type_description(enum fw_port_type port_type)
|
|
{
|
|
static const char *const port_type_description[] = {
|
|
"R XFI",
|
|
"R XAUI",
|
|
"T SGMII",
|
|
"T XFI",
|
|
"T XAUI",
|
|
"KX4",
|
|
"CX4",
|
|
"KX",
|
|
"KR",
|
|
"R SFP+",
|
|
"KR/KX",
|
|
"KR/KX/KX4",
|
|
"R QSFP_10G",
|
|
"",
|
|
"R QSFP",
|
|
"R BP40_BA",
|
|
};
|
|
|
|
if (port_type < ARRAY_SIZE(port_type_description))
|
|
return port_type_description[port_type];
|
|
return "UNKNOWN";
|
|
}
|
|
|
|
/**
|
|
* t4_get_port_stats - collect port statistics
|
|
* @adap: the adapter
|
|
* @idx: the port index
|
|
* @p: the stats structure to fill
|
|
*
|
|
* Collect statistics related to the given port from HW.
|
|
*/
|
|
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
|
|
{
|
|
u32 bgmap = get_mps_bg_map(adap, idx);
|
|
|
|
#define GET_STAT(name) \
|
|
t4_read_reg64(adap, \
|
|
(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
|
|
T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
|
|
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
|
|
|
|
p->tx_octets = GET_STAT(TX_PORT_BYTES);
|
|
p->tx_frames = GET_STAT(TX_PORT_FRAMES);
|
|
p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
|
|
p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
|
|
p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
|
|
p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
|
|
p->tx_frames_64 = GET_STAT(TX_PORT_64B);
|
|
p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
|
|
p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
|
|
p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
|
|
p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
|
|
p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
|
|
p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
|
|
p->tx_drop = GET_STAT(TX_PORT_DROP);
|
|
p->tx_pause = GET_STAT(TX_PORT_PAUSE);
|
|
p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
|
|
p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
|
|
p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
|
|
p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
|
|
p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
|
|
p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
|
|
p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
|
|
p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
|
|
|
|
p->rx_octets = GET_STAT(RX_PORT_BYTES);
|
|
p->rx_frames = GET_STAT(RX_PORT_FRAMES);
|
|
p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
|
|
p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
|
|
p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
|
|
p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
|
|
p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
|
|
p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
|
|
p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
|
|
p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
|
|
p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
|
|
p->rx_frames_64 = GET_STAT(RX_PORT_64B);
|
|
p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
|
|
p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
|
|
p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
|
|
p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
|
|
p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
|
|
p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
|
|
p->rx_pause = GET_STAT(RX_PORT_PAUSE);
|
|
p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
|
|
p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
|
|
p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
|
|
p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
|
|
p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
|
|
p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
|
|
p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
|
|
p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
|
|
|
|
p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
|
|
p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
|
|
p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
|
|
p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
|
|
p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
|
|
p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
|
|
p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
|
|
p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
|
|
|
|
#undef GET_STAT
|
|
#undef GET_STAT_COM
|
|
}
|
|
|
|
/**
|
|
* t4_wol_magic_enable - enable/disable magic packet WoL
|
|
* @adap: the adapter
|
|
* @port: the physical port index
|
|
* @addr: MAC address expected in magic packets, %NULL to disable
|
|
*
|
|
* Enables/disables magic packet wake-on-LAN for the selected port.
|
|
*/
|
|
void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
|
|
const u8 *addr)
|
|
{
|
|
u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
|
|
|
|
if (is_t4(adap->params.chip)) {
|
|
mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
|
|
mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
|
|
port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
|
|
} else {
|
|
mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
|
|
mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
|
|
port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
|
|
}
|
|
|
|
if (addr) {
|
|
t4_write_reg(adap, mag_id_reg_l,
|
|
(addr[2] << 24) | (addr[3] << 16) |
|
|
(addr[4] << 8) | addr[5]);
|
|
t4_write_reg(adap, mag_id_reg_h,
|
|
(addr[0] << 8) | addr[1]);
|
|
}
|
|
t4_set_reg_field(adap, port_cfg_reg, MAGICEN,
|
|
addr ? MAGICEN : 0);
|
|
}
|
|
|
|
/**
|
|
* t4_wol_pat_enable - enable/disable pattern-based WoL
|
|
* @adap: the adapter
|
|
* @port: the physical port index
|
|
* @map: bitmap of which HW pattern filters to set
|
|
* @mask0: byte mask for bytes 0-63 of a packet
|
|
* @mask1: byte mask for bytes 64-127 of a packet
|
|
* @crc: Ethernet CRC for selected bytes
|
|
* @enable: enable/disable switch
|
|
*
|
|
* Sets the pattern filters indicated in @map to mask out the bytes
|
|
* specified in @mask0/@mask1 in received packets and compare the CRC of
|
|
* the resulting packet against @crc. If @enable is %true pattern-based
|
|
* WoL is enabled, otherwise disabled.
|
|
*/
|
|
int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
|
|
u64 mask0, u64 mask1, unsigned int crc, bool enable)
|
|
{
|
|
int i;
|
|
u32 port_cfg_reg;
|
|
|
|
if (is_t4(adap->params.chip))
|
|
port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
|
|
else
|
|
port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
|
|
|
|
if (!enable) {
|
|
t4_set_reg_field(adap, port_cfg_reg, PATEN, 0);
|
|
return 0;
|
|
}
|
|
if (map > 0xff)
|
|
return -EINVAL;
|
|
|
|
#define EPIO_REG(name) \
|
|
(is_t4(adap->params.chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \
|
|
T5_PORT_REG(port, MAC_PORT_EPIO_##name))
|
|
|
|
t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
|
|
t4_write_reg(adap, EPIO_REG(DATA2), mask1);
|
|
t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
|
|
|
|
for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
|
|
if (!(map & 1))
|
|
continue;
|
|
|
|
/* write byte masks */
|
|
t4_write_reg(adap, EPIO_REG(DATA0), mask0);
|
|
t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
|
|
t4_read_reg(adap, EPIO_REG(OP)); /* flush */
|
|
if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
|
|
return -ETIMEDOUT;
|
|
|
|
/* write CRC */
|
|
t4_write_reg(adap, EPIO_REG(DATA0), crc);
|
|
t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
|
|
t4_read_reg(adap, EPIO_REG(OP)); /* flush */
|
|
if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
|
|
return -ETIMEDOUT;
|
|
}
|
|
#undef EPIO_REG
|
|
|
|
t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
|
|
return 0;
|
|
}
|
|
|
|
/* t4_mk_filtdelwr - create a delete filter WR
|
|
* @ftid: the filter ID
|
|
* @wr: the filter work request to populate
|
|
* @qid: ingress queue to receive the delete notification
|
|
*
|
|
* Creates a filter work request to delete the supplied filter. If @qid is
|
|
* negative the delete notification is suppressed.
|
|
*/
|
|
void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
|
|
{
|
|
memset(wr, 0, sizeof(*wr));
|
|
wr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
|
|
wr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*wr) / 16));
|
|
wr->tid_to_iq = htonl(FW_FILTER_WR_TID_V(ftid) |
|
|
FW_FILTER_WR_NOREPLY_V(qid < 0));
|
|
wr->del_filter_to_l2tix = htonl(FW_FILTER_WR_DEL_FILTER_F);
|
|
if (qid >= 0)
|
|
wr->rx_chan_rx_rpl_iq = htons(FW_FILTER_WR_RX_RPL_IQ_V(qid));
|
|
}
|
|
|
|
#define INIT_CMD(var, cmd, rd_wr) do { \
|
|
(var).op_to_write = htonl(FW_CMD_OP_V(FW_##cmd##_CMD) | \
|
|
FW_CMD_REQUEST_F | FW_CMD_##rd_wr##_F); \
|
|
(var).retval_len16 = htonl(FW_LEN16(var)); \
|
|
} while (0)
|
|
|
|
int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
|
|
u32 addr, u32 val)
|
|
{
|
|
struct fw_ldst_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F |
|
|
FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE));
|
|
c.cycles_to_len16 = htonl(FW_LEN16(c));
|
|
c.u.addrval.addr = htonl(addr);
|
|
c.u.addrval.val = htonl(val);
|
|
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_mdio_rd - read a PHY register through MDIO
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @phy_addr: the PHY address
|
|
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
|
|
* @reg: the register to read
|
|
* @valp: where to store the value
|
|
*
|
|
* Issues a FW command through the given mailbox to read a PHY register.
|
|
*/
|
|
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
|
|
unsigned int mmd, unsigned int reg, u16 *valp)
|
|
{
|
|
int ret;
|
|
struct fw_ldst_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
|
|
c.cycles_to_len16 = htonl(FW_LEN16(c));
|
|
c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
|
|
FW_LDST_CMD_MMD_V(mmd));
|
|
c.u.mdio.raddr = htons(reg);
|
|
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
if (ret == 0)
|
|
*valp = ntohs(c.u.mdio.rval);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_mdio_wr - write a PHY register through MDIO
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @phy_addr: the PHY address
|
|
* @mmd: the PHY MMD to access (0 for clause 22 PHYs)
|
|
* @reg: the register to write
|
|
* @valp: value to write
|
|
*
|
|
* Issues a FW command through the given mailbox to write a PHY register.
|
|
*/
|
|
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
|
|
unsigned int mmd, unsigned int reg, u16 val)
|
|
{
|
|
struct fw_ldst_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
|
|
c.cycles_to_len16 = htonl(FW_LEN16(c));
|
|
c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
|
|
FW_LDST_CMD_MMD_V(mmd));
|
|
c.u.mdio.raddr = htons(reg);
|
|
c.u.mdio.rval = htons(val);
|
|
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_sge_decode_idma_state - decode the idma state
|
|
* @adap: the adapter
|
|
* @state: the state idma is stuck in
|
|
*/
|
|
void t4_sge_decode_idma_state(struct adapter *adapter, int state)
|
|
{
|
|
static const char * const t4_decode[] = {
|
|
"IDMA_IDLE",
|
|
"IDMA_PUSH_MORE_CPL_FIFO",
|
|
"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
|
|
"Not used",
|
|
"IDMA_PHYSADDR_SEND_PCIEHDR",
|
|
"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
|
|
"IDMA_PHYSADDR_SEND_PAYLOAD",
|
|
"IDMA_SEND_FIFO_TO_IMSG",
|
|
"IDMA_FL_REQ_DATA_FL_PREP",
|
|
"IDMA_FL_REQ_DATA_FL",
|
|
"IDMA_FL_DROP",
|
|
"IDMA_FL_H_REQ_HEADER_FL",
|
|
"IDMA_FL_H_SEND_PCIEHDR",
|
|
"IDMA_FL_H_PUSH_CPL_FIFO",
|
|
"IDMA_FL_H_SEND_CPL",
|
|
"IDMA_FL_H_SEND_IP_HDR_FIRST",
|
|
"IDMA_FL_H_SEND_IP_HDR",
|
|
"IDMA_FL_H_REQ_NEXT_HEADER_FL",
|
|
"IDMA_FL_H_SEND_NEXT_PCIEHDR",
|
|
"IDMA_FL_H_SEND_IP_HDR_PADDING",
|
|
"IDMA_FL_D_SEND_PCIEHDR",
|
|
"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
|
|
"IDMA_FL_D_REQ_NEXT_DATA_FL",
|
|
"IDMA_FL_SEND_PCIEHDR",
|
|
"IDMA_FL_PUSH_CPL_FIFO",
|
|
"IDMA_FL_SEND_CPL",
|
|
"IDMA_FL_SEND_PAYLOAD_FIRST",
|
|
"IDMA_FL_SEND_PAYLOAD",
|
|
"IDMA_FL_REQ_NEXT_DATA_FL",
|
|
"IDMA_FL_SEND_NEXT_PCIEHDR",
|
|
"IDMA_FL_SEND_PADDING",
|
|
"IDMA_FL_SEND_COMPLETION_TO_IMSG",
|
|
"IDMA_FL_SEND_FIFO_TO_IMSG",
|
|
"IDMA_FL_REQ_DATAFL_DONE",
|
|
"IDMA_FL_REQ_HEADERFL_DONE",
|
|
};
|
|
static const char * const t5_decode[] = {
|
|
"IDMA_IDLE",
|
|
"IDMA_ALMOST_IDLE",
|
|
"IDMA_PUSH_MORE_CPL_FIFO",
|
|
"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
|
|
"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
|
|
"IDMA_PHYSADDR_SEND_PCIEHDR",
|
|
"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
|
|
"IDMA_PHYSADDR_SEND_PAYLOAD",
|
|
"IDMA_SEND_FIFO_TO_IMSG",
|
|
"IDMA_FL_REQ_DATA_FL",
|
|
"IDMA_FL_DROP",
|
|
"IDMA_FL_DROP_SEND_INC",
|
|
"IDMA_FL_H_REQ_HEADER_FL",
|
|
"IDMA_FL_H_SEND_PCIEHDR",
|
|
"IDMA_FL_H_PUSH_CPL_FIFO",
|
|
"IDMA_FL_H_SEND_CPL",
|
|
"IDMA_FL_H_SEND_IP_HDR_FIRST",
|
|
"IDMA_FL_H_SEND_IP_HDR",
|
|
"IDMA_FL_H_REQ_NEXT_HEADER_FL",
|
|
"IDMA_FL_H_SEND_NEXT_PCIEHDR",
|
|
"IDMA_FL_H_SEND_IP_HDR_PADDING",
|
|
"IDMA_FL_D_SEND_PCIEHDR",
|
|
"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
|
|
"IDMA_FL_D_REQ_NEXT_DATA_FL",
|
|
"IDMA_FL_SEND_PCIEHDR",
|
|
"IDMA_FL_PUSH_CPL_FIFO",
|
|
"IDMA_FL_SEND_CPL",
|
|
"IDMA_FL_SEND_PAYLOAD_FIRST",
|
|
"IDMA_FL_SEND_PAYLOAD",
|
|
"IDMA_FL_REQ_NEXT_DATA_FL",
|
|
"IDMA_FL_SEND_NEXT_PCIEHDR",
|
|
"IDMA_FL_SEND_PADDING",
|
|
"IDMA_FL_SEND_COMPLETION_TO_IMSG",
|
|
};
|
|
static const u32 sge_regs[] = {
|
|
SGE_DEBUG_DATA_LOW_INDEX_2,
|
|
SGE_DEBUG_DATA_LOW_INDEX_3,
|
|
SGE_DEBUG_DATA_HIGH_INDEX_10,
|
|
};
|
|
const char **sge_idma_decode;
|
|
int sge_idma_decode_nstates;
|
|
int i;
|
|
|
|
if (is_t4(adapter->params.chip)) {
|
|
sge_idma_decode = (const char **)t4_decode;
|
|
sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
|
|
} else {
|
|
sge_idma_decode = (const char **)t5_decode;
|
|
sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
|
|
}
|
|
|
|
if (state < sge_idma_decode_nstates)
|
|
CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
|
|
else
|
|
CH_WARN(adapter, "idma state %d unknown\n", state);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
|
|
CH_WARN(adapter, "SGE register %#x value %#x\n",
|
|
sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
|
|
}
|
|
|
|
/**
|
|
* t4_fw_hello - establish communication with FW
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @evt_mbox: mailbox to receive async FW events
|
|
* @master: specifies the caller's willingness to be the device master
|
|
* @state: returns the current device state (if non-NULL)
|
|
*
|
|
* Issues a command to establish communication with FW. Returns either
|
|
* an error (negative integer) or the mailbox of the Master PF.
|
|
*/
|
|
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
|
|
enum dev_master master, enum dev_state *state)
|
|
{
|
|
int ret;
|
|
struct fw_hello_cmd c;
|
|
u32 v;
|
|
unsigned int master_mbox;
|
|
int retries = FW_CMD_HELLO_RETRIES;
|
|
|
|
retry:
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, HELLO, WRITE);
|
|
c.err_to_clearinit = htonl(
|
|
FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
|
|
FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
|
|
FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? mbox :
|
|
FW_HELLO_CMD_MBMASTER_M) |
|
|
FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
|
|
FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
|
|
FW_HELLO_CMD_CLEARINIT_F);
|
|
|
|
/*
|
|
* Issue the HELLO command to the firmware. If it's not successful
|
|
* but indicates that we got a "busy" or "timeout" condition, retry
|
|
* the HELLO until we exhaust our retry limit. If we do exceed our
|
|
* retry limit, check to see if the firmware left us any error
|
|
* information and report that if so.
|
|
*/
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
if (ret < 0) {
|
|
if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
|
|
goto retry;
|
|
if (t4_read_reg(adap, MA_PCIE_FW) & PCIE_FW_ERR)
|
|
t4_report_fw_error(adap);
|
|
return ret;
|
|
}
|
|
|
|
v = ntohl(c.err_to_clearinit);
|
|
master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
|
|
if (state) {
|
|
if (v & FW_HELLO_CMD_ERR_F)
|
|
*state = DEV_STATE_ERR;
|
|
else if (v & FW_HELLO_CMD_INIT_F)
|
|
*state = DEV_STATE_INIT;
|
|
else
|
|
*state = DEV_STATE_UNINIT;
|
|
}
|
|
|
|
/*
|
|
* If we're not the Master PF then we need to wait around for the
|
|
* Master PF Driver to finish setting up the adapter.
|
|
*
|
|
* Note that we also do this wait if we're a non-Master-capable PF and
|
|
* there is no current Master PF; a Master PF may show up momentarily
|
|
* and we wouldn't want to fail pointlessly. (This can happen when an
|
|
* OS loads lots of different drivers rapidly at the same time). In
|
|
* this case, the Master PF returned by the firmware will be
|
|
* PCIE_FW_MASTER_M so the test below will work ...
|
|
*/
|
|
if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
|
|
master_mbox != mbox) {
|
|
int waiting = FW_CMD_HELLO_TIMEOUT;
|
|
|
|
/*
|
|
* Wait for the firmware to either indicate an error or
|
|
* initialized state. If we see either of these we bail out
|
|
* and report the issue to the caller. If we exhaust the
|
|
* "hello timeout" and we haven't exhausted our retries, try
|
|
* again. Otherwise bail with a timeout error.
|
|
*/
|
|
for (;;) {
|
|
u32 pcie_fw;
|
|
|
|
msleep(50);
|
|
waiting -= 50;
|
|
|
|
/*
|
|
* If neither Error nor Initialialized are indicated
|
|
* by the firmware keep waiting till we exaust our
|
|
* timeout ... and then retry if we haven't exhausted
|
|
* our retries ...
|
|
*/
|
|
pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
|
|
if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) {
|
|
if (waiting <= 0) {
|
|
if (retries-- > 0)
|
|
goto retry;
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We either have an Error or Initialized condition
|
|
* report errors preferentially.
|
|
*/
|
|
if (state) {
|
|
if (pcie_fw & PCIE_FW_ERR)
|
|
*state = DEV_STATE_ERR;
|
|
else if (pcie_fw & PCIE_FW_INIT)
|
|
*state = DEV_STATE_INIT;
|
|
}
|
|
|
|
/*
|
|
* If we arrived before a Master PF was selected and
|
|
* there's not a valid Master PF, grab its identity
|
|
* for our caller.
|
|
*/
|
|
if (master_mbox == PCIE_FW_MASTER_M &&
|
|
(pcie_fw & PCIE_FW_MASTER_VLD))
|
|
master_mbox = PCIE_FW_MASTER_G(pcie_fw);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return master_mbox;
|
|
}
|
|
|
|
/**
|
|
* t4_fw_bye - end communication with FW
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
*
|
|
* Issues a command to terminate communication with FW.
|
|
*/
|
|
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
|
|
{
|
|
struct fw_bye_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, BYE, WRITE);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_init_cmd - ask FW to initialize the device
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
*
|
|
* Issues a command to FW to partially initialize the device. This
|
|
* performs initialization that generally doesn't depend on user input.
|
|
*/
|
|
int t4_early_init(struct adapter *adap, unsigned int mbox)
|
|
{
|
|
struct fw_initialize_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, INITIALIZE, WRITE);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_fw_reset - issue a reset to FW
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @reset: specifies the type of reset to perform
|
|
*
|
|
* Issues a reset command of the specified type to FW.
|
|
*/
|
|
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
|
|
{
|
|
struct fw_reset_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, RESET, WRITE);
|
|
c.val = htonl(reset);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_fw_halt - issue a reset/halt to FW and put uP into RESET
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW RESET command (if desired)
|
|
* @force: force uP into RESET even if FW RESET command fails
|
|
*
|
|
* Issues a RESET command to firmware (if desired) with a HALT indication
|
|
* and then puts the microprocessor into RESET state. The RESET command
|
|
* will only be issued if a legitimate mailbox is provided (mbox <=
|
|
* PCIE_FW_MASTER_M).
|
|
*
|
|
* This is generally used in order for the host to safely manipulate the
|
|
* adapter without fear of conflicting with whatever the firmware might
|
|
* be doing. The only way out of this state is to RESTART the firmware
|
|
* ...
|
|
*/
|
|
static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If a legitimate mailbox is provided, issue a RESET command
|
|
* with a HALT indication.
|
|
*/
|
|
if (mbox <= PCIE_FW_MASTER_M) {
|
|
struct fw_reset_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, RESET, WRITE);
|
|
c.val = htonl(PIORST | PIORSTMODE);
|
|
c.halt_pkd = htonl(FW_RESET_CMD_HALT_F);
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/*
|
|
* Normally we won't complete the operation if the firmware RESET
|
|
* command fails but if our caller insists we'll go ahead and put the
|
|
* uP into RESET. This can be useful if the firmware is hung or even
|
|
* missing ... We'll have to take the risk of putting the uP into
|
|
* RESET without the cooperation of firmware in that case.
|
|
*
|
|
* We also force the firmware's HALT flag to be on in case we bypassed
|
|
* the firmware RESET command above or we're dealing with old firmware
|
|
* which doesn't have the HALT capability. This will serve as a flag
|
|
* for the incoming firmware to know that it's coming out of a HALT
|
|
* rather than a RESET ... if it's new enough to understand that ...
|
|
*/
|
|
if (ret == 0 || force) {
|
|
t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
|
|
t4_set_reg_field(adap, PCIE_FW, PCIE_FW_HALT_F,
|
|
PCIE_FW_HALT_F);
|
|
}
|
|
|
|
/*
|
|
* And we always return the result of the firmware RESET command
|
|
* even when we force the uP into RESET ...
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_fw_restart - restart the firmware by taking the uP out of RESET
|
|
* @adap: the adapter
|
|
* @reset: if we want to do a RESET to restart things
|
|
*
|
|
* Restart firmware previously halted by t4_fw_halt(). On successful
|
|
* return the previous PF Master remains as the new PF Master and there
|
|
* is no need to issue a new HELLO command, etc.
|
|
*
|
|
* We do this in two ways:
|
|
*
|
|
* 1. If we're dealing with newer firmware we'll simply want to take
|
|
* the chip's microprocessor out of RESET. This will cause the
|
|
* firmware to start up from its start vector. And then we'll loop
|
|
* until the firmware indicates it's started again (PCIE_FW.HALT
|
|
* reset to 0) or we timeout.
|
|
*
|
|
* 2. If we're dealing with older firmware then we'll need to RESET
|
|
* the chip since older firmware won't recognize the PCIE_FW.HALT
|
|
* flag and automatically RESET itself on startup.
|
|
*/
|
|
static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
|
|
{
|
|
if (reset) {
|
|
/*
|
|
* Since we're directing the RESET instead of the firmware
|
|
* doing it automatically, we need to clear the PCIE_FW.HALT
|
|
* bit.
|
|
*/
|
|
t4_set_reg_field(adap, PCIE_FW, PCIE_FW_HALT_F, 0);
|
|
|
|
/*
|
|
* If we've been given a valid mailbox, first try to get the
|
|
* firmware to do the RESET. If that works, great and we can
|
|
* return success. Otherwise, if we haven't been given a
|
|
* valid mailbox or the RESET command failed, fall back to
|
|
* hitting the chip with a hammer.
|
|
*/
|
|
if (mbox <= PCIE_FW_MASTER_M) {
|
|
t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
|
|
msleep(100);
|
|
if (t4_fw_reset(adap, mbox,
|
|
PIORST | PIORSTMODE) == 0)
|
|
return 0;
|
|
}
|
|
|
|
t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
|
|
msleep(2000);
|
|
} else {
|
|
int ms;
|
|
|
|
t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
|
|
for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
|
|
if (!(t4_read_reg(adap, PCIE_FW) & PCIE_FW_HALT_F))
|
|
return 0;
|
|
msleep(100);
|
|
ms += 100;
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_fw_upgrade - perform all of the steps necessary to upgrade FW
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW RESET command (if desired)
|
|
* @fw_data: the firmware image to write
|
|
* @size: image size
|
|
* @force: force upgrade even if firmware doesn't cooperate
|
|
*
|
|
* Perform all of the steps necessary for upgrading an adapter's
|
|
* firmware image. Normally this requires the cooperation of the
|
|
* existing firmware in order to halt all existing activities
|
|
* but if an invalid mailbox token is passed in we skip that step
|
|
* (though we'll still put the adapter microprocessor into RESET in
|
|
* that case).
|
|
*
|
|
* On successful return the new firmware will have been loaded and
|
|
* the adapter will have been fully RESET losing all previous setup
|
|
* state. On unsuccessful return the adapter may be completely hosed ...
|
|
* positive errno indicates that the adapter is ~probably~ intact, a
|
|
* negative errno indicates that things are looking bad ...
|
|
*/
|
|
int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
|
|
const u8 *fw_data, unsigned int size, int force)
|
|
{
|
|
const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
|
|
int reset, ret;
|
|
|
|
ret = t4_fw_halt(adap, mbox, force);
|
|
if (ret < 0 && !force)
|
|
return ret;
|
|
|
|
ret = t4_load_fw(adap, fw_data, size);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Older versions of the firmware don't understand the new
|
|
* PCIE_FW.HALT flag and so won't know to perform a RESET when they
|
|
* restart. So for newly loaded older firmware we'll have to do the
|
|
* RESET for it so it starts up on a clean slate. We can tell if
|
|
* the newly loaded firmware will handle this right by checking
|
|
* its header flags to see if it advertises the capability.
|
|
*/
|
|
reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
|
|
return t4_fw_restart(adap, mbox, reset);
|
|
}
|
|
|
|
/**
|
|
* t4_fixup_host_params - fix up host-dependent parameters
|
|
* @adap: the adapter
|
|
* @page_size: the host's Base Page Size
|
|
* @cache_line_size: the host's Cache Line Size
|
|
*
|
|
* Various registers in T4 contain values which are dependent on the
|
|
* host's Base Page and Cache Line Sizes. This function will fix all of
|
|
* those registers with the appropriate values as passed in ...
|
|
*/
|
|
int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
|
|
unsigned int cache_line_size)
|
|
{
|
|
unsigned int page_shift = fls(page_size) - 1;
|
|
unsigned int sge_hps = page_shift - 10;
|
|
unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
|
|
unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
|
|
unsigned int fl_align_log = fls(fl_align) - 1;
|
|
|
|
t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
|
|
HOSTPAGESIZEPF0(sge_hps) |
|
|
HOSTPAGESIZEPF1(sge_hps) |
|
|
HOSTPAGESIZEPF2(sge_hps) |
|
|
HOSTPAGESIZEPF3(sge_hps) |
|
|
HOSTPAGESIZEPF4(sge_hps) |
|
|
HOSTPAGESIZEPF5(sge_hps) |
|
|
HOSTPAGESIZEPF6(sge_hps) |
|
|
HOSTPAGESIZEPF7(sge_hps));
|
|
|
|
if (is_t4(adap->params.chip)) {
|
|
t4_set_reg_field(adap, SGE_CONTROL,
|
|
INGPADBOUNDARY_MASK |
|
|
EGRSTATUSPAGESIZE_MASK,
|
|
INGPADBOUNDARY(fl_align_log - 5) |
|
|
EGRSTATUSPAGESIZE(stat_len != 64));
|
|
} else {
|
|
/* T5 introduced the separation of the Free List Padding and
|
|
* Packing Boundaries. Thus, we can select a smaller Padding
|
|
* Boundary to avoid uselessly chewing up PCIe Link and Memory
|
|
* Bandwidth, and use a Packing Boundary which is large enough
|
|
* to avoid false sharing between CPUs, etc.
|
|
*
|
|
* For the PCI Link, the smaller the Padding Boundary the
|
|
* better. For the Memory Controller, a smaller Padding
|
|
* Boundary is better until we cross under the Memory Line
|
|
* Size (the minimum unit of transfer to/from Memory). If we
|
|
* have a Padding Boundary which is smaller than the Memory
|
|
* Line Size, that'll involve a Read-Modify-Write cycle on the
|
|
* Memory Controller which is never good. For T5 the smallest
|
|
* Padding Boundary which we can select is 32 bytes which is
|
|
* larger than any known Memory Controller Line Size so we'll
|
|
* use that.
|
|
*
|
|
* T5 has a different interpretation of the "0" value for the
|
|
* Packing Boundary. This corresponds to 16 bytes instead of
|
|
* the expected 32 bytes. We never have a Packing Boundary
|
|
* less than 32 bytes so we can't use that special value but
|
|
* on the other hand, if we wanted 32 bytes, the best we can
|
|
* really do is 64 bytes.
|
|
*/
|
|
if (fl_align <= 32) {
|
|
fl_align = 64;
|
|
fl_align_log = 6;
|
|
}
|
|
t4_set_reg_field(adap, SGE_CONTROL,
|
|
INGPADBOUNDARY_MASK |
|
|
EGRSTATUSPAGESIZE_MASK,
|
|
INGPADBOUNDARY(INGPCIEBOUNDARY_32B_X) |
|
|
EGRSTATUSPAGESIZE(stat_len != 64));
|
|
t4_set_reg_field(adap, SGE_CONTROL2_A,
|
|
INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
|
|
INGPACKBOUNDARY_V(fl_align_log -
|
|
INGPACKBOUNDARY_SHIFT_X));
|
|
}
|
|
/*
|
|
* Adjust various SGE Free List Host Buffer Sizes.
|
|
*
|
|
* This is something of a crock since we're using fixed indices into
|
|
* the array which are also known by the sge.c code and the T4
|
|
* Firmware Configuration File. We need to come up with a much better
|
|
* approach to managing this array. For now, the first four entries
|
|
* are:
|
|
*
|
|
* 0: Host Page Size
|
|
* 1: 64KB
|
|
* 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
|
|
* 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
|
|
*
|
|
* For the single-MTU buffers in unpacked mode we need to include
|
|
* space for the SGE Control Packet Shift, 14 byte Ethernet header,
|
|
* possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
|
|
* Padding boundry. All of these are accommodated in the Factory
|
|
* Default Firmware Configuration File but we need to adjust it for
|
|
* this host's cache line size.
|
|
*/
|
|
t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
|
|
t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
|
|
(t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
|
|
& ~(fl_align-1));
|
|
t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
|
|
(t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
|
|
& ~(fl_align-1));
|
|
|
|
t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_fw_initialize - ask FW to initialize the device
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
*
|
|
* Issues a command to FW to partially initialize the device. This
|
|
* performs initialization that generally doesn't depend on user input.
|
|
*/
|
|
int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
|
|
{
|
|
struct fw_initialize_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
INIT_CMD(c, INITIALIZE, WRITE);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_query_params - query FW or device parameters
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF
|
|
* @vf: the VF
|
|
* @nparams: the number of parameters
|
|
* @params: the parameter names
|
|
* @val: the parameter values
|
|
*
|
|
* Reads the value of FW or device parameters. Up to 7 parameters can be
|
|
* queried at once.
|
|
*/
|
|
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int nparams, const u32 *params,
|
|
u32 *val)
|
|
{
|
|
int i, ret;
|
|
struct fw_params_cmd c;
|
|
__be32 *p = &c.param[0].mnem;
|
|
|
|
if (nparams > 7)
|
|
return -EINVAL;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_READ_F | FW_PARAMS_CMD_PFN_V(pf) |
|
|
FW_PARAMS_CMD_VFN_V(vf));
|
|
c.retval_len16 = htonl(FW_LEN16(c));
|
|
for (i = 0; i < nparams; i++, p += 2)
|
|
*p = htonl(*params++);
|
|
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
if (ret == 0)
|
|
for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
|
|
*val++ = ntohl(*p);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_set_params_nosleep - sets FW or device parameters
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF
|
|
* @vf: the VF
|
|
* @nparams: the number of parameters
|
|
* @params: the parameter names
|
|
* @val: the parameter values
|
|
*
|
|
* Does not ever sleep
|
|
* Sets the value of FW or device parameters. Up to 7 parameters can be
|
|
* specified at once.
|
|
*/
|
|
int t4_set_params_nosleep(struct adapter *adap, unsigned int mbox,
|
|
unsigned int pf, unsigned int vf,
|
|
unsigned int nparams, const u32 *params,
|
|
const u32 *val)
|
|
{
|
|
struct fw_params_cmd c;
|
|
__be32 *p = &c.param[0].mnem;
|
|
|
|
if (nparams > 7)
|
|
return -EINVAL;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
|
|
FW_PARAMS_CMD_PFN_V(pf) |
|
|
FW_PARAMS_CMD_VFN_V(vf));
|
|
c.retval_len16 = cpu_to_be32(FW_LEN16(c));
|
|
|
|
while (nparams--) {
|
|
*p++ = cpu_to_be32(*params++);
|
|
*p++ = cpu_to_be32(*val++);
|
|
}
|
|
|
|
return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_set_params - sets FW or device parameters
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF
|
|
* @vf: the VF
|
|
* @nparams: the number of parameters
|
|
* @params: the parameter names
|
|
* @val: the parameter values
|
|
*
|
|
* Sets the value of FW or device parameters. Up to 7 parameters can be
|
|
* specified at once.
|
|
*/
|
|
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int nparams, const u32 *params,
|
|
const u32 *val)
|
|
{
|
|
struct fw_params_cmd c;
|
|
__be32 *p = &c.param[0].mnem;
|
|
|
|
if (nparams > 7)
|
|
return -EINVAL;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) |
|
|
FW_PARAMS_CMD_VFN_V(vf));
|
|
c.retval_len16 = htonl(FW_LEN16(c));
|
|
while (nparams--) {
|
|
*p++ = htonl(*params++);
|
|
*p++ = htonl(*val++);
|
|
}
|
|
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_cfg_pfvf - configure PF/VF resource limits
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF being configured
|
|
* @vf: the VF being configured
|
|
* @txq: the max number of egress queues
|
|
* @txq_eth_ctrl: the max number of egress Ethernet or control queues
|
|
* @rxqi: the max number of interrupt-capable ingress queues
|
|
* @rxq: the max number of interruptless ingress queues
|
|
* @tc: the PCI traffic class
|
|
* @vi: the max number of virtual interfaces
|
|
* @cmask: the channel access rights mask for the PF/VF
|
|
* @pmask: the port access rights mask for the PF/VF
|
|
* @nexact: the maximum number of exact MPS filters
|
|
* @rcaps: read capabilities
|
|
* @wxcaps: write/execute capabilities
|
|
*
|
|
* Configures resource limits and capabilities for a physical or virtual
|
|
* function.
|
|
*/
|
|
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
|
|
unsigned int rxqi, unsigned int rxq, unsigned int tc,
|
|
unsigned int vi, unsigned int cmask, unsigned int pmask,
|
|
unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
|
|
{
|
|
struct fw_pfvf_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
|
|
FW_PFVF_CMD_VFN_V(vf));
|
|
c.retval_len16 = htonl(FW_LEN16(c));
|
|
c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
|
|
FW_PFVF_CMD_NIQ_V(rxq));
|
|
c.type_to_neq = htonl(FW_PFVF_CMD_CMASK_V(cmask) |
|
|
FW_PFVF_CMD_PMASK_V(pmask) |
|
|
FW_PFVF_CMD_NEQ_V(txq));
|
|
c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC_V(tc) | FW_PFVF_CMD_NVI_V(vi) |
|
|
FW_PFVF_CMD_NEXACTF_V(nexact));
|
|
c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS_V(rcaps) |
|
|
FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
|
|
FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_alloc_vi - allocate a virtual interface
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @port: physical port associated with the VI
|
|
* @pf: the PF owning the VI
|
|
* @vf: the VF owning the VI
|
|
* @nmac: number of MAC addresses needed (1 to 5)
|
|
* @mac: the MAC addresses of the VI
|
|
* @rss_size: size of RSS table slice associated with this VI
|
|
*
|
|
* Allocates a virtual interface for the given physical port. If @mac is
|
|
* not %NULL it contains the MAC addresses of the VI as assigned by FW.
|
|
* @mac should be large enough to hold @nmac Ethernet addresses, they are
|
|
* stored consecutively so the space needed is @nmac * 6 bytes.
|
|
* Returns a negative error number or the non-negative VI id.
|
|
*/
|
|
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
|
|
unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
|
|
unsigned int *rss_size)
|
|
{
|
|
int ret;
|
|
struct fw_vi_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
|
FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
|
|
c.portid_pkd = FW_VI_CMD_PORTID_V(port);
|
|
c.nmac = nmac - 1;
|
|
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mac) {
|
|
memcpy(mac, c.mac, sizeof(c.mac));
|
|
switch (nmac) {
|
|
case 5:
|
|
memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
|
|
case 4:
|
|
memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
|
|
case 3:
|
|
memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
|
|
case 2:
|
|
memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
|
|
}
|
|
}
|
|
if (rss_size)
|
|
*rss_size = FW_VI_CMD_RSSSIZE_G(ntohs(c.rsssize_pkd));
|
|
return FW_VI_CMD_VIID_G(ntohs(c.type_viid));
|
|
}
|
|
|
|
/**
|
|
* t4_set_rxmode - set Rx properties of a virtual interface
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @mtu: the new MTU or -1
|
|
* @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
|
|
* @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
|
|
* @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
|
|
* @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
|
|
* @sleep_ok: if true we may sleep while awaiting command completion
|
|
*
|
|
* Sets Rx properties of a virtual interface.
|
|
*/
|
|
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
|
|
int mtu, int promisc, int all_multi, int bcast, int vlanex,
|
|
bool sleep_ok)
|
|
{
|
|
struct fw_vi_rxmode_cmd c;
|
|
|
|
/* convert to FW values */
|
|
if (mtu < 0)
|
|
mtu = FW_RXMODE_MTU_NO_CHG;
|
|
if (promisc < 0)
|
|
promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
|
|
if (all_multi < 0)
|
|
all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
|
|
if (bcast < 0)
|
|
bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
|
|
if (vlanex < 0)
|
|
vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid));
|
|
c.retval_len16 = htonl(FW_LEN16(c));
|
|
c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU_V(mtu) |
|
|
FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
|
|
FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
|
|
FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
|
|
FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
|
|
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @free: if true any existing filters for this VI id are first removed
|
|
* @naddr: the number of MAC addresses to allocate filters for (up to 7)
|
|
* @addr: the MAC address(es)
|
|
* @idx: where to store the index of each allocated filter
|
|
* @hash: pointer to hash address filter bitmap
|
|
* @sleep_ok: call is allowed to sleep
|
|
*
|
|
* Allocates an exact-match filter for each of the supplied addresses and
|
|
* sets it to the corresponding address. If @idx is not %NULL it should
|
|
* have at least @naddr entries, each of which will be set to the index of
|
|
* the filter allocated for the corresponding MAC address. If a filter
|
|
* could not be allocated for an address its index is set to 0xffff.
|
|
* If @hash is not %NULL addresses that fail to allocate an exact filter
|
|
* are hashed and update the hash filter bitmap pointed at by @hash.
|
|
*
|
|
* Returns a negative error number or the number of filters allocated.
|
|
*/
|
|
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
|
|
unsigned int viid, bool free, unsigned int naddr,
|
|
const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
|
|
{
|
|
int i, ret;
|
|
struct fw_vi_mac_cmd c;
|
|
struct fw_vi_mac_exact *p;
|
|
unsigned int max_naddr = is_t4(adap->params.chip) ?
|
|
NUM_MPS_CLS_SRAM_L_INSTANCES :
|
|
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
|
|
|
|
if (naddr > 7)
|
|
return -EINVAL;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | (free ? FW_CMD_EXEC_F : 0) |
|
|
FW_VI_MAC_CMD_VIID_V(viid));
|
|
c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS_V(free) |
|
|
FW_CMD_LEN16_V((naddr + 2) / 2));
|
|
|
|
for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
|
|
p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
|
|
FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
|
|
memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
|
|
}
|
|
|
|
ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
|
|
u16 index = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
|
|
|
|
if (idx)
|
|
idx[i] = index >= max_naddr ? 0xffff : index;
|
|
if (index < max_naddr)
|
|
ret++;
|
|
else if (hash)
|
|
*hash |= (1ULL << hash_mac_addr(addr[i]));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_change_mac - modifies the exact-match filter for a MAC address
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @idx: index of existing filter for old value of MAC address, or -1
|
|
* @addr: the new MAC address value
|
|
* @persist: whether a new MAC allocation should be persistent
|
|
* @add_smt: if true also add the address to the HW SMT
|
|
*
|
|
* Modifies an exact-match filter and sets it to the new MAC address.
|
|
* Note that in general it is not possible to modify the value of a given
|
|
* filter so the generic way to modify an address filter is to free the one
|
|
* being used by the old address value and allocate a new filter for the
|
|
* new address value. @idx can be -1 if the address is a new addition.
|
|
*
|
|
* Returns a negative error number or the index of the filter with the new
|
|
* MAC value.
|
|
*/
|
|
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
|
|
int idx, const u8 *addr, bool persist, bool add_smt)
|
|
{
|
|
int ret, mode;
|
|
struct fw_vi_mac_cmd c;
|
|
struct fw_vi_mac_exact *p = c.u.exact;
|
|
unsigned int max_mac_addr = is_t4(adap->params.chip) ?
|
|
NUM_MPS_CLS_SRAM_L_INSTANCES :
|
|
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
|
|
|
|
if (idx < 0) /* new allocation */
|
|
idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
|
|
mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid));
|
|
c.freemacs_to_len16 = htonl(FW_CMD_LEN16_V(1));
|
|
p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
|
|
FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
|
|
FW_VI_MAC_CMD_IDX_V(idx));
|
|
memcpy(p->macaddr, addr, sizeof(p->macaddr));
|
|
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
if (ret == 0) {
|
|
ret = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
|
|
if (ret >= max_mac_addr)
|
|
ret = -ENOMEM;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t4_set_addr_hash - program the MAC inexact-match hash filter
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @ucast: whether the hash filter should also match unicast addresses
|
|
* @vec: the value to be written to the hash filter
|
|
* @sleep_ok: call is allowed to sleep
|
|
*
|
|
* Sets the 64-bit inexact-match hash filter for a virtual interface.
|
|
*/
|
|
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
|
|
bool ucast, u64 vec, bool sleep_ok)
|
|
{
|
|
struct fw_vi_mac_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid));
|
|
c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN_F |
|
|
FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
|
|
FW_CMD_LEN16_V(1));
|
|
c.u.hash.hashvec = cpu_to_be64(vec);
|
|
return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
|
|
}
|
|
|
|
/**
|
|
* t4_enable_vi_params - enable/disable a virtual interface
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @rx_en: 1=enable Rx, 0=disable Rx
|
|
* @tx_en: 1=enable Tx, 0=disable Tx
|
|
* @dcb_en: 1=enable delivery of Data Center Bridging messages.
|
|
*
|
|
* Enables/disables a virtual interface. Note that setting DCB Enable
|
|
* only makes sense when enabling a Virtual Interface ...
|
|
*/
|
|
int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
|
|
unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
|
|
{
|
|
struct fw_vi_enable_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
|
|
|
|
c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
|
|
FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_LEN16(c) |
|
|
FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en));
|
|
return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_enable_vi - enable/disable a virtual interface
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @rx_en: 1=enable Rx, 0=disable Rx
|
|
* @tx_en: 1=enable Tx, 0=disable Tx
|
|
*
|
|
* Enables/disables a virtual interface.
|
|
*/
|
|
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
|
|
bool rx_en, bool tx_en)
|
|
{
|
|
return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
|
|
}
|
|
|
|
/**
|
|
* t4_identify_port - identify a VI's port by blinking its LED
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @viid: the VI id
|
|
* @nblinks: how many times to blink LED at 2.5 Hz
|
|
*
|
|
* Identifies a VI's port by blinking its LED.
|
|
*/
|
|
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
|
|
unsigned int nblinks)
|
|
{
|
|
struct fw_vi_enable_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
|
|
c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
|
|
c.blinkdur = htons(nblinks);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_iq_free - free an ingress queue and its FLs
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF owning the queues
|
|
* @vf: the VF owning the queues
|
|
* @iqtype: the ingress queue type
|
|
* @iqid: ingress queue id
|
|
* @fl0id: FL0 queue id or 0xffff if no attached FL0
|
|
* @fl1id: FL1 queue id or 0xffff if no attached FL1
|
|
*
|
|
* Frees an ingress queue and its associated FLs, if any.
|
|
*/
|
|
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int iqtype, unsigned int iqid,
|
|
unsigned int fl0id, unsigned int fl1id)
|
|
{
|
|
struct fw_iq_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
|
|
FW_IQ_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE_F | FW_LEN16(c));
|
|
c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(iqtype));
|
|
c.iqid = htons(iqid);
|
|
c.fl0id = htons(fl0id);
|
|
c.fl1id = htons(fl1id);
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_eth_eq_free - free an Ethernet egress queue
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF owning the queue
|
|
* @vf: the VF owning the queue
|
|
* @eqid: egress queue id
|
|
*
|
|
* Frees an Ethernet egress queue.
|
|
*/
|
|
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int eqid)
|
|
{
|
|
struct fw_eq_eth_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(pf) |
|
|
FW_EQ_ETH_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
|
|
c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID_V(eqid));
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_ctrl_eq_free - free a control egress queue
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF owning the queue
|
|
* @vf: the VF owning the queue
|
|
* @eqid: egress queue id
|
|
*
|
|
* Frees a control egress queue.
|
|
*/
|
|
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int eqid)
|
|
{
|
|
struct fw_eq_ctrl_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(pf) |
|
|
FW_EQ_CTRL_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
|
|
c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID_V(eqid));
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_ofld_eq_free - free an offload egress queue
|
|
* @adap: the adapter
|
|
* @mbox: mailbox to use for the FW command
|
|
* @pf: the PF owning the queue
|
|
* @vf: the VF owning the queue
|
|
* @eqid: egress queue id
|
|
*
|
|
* Frees a control egress queue.
|
|
*/
|
|
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
|
|
unsigned int vf, unsigned int eqid)
|
|
{
|
|
struct fw_eq_ofld_cmd c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
|
|
FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(pf) |
|
|
FW_EQ_OFLD_CMD_VFN_V(vf));
|
|
c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
|
|
c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID_V(eqid));
|
|
return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
|
|
}
|
|
|
|
/**
|
|
* t4_handle_fw_rpl - process a FW reply message
|
|
* @adap: the adapter
|
|
* @rpl: start of the FW message
|
|
*
|
|
* Processes a FW message, such as link state change messages.
|
|
*/
|
|
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
|
|
{
|
|
u8 opcode = *(const u8 *)rpl;
|
|
|
|
if (opcode == FW_PORT_CMD) { /* link/module state change message */
|
|
int speed = 0, fc = 0;
|
|
const struct fw_port_cmd *p = (void *)rpl;
|
|
int chan = FW_PORT_CMD_PORTID_G(ntohl(p->op_to_portid));
|
|
int port = adap->chan_map[chan];
|
|
struct port_info *pi = adap2pinfo(adap, port);
|
|
struct link_config *lc = &pi->link_cfg;
|
|
u32 stat = ntohl(p->u.info.lstatus_to_modtype);
|
|
int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
|
|
u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
|
|
|
|
if (stat & FW_PORT_CMD_RXPAUSE_F)
|
|
fc |= PAUSE_RX;
|
|
if (stat & FW_PORT_CMD_TXPAUSE_F)
|
|
fc |= PAUSE_TX;
|
|
if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
|
|
speed = 100;
|
|
else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
|
|
speed = 1000;
|
|
else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
|
|
speed = 10000;
|
|
else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
|
|
speed = 40000;
|
|
|
|
if (link_ok != lc->link_ok || speed != lc->speed ||
|
|
fc != lc->fc) { /* something changed */
|
|
lc->link_ok = link_ok;
|
|
lc->speed = speed;
|
|
lc->fc = fc;
|
|
lc->supported = be16_to_cpu(p->u.info.pcap);
|
|
t4_os_link_changed(adap, port, link_ok);
|
|
}
|
|
if (mod != pi->mod_type) {
|
|
pi->mod_type = mod;
|
|
t4_os_portmod_changed(adap, port);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
|
|
{
|
|
u16 val;
|
|
|
|
if (pci_is_pcie(adapter->pdev)) {
|
|
pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
|
|
p->speed = val & PCI_EXP_LNKSTA_CLS;
|
|
p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* init_link_config - initialize a link's SW state
|
|
* @lc: structure holding the link state
|
|
* @caps: link capabilities
|
|
*
|
|
* Initializes the SW state maintained for each link, including the link's
|
|
* capabilities and default speed/flow-control/autonegotiation settings.
|
|
*/
|
|
static void init_link_config(struct link_config *lc, unsigned int caps)
|
|
{
|
|
lc->supported = caps;
|
|
lc->requested_speed = 0;
|
|
lc->speed = 0;
|
|
lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
|
|
if (lc->supported & FW_PORT_CAP_ANEG) {
|
|
lc->advertising = lc->supported & ADVERT_MASK;
|
|
lc->autoneg = AUTONEG_ENABLE;
|
|
lc->requested_fc |= PAUSE_AUTONEG;
|
|
} else {
|
|
lc->advertising = 0;
|
|
lc->autoneg = AUTONEG_DISABLE;
|
|
}
|
|
}
|
|
|
|
#define CIM_PF_NOACCESS 0xeeeeeeee
|
|
|
|
int t4_wait_dev_ready(void __iomem *regs)
|
|
{
|
|
u32 whoami;
|
|
|
|
whoami = readl(regs + PL_WHOAMI);
|
|
if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
|
|
return 0;
|
|
|
|
msleep(500);
|
|
whoami = readl(regs + PL_WHOAMI);
|
|
return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
|
|
}
|
|
|
|
struct flash_desc {
|
|
u32 vendor_and_model_id;
|
|
u32 size_mb;
|
|
};
|
|
|
|
static int get_flash_params(struct adapter *adap)
|
|
{
|
|
/* Table for non-Numonix supported flash parts. Numonix parts are left
|
|
* to the preexisting code. All flash parts have 64KB sectors.
|
|
*/
|
|
static struct flash_desc supported_flash[] = {
|
|
{ 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
|
|
};
|
|
|
|
int ret;
|
|
u32 info;
|
|
|
|
ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
|
|
if (!ret)
|
|
ret = sf1_read(adap, 3, 0, 1, &info);
|
|
t4_write_reg(adap, SF_OP, 0); /* unlock SF */
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
|
|
if (supported_flash[ret].vendor_and_model_id == info) {
|
|
adap->params.sf_size = supported_flash[ret].size_mb;
|
|
adap->params.sf_nsec =
|
|
adap->params.sf_size / SF_SEC_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
if ((info & 0xff) != 0x20) /* not a Numonix flash */
|
|
return -EINVAL;
|
|
info >>= 16; /* log2 of size */
|
|
if (info >= 0x14 && info < 0x18)
|
|
adap->params.sf_nsec = 1 << (info - 16);
|
|
else if (info == 0x18)
|
|
adap->params.sf_nsec = 64;
|
|
else
|
|
return -EINVAL;
|
|
adap->params.sf_size = 1 << info;
|
|
adap->params.sf_fw_start =
|
|
t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
|
|
|
|
if (adap->params.sf_size < FLASH_MIN_SIZE)
|
|
dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
|
|
adap->params.sf_size, FLASH_MIN_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_prep_adapter - prepare SW and HW for operation
|
|
* @adapter: the adapter
|
|
* @reset: if true perform a HW reset
|
|
*
|
|
* Initialize adapter SW state for the various HW modules, set initial
|
|
* values for some adapter tunables, take PHYs out of reset, and
|
|
* initialize the MDIO interface.
|
|
*/
|
|
int t4_prep_adapter(struct adapter *adapter)
|
|
{
|
|
int ret, ver;
|
|
uint16_t device_id;
|
|
u32 pl_rev;
|
|
|
|
get_pci_mode(adapter, &adapter->params.pci);
|
|
pl_rev = G_REV(t4_read_reg(adapter, PL_REV));
|
|
|
|
ret = get_flash_params(adapter);
|
|
if (ret < 0) {
|
|
dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Retrieve adapter's device ID
|
|
*/
|
|
pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
|
|
ver = device_id >> 12;
|
|
adapter->params.chip = 0;
|
|
switch (ver) {
|
|
case CHELSIO_T4:
|
|
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
|
|
break;
|
|
case CHELSIO_T5:
|
|
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
|
|
break;
|
|
default:
|
|
dev_err(adapter->pdev_dev, "Device %d is not supported\n",
|
|
device_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
|
|
|
|
/*
|
|
* Default port for debugging in case we can't reach FW.
|
|
*/
|
|
adapter->params.nports = 1;
|
|
adapter->params.portvec = 1;
|
|
adapter->params.vpd.cclk = 50000;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_init_tp_params - initialize adap->params.tp
|
|
* @adap: the adapter
|
|
*
|
|
* Initialize various fields of the adapter's TP Parameters structure.
|
|
*/
|
|
int t4_init_tp_params(struct adapter *adap)
|
|
{
|
|
int chan;
|
|
u32 v;
|
|
|
|
v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
|
|
adap->params.tp.tre = TIMERRESOLUTION_GET(v);
|
|
adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v);
|
|
|
|
/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
|
|
for (chan = 0; chan < NCHAN; chan++)
|
|
adap->params.tp.tx_modq[chan] = chan;
|
|
|
|
/* Cache the adapter's Compressed Filter Mode and global Incress
|
|
* Configuration.
|
|
*/
|
|
t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
|
|
&adap->params.tp.vlan_pri_map, 1,
|
|
TP_VLAN_PRI_MAP);
|
|
t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
|
|
&adap->params.tp.ingress_config, 1,
|
|
TP_INGRESS_CONFIG);
|
|
|
|
/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
|
|
* shift positions of several elements of the Compressed Filter Tuple
|
|
* for this adapter which we need frequently ...
|
|
*/
|
|
adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
|
|
adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
|
|
adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
|
|
adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
|
|
F_PROTOCOL);
|
|
|
|
/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
|
|
* represents the presense of an Outer VLAN instead of a VNIC ID.
|
|
*/
|
|
if ((adap->params.tp.ingress_config & F_VNIC) == 0)
|
|
adap->params.tp.vnic_shift = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t4_filter_field_shift - calculate filter field shift
|
|
* @adap: the adapter
|
|
* @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
|
|
*
|
|
* Return the shift position of a filter field within the Compressed
|
|
* Filter Tuple. The filter field is specified via its selection bit
|
|
* within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
|
|
*/
|
|
int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
|
|
{
|
|
unsigned int filter_mode = adap->params.tp.vlan_pri_map;
|
|
unsigned int sel;
|
|
int field_shift;
|
|
|
|
if ((filter_mode & filter_sel) == 0)
|
|
return -1;
|
|
|
|
for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
|
|
switch (filter_mode & sel) {
|
|
case F_FCOE:
|
|
field_shift += W_FT_FCOE;
|
|
break;
|
|
case F_PORT:
|
|
field_shift += W_FT_PORT;
|
|
break;
|
|
case F_VNIC_ID:
|
|
field_shift += W_FT_VNIC_ID;
|
|
break;
|
|
case F_VLAN:
|
|
field_shift += W_FT_VLAN;
|
|
break;
|
|
case F_TOS:
|
|
field_shift += W_FT_TOS;
|
|
break;
|
|
case F_PROTOCOL:
|
|
field_shift += W_FT_PROTOCOL;
|
|
break;
|
|
case F_ETHERTYPE:
|
|
field_shift += W_FT_ETHERTYPE;
|
|
break;
|
|
case F_MACMATCH:
|
|
field_shift += W_FT_MACMATCH;
|
|
break;
|
|
case F_MPSHITTYPE:
|
|
field_shift += W_FT_MPSHITTYPE;
|
|
break;
|
|
case F_FRAGMENTATION:
|
|
field_shift += W_FT_FRAGMENTATION;
|
|
break;
|
|
}
|
|
}
|
|
return field_shift;
|
|
}
|
|
|
|
int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
|
|
{
|
|
u8 addr[6];
|
|
int ret, i, j = 0;
|
|
struct fw_port_cmd c;
|
|
struct fw_rss_vi_config_cmd rvc;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
memset(&rvc, 0, sizeof(rvc));
|
|
|
|
for_each_port(adap, i) {
|
|
unsigned int rss_size;
|
|
struct port_info *p = adap2pinfo(adap, i);
|
|
|
|
while ((adap->params.portvec & (1 << j)) == 0)
|
|
j++;
|
|
|
|
c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F |
|
|
FW_PORT_CMD_PORTID_V(j));
|
|
c.action_to_len16 = htonl(
|
|
FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
|
|
FW_LEN16(c));
|
|
ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
p->viid = ret;
|
|
p->tx_chan = j;
|
|
p->lport = j;
|
|
p->rss_size = rss_size;
|
|
memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
|
|
adap->port[i]->dev_port = j;
|
|
|
|
ret = ntohl(c.u.info.lstatus_to_modtype);
|
|
p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
|
|
FW_PORT_CMD_MDIOADDR_G(ret) : -1;
|
|
p->port_type = FW_PORT_CMD_PTYPE_G(ret);
|
|
p->mod_type = FW_PORT_MOD_TYPE_NA;
|
|
|
|
rvc.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
|
|
FW_CMD_REQUEST_F | FW_CMD_READ_F |
|
|
FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
|
|
rvc.retval_len16 = htonl(FW_LEN16(rvc));
|
|
ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
|
|
if (ret)
|
|
return ret;
|
|
p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
|
|
|
|
init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
|
|
j++;
|
|
}
|
|
return 0;
|
|
}
|