ead3f26e35
There needs to be a safe method of releasing registered memory resources when an RPC terminates. Safe can mean a number of things: + Doesn't have to sleep + Doesn't rely on having a QP in RTS ro_unmap_safe will be that safe method. It can be used in cases where synchronous memory invalidation can deadlock, or needs to have an active QP. The important case is fencing an RPC's memory regions after it is signaled (^C) and before it exits. If this is not done, there is a window where the server can write an RPC reply into memory that the client has released and re-used for some other purpose. Note that this is a full solution for FRWR, but FMR and physical still have some gaps where a particularly bad server can wreak some havoc on the client. These gaps are not made worse by this patch and are expected to be exceptionally rare and timing-based. They are noted in documenting comments. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Tested-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
797 lines
22 KiB
C
797 lines
22 KiB
C
/*
|
|
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the BSD-type
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* Neither the name of the Network Appliance, Inc. nor the names of
|
|
* its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* transport.c
|
|
*
|
|
* This file contains the top-level implementation of an RPC RDMA
|
|
* transport.
|
|
*
|
|
* Naming convention: functions beginning with xprt_ are part of the
|
|
* transport switch. All others are RPC RDMA internal.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/sunrpc/addr.h>
|
|
|
|
#include "xprt_rdma.h"
|
|
|
|
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
|
|
# define RPCDBG_FACILITY RPCDBG_TRANS
|
|
#endif
|
|
|
|
/*
|
|
* tunables
|
|
*/
|
|
|
|
static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
|
|
unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
|
|
static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
|
|
static unsigned int xprt_rdma_inline_write_padding;
|
|
static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
|
|
int xprt_rdma_pad_optimize = 1;
|
|
|
|
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
|
|
|
|
static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
|
|
static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
|
|
static unsigned int min_inline_size = RPCRDMA_MIN_INLINE;
|
|
static unsigned int max_inline_size = RPCRDMA_MAX_INLINE;
|
|
static unsigned int zero;
|
|
static unsigned int max_padding = PAGE_SIZE;
|
|
static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
|
|
static unsigned int max_memreg = RPCRDMA_LAST - 1;
|
|
|
|
static struct ctl_table_header *sunrpc_table_header;
|
|
|
|
static struct ctl_table xr_tunables_table[] = {
|
|
{
|
|
.procname = "rdma_slot_table_entries",
|
|
.data = &xprt_rdma_slot_table_entries,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec_minmax,
|
|
.extra1 = &min_slot_table_size,
|
|
.extra2 = &max_slot_table_size
|
|
},
|
|
{
|
|
.procname = "rdma_max_inline_read",
|
|
.data = &xprt_rdma_max_inline_read,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec,
|
|
.extra1 = &min_inline_size,
|
|
.extra2 = &max_inline_size,
|
|
},
|
|
{
|
|
.procname = "rdma_max_inline_write",
|
|
.data = &xprt_rdma_max_inline_write,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec,
|
|
.extra1 = &min_inline_size,
|
|
.extra2 = &max_inline_size,
|
|
},
|
|
{
|
|
.procname = "rdma_inline_write_padding",
|
|
.data = &xprt_rdma_inline_write_padding,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec_minmax,
|
|
.extra1 = &zero,
|
|
.extra2 = &max_padding,
|
|
},
|
|
{
|
|
.procname = "rdma_memreg_strategy",
|
|
.data = &xprt_rdma_memreg_strategy,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec_minmax,
|
|
.extra1 = &min_memreg,
|
|
.extra2 = &max_memreg,
|
|
},
|
|
{
|
|
.procname = "rdma_pad_optimize",
|
|
.data = &xprt_rdma_pad_optimize,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{ },
|
|
};
|
|
|
|
static struct ctl_table sunrpc_table[] = {
|
|
{
|
|
.procname = "sunrpc",
|
|
.mode = 0555,
|
|
.child = xr_tunables_table
|
|
},
|
|
{ },
|
|
};
|
|
|
|
#endif
|
|
|
|
static struct rpc_xprt_ops xprt_rdma_procs; /*forward reference */
|
|
|
|
static void
|
|
xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap)
|
|
{
|
|
struct sockaddr_in *sin = (struct sockaddr_in *)sap;
|
|
char buf[20];
|
|
|
|
snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
|
|
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
|
|
|
|
xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA;
|
|
}
|
|
|
|
static void
|
|
xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap)
|
|
{
|
|
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap;
|
|
char buf[40];
|
|
|
|
snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
|
|
xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
|
|
|
|
xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6;
|
|
}
|
|
|
|
void
|
|
xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap)
|
|
{
|
|
char buf[128];
|
|
|
|
switch (sap->sa_family) {
|
|
case AF_INET:
|
|
xprt_rdma_format_addresses4(xprt, sap);
|
|
break;
|
|
case AF_INET6:
|
|
xprt_rdma_format_addresses6(xprt, sap);
|
|
break;
|
|
default:
|
|
pr_err("rpcrdma: Unrecognized address family\n");
|
|
return;
|
|
}
|
|
|
|
(void)rpc_ntop(sap, buf, sizeof(buf));
|
|
xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
|
|
|
|
snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
|
|
xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
|
|
|
|
snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
|
|
xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
|
|
|
|
xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
|
|
}
|
|
|
|
void
|
|
xprt_rdma_free_addresses(struct rpc_xprt *xprt)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < RPC_DISPLAY_MAX; i++)
|
|
switch (i) {
|
|
case RPC_DISPLAY_PROTO:
|
|
case RPC_DISPLAY_NETID:
|
|
continue;
|
|
default:
|
|
kfree(xprt->address_strings[i]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xprt_rdma_connect_worker(struct work_struct *work)
|
|
{
|
|
struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt,
|
|
rx_connect_worker.work);
|
|
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
|
|
int rc = 0;
|
|
|
|
xprt_clear_connected(xprt);
|
|
|
|
dprintk("RPC: %s: %sconnect\n", __func__,
|
|
r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
|
|
rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
|
|
if (rc)
|
|
xprt_wake_pending_tasks(xprt, rc);
|
|
|
|
dprintk("RPC: %s: exit\n", __func__);
|
|
xprt_clear_connecting(xprt);
|
|
}
|
|
|
|
static void
|
|
xprt_rdma_inject_disconnect(struct rpc_xprt *xprt)
|
|
{
|
|
struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt,
|
|
rx_xprt);
|
|
|
|
pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt);
|
|
rdma_disconnect(r_xprt->rx_ia.ri_id);
|
|
}
|
|
|
|
/*
|
|
* xprt_rdma_destroy
|
|
*
|
|
* Destroy the xprt.
|
|
* Free all memory associated with the object, including its own.
|
|
* NOTE: none of the *destroy methods free memory for their top-level
|
|
* objects, even though they may have allocated it (they do free
|
|
* private memory). It's up to the caller to handle it. In this
|
|
* case (RDMA transport), all structure memory is inlined with the
|
|
* struct rpcrdma_xprt.
|
|
*/
|
|
static void
|
|
xprt_rdma_destroy(struct rpc_xprt *xprt)
|
|
{
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
|
|
|
|
dprintk("RPC: %s: called\n", __func__);
|
|
|
|
cancel_delayed_work_sync(&r_xprt->rx_connect_worker);
|
|
|
|
xprt_clear_connected(xprt);
|
|
|
|
rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
|
|
rpcrdma_buffer_destroy(&r_xprt->rx_buf);
|
|
rpcrdma_ia_close(&r_xprt->rx_ia);
|
|
|
|
xprt_rdma_free_addresses(xprt);
|
|
|
|
xprt_free(xprt);
|
|
|
|
dprintk("RPC: %s: returning\n", __func__);
|
|
|
|
module_put(THIS_MODULE);
|
|
}
|
|
|
|
static const struct rpc_timeout xprt_rdma_default_timeout = {
|
|
.to_initval = 60 * HZ,
|
|
.to_maxval = 60 * HZ,
|
|
};
|
|
|
|
/**
|
|
* xprt_setup_rdma - Set up transport to use RDMA
|
|
*
|
|
* @args: rpc transport arguments
|
|
*/
|
|
static struct rpc_xprt *
|
|
xprt_setup_rdma(struct xprt_create *args)
|
|
{
|
|
struct rpcrdma_create_data_internal cdata;
|
|
struct rpc_xprt *xprt;
|
|
struct rpcrdma_xprt *new_xprt;
|
|
struct rpcrdma_ep *new_ep;
|
|
struct sockaddr *sap;
|
|
int rc;
|
|
|
|
if (args->addrlen > sizeof(xprt->addr)) {
|
|
dprintk("RPC: %s: address too large\n", __func__);
|
|
return ERR_PTR(-EBADF);
|
|
}
|
|
|
|
xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
|
|
xprt_rdma_slot_table_entries,
|
|
xprt_rdma_slot_table_entries);
|
|
if (xprt == NULL) {
|
|
dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
|
|
__func__);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/* 60 second timeout, no retries */
|
|
xprt->timeout = &xprt_rdma_default_timeout;
|
|
xprt->bind_timeout = RPCRDMA_BIND_TO;
|
|
xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
|
|
xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
|
|
|
|
xprt->resvport = 0; /* privileged port not needed */
|
|
xprt->tsh_size = 0; /* RPC-RDMA handles framing */
|
|
xprt->ops = &xprt_rdma_procs;
|
|
|
|
/*
|
|
* Set up RDMA-specific connect data.
|
|
*/
|
|
|
|
sap = (struct sockaddr *)&cdata.addr;
|
|
memcpy(sap, args->dstaddr, args->addrlen);
|
|
|
|
/* Ensure xprt->addr holds valid server TCP (not RDMA)
|
|
* address, for any side protocols which peek at it */
|
|
xprt->prot = IPPROTO_TCP;
|
|
xprt->addrlen = args->addrlen;
|
|
memcpy(&xprt->addr, sap, xprt->addrlen);
|
|
|
|
if (rpc_get_port(sap))
|
|
xprt_set_bound(xprt);
|
|
|
|
cdata.max_requests = xprt->max_reqs;
|
|
|
|
cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
|
|
cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
|
|
|
|
cdata.inline_wsize = xprt_rdma_max_inline_write;
|
|
if (cdata.inline_wsize > cdata.wsize)
|
|
cdata.inline_wsize = cdata.wsize;
|
|
|
|
cdata.inline_rsize = xprt_rdma_max_inline_read;
|
|
if (cdata.inline_rsize > cdata.rsize)
|
|
cdata.inline_rsize = cdata.rsize;
|
|
|
|
cdata.padding = xprt_rdma_inline_write_padding;
|
|
|
|
/*
|
|
* Create new transport instance, which includes initialized
|
|
* o ia
|
|
* o endpoint
|
|
* o buffers
|
|
*/
|
|
|
|
new_xprt = rpcx_to_rdmax(xprt);
|
|
|
|
rc = rpcrdma_ia_open(new_xprt, sap, xprt_rdma_memreg_strategy);
|
|
if (rc)
|
|
goto out1;
|
|
|
|
/*
|
|
* initialize and create ep
|
|
*/
|
|
new_xprt->rx_data = cdata;
|
|
new_ep = &new_xprt->rx_ep;
|
|
new_ep->rep_remote_addr = cdata.addr;
|
|
|
|
rc = rpcrdma_ep_create(&new_xprt->rx_ep,
|
|
&new_xprt->rx_ia, &new_xprt->rx_data);
|
|
if (rc)
|
|
goto out2;
|
|
|
|
/*
|
|
* Allocate pre-registered send and receive buffers for headers and
|
|
* any inline data. Also specify any padding which will be provided
|
|
* from a preregistered zero buffer.
|
|
*/
|
|
rc = rpcrdma_buffer_create(new_xprt);
|
|
if (rc)
|
|
goto out3;
|
|
|
|
/*
|
|
* Register a callback for connection events. This is necessary because
|
|
* connection loss notification is async. We also catch connection loss
|
|
* when reaping receives.
|
|
*/
|
|
INIT_DELAYED_WORK(&new_xprt->rx_connect_worker,
|
|
xprt_rdma_connect_worker);
|
|
|
|
xprt_rdma_format_addresses(xprt, sap);
|
|
xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt);
|
|
if (xprt->max_payload == 0)
|
|
goto out4;
|
|
xprt->max_payload <<= PAGE_SHIFT;
|
|
dprintk("RPC: %s: transport data payload maximum: %zu bytes\n",
|
|
__func__, xprt->max_payload);
|
|
|
|
if (!try_module_get(THIS_MODULE))
|
|
goto out4;
|
|
|
|
dprintk("RPC: %s: %s:%s\n", __func__,
|
|
xprt->address_strings[RPC_DISPLAY_ADDR],
|
|
xprt->address_strings[RPC_DISPLAY_PORT]);
|
|
return xprt;
|
|
|
|
out4:
|
|
xprt_rdma_free_addresses(xprt);
|
|
rc = -EINVAL;
|
|
out3:
|
|
rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
|
|
out2:
|
|
rpcrdma_ia_close(&new_xprt->rx_ia);
|
|
out1:
|
|
xprt_free(xprt);
|
|
return ERR_PTR(rc);
|
|
}
|
|
|
|
/*
|
|
* Close a connection, during shutdown or timeout/reconnect
|
|
*/
|
|
static void
|
|
xprt_rdma_close(struct rpc_xprt *xprt)
|
|
{
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
|
|
|
|
dprintk("RPC: %s: closing\n", __func__);
|
|
if (r_xprt->rx_ep.rep_connected > 0)
|
|
xprt->reestablish_timeout = 0;
|
|
xprt_disconnect_done(xprt);
|
|
rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
|
|
}
|
|
|
|
static void
|
|
xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
|
|
{
|
|
struct sockaddr_in *sap;
|
|
|
|
sap = (struct sockaddr_in *)&xprt->addr;
|
|
sap->sin_port = htons(port);
|
|
sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
|
|
sap->sin_port = htons(port);
|
|
dprintk("RPC: %s: %u\n", __func__, port);
|
|
}
|
|
|
|
static void
|
|
xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
|
|
{
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
|
|
|
|
if (r_xprt->rx_ep.rep_connected != 0) {
|
|
/* Reconnect */
|
|
schedule_delayed_work(&r_xprt->rx_connect_worker,
|
|
xprt->reestablish_timeout);
|
|
xprt->reestablish_timeout <<= 1;
|
|
if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO)
|
|
xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO;
|
|
else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
|
|
xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
|
|
} else {
|
|
schedule_delayed_work(&r_xprt->rx_connect_worker, 0);
|
|
if (!RPC_IS_ASYNC(task))
|
|
flush_delayed_work(&r_xprt->rx_connect_worker);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The RDMA allocate/free functions need the task structure as a place
|
|
* to hide the struct rpcrdma_req, which is necessary for the actual send/recv
|
|
* sequence.
|
|
*
|
|
* The RPC layer allocates both send and receive buffers in the same call
|
|
* (rq_send_buf and rq_rcv_buf are both part of a single contiguous buffer).
|
|
* We may register rq_rcv_buf when using reply chunks.
|
|
*/
|
|
static void *
|
|
xprt_rdma_allocate(struct rpc_task *task, size_t size)
|
|
{
|
|
struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
|
|
struct rpcrdma_regbuf *rb;
|
|
struct rpcrdma_req *req;
|
|
size_t min_size;
|
|
gfp_t flags;
|
|
|
|
req = rpcrdma_buffer_get(&r_xprt->rx_buf);
|
|
if (req == NULL)
|
|
return NULL;
|
|
|
|
flags = RPCRDMA_DEF_GFP;
|
|
if (RPC_IS_SWAPPER(task))
|
|
flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
|
|
|
|
if (req->rl_rdmabuf == NULL)
|
|
goto out_rdmabuf;
|
|
if (req->rl_sendbuf == NULL)
|
|
goto out_sendbuf;
|
|
if (size > req->rl_sendbuf->rg_size)
|
|
goto out_sendbuf;
|
|
|
|
out:
|
|
dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
|
|
req->rl_connect_cookie = 0; /* our reserved value */
|
|
req->rl_task = task;
|
|
return req->rl_sendbuf->rg_base;
|
|
|
|
out_rdmabuf:
|
|
min_size = RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
|
|
rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, min_size, flags);
|
|
if (IS_ERR(rb))
|
|
goto out_fail;
|
|
req->rl_rdmabuf = rb;
|
|
|
|
out_sendbuf:
|
|
/* XDR encoding and RPC/RDMA marshaling of this request has not
|
|
* yet occurred. Thus a lower bound is needed to prevent buffer
|
|
* overrun during marshaling.
|
|
*
|
|
* RPC/RDMA marshaling may choose to send payload bearing ops
|
|
* inline, if the result is smaller than the inline threshold.
|
|
* The value of the "size" argument accounts for header
|
|
* requirements but not for the payload in these cases.
|
|
*
|
|
* Likewise, allocate enough space to receive a reply up to the
|
|
* size of the inline threshold.
|
|
*
|
|
* It's unlikely that both the send header and the received
|
|
* reply will be large, but slush is provided here to allow
|
|
* flexibility when marshaling.
|
|
*/
|
|
min_size = RPCRDMA_INLINE_READ_THRESHOLD(task->tk_rqstp);
|
|
min_size += RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
|
|
if (size < min_size)
|
|
size = min_size;
|
|
|
|
rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, size, flags);
|
|
if (IS_ERR(rb))
|
|
goto out_fail;
|
|
rb->rg_owner = req;
|
|
|
|
r_xprt->rx_stats.hardway_register_count += size;
|
|
rpcrdma_free_regbuf(&r_xprt->rx_ia, req->rl_sendbuf);
|
|
req->rl_sendbuf = rb;
|
|
goto out;
|
|
|
|
out_fail:
|
|
rpcrdma_buffer_put(req);
|
|
r_xprt->rx_stats.failed_marshal_count++;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This function returns all RDMA resources to the pool.
|
|
*/
|
|
static void
|
|
xprt_rdma_free(void *buffer)
|
|
{
|
|
struct rpcrdma_req *req;
|
|
struct rpcrdma_xprt *r_xprt;
|
|
struct rpcrdma_regbuf *rb;
|
|
|
|
if (buffer == NULL)
|
|
return;
|
|
|
|
rb = container_of(buffer, struct rpcrdma_regbuf, rg_base[0]);
|
|
req = rb->rg_owner;
|
|
if (req->rl_backchannel)
|
|
return;
|
|
|
|
r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
|
|
|
|
dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply);
|
|
|
|
r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req,
|
|
!RPC_IS_ASYNC(req->rl_task));
|
|
|
|
rpcrdma_buffer_put(req);
|
|
}
|
|
|
|
/*
|
|
* send_request invokes the meat of RPC RDMA. It must do the following:
|
|
* 1. Marshal the RPC request into an RPC RDMA request, which means
|
|
* putting a header in front of data, and creating IOVs for RDMA
|
|
* from those in the request.
|
|
* 2. In marshaling, detect opportunities for RDMA, and use them.
|
|
* 3. Post a recv message to set up asynch completion, then send
|
|
* the request (rpcrdma_ep_post).
|
|
* 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
|
|
*/
|
|
|
|
static int
|
|
xprt_rdma_send_request(struct rpc_task *task)
|
|
{
|
|
struct rpc_rqst *rqst = task->tk_rqstp;
|
|
struct rpc_xprt *xprt = rqst->rq_xprt;
|
|
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
|
|
int rc = 0;
|
|
|
|
rc = rpcrdma_marshal_req(rqst);
|
|
if (rc < 0)
|
|
goto failed_marshal;
|
|
|
|
if (req->rl_reply == NULL) /* e.g. reconnection */
|
|
rpcrdma_recv_buffer_get(req);
|
|
|
|
/* Must suppress retransmit to maintain credits */
|
|
if (req->rl_connect_cookie == xprt->connect_cookie)
|
|
goto drop_connection;
|
|
req->rl_connect_cookie = xprt->connect_cookie;
|
|
|
|
if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
|
|
goto drop_connection;
|
|
|
|
rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
|
|
rqst->rq_bytes_sent = 0;
|
|
return 0;
|
|
|
|
failed_marshal:
|
|
r_xprt->rx_stats.failed_marshal_count++;
|
|
dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n",
|
|
__func__, rc);
|
|
if (rc == -EIO)
|
|
return -EIO;
|
|
drop_connection:
|
|
xprt_disconnect_done(xprt);
|
|
return -ENOTCONN; /* implies disconnect */
|
|
}
|
|
|
|
void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
|
|
{
|
|
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
|
|
long idle_time = 0;
|
|
|
|
if (xprt_connected(xprt))
|
|
idle_time = (long)(jiffies - xprt->last_used) / HZ;
|
|
|
|
seq_puts(seq, "\txprt:\trdma ");
|
|
seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ",
|
|
0, /* need a local port? */
|
|
xprt->stat.bind_count,
|
|
xprt->stat.connect_count,
|
|
xprt->stat.connect_time,
|
|
idle_time,
|
|
xprt->stat.sends,
|
|
xprt->stat.recvs,
|
|
xprt->stat.bad_xids,
|
|
xprt->stat.req_u,
|
|
xprt->stat.bklog_u);
|
|
seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu\n",
|
|
r_xprt->rx_stats.read_chunk_count,
|
|
r_xprt->rx_stats.write_chunk_count,
|
|
r_xprt->rx_stats.reply_chunk_count,
|
|
r_xprt->rx_stats.total_rdma_request,
|
|
r_xprt->rx_stats.total_rdma_reply,
|
|
r_xprt->rx_stats.pullup_copy_count,
|
|
r_xprt->rx_stats.fixup_copy_count,
|
|
r_xprt->rx_stats.hardway_register_count,
|
|
r_xprt->rx_stats.failed_marshal_count,
|
|
r_xprt->rx_stats.bad_reply_count,
|
|
r_xprt->rx_stats.nomsg_call_count);
|
|
}
|
|
|
|
static int
|
|
xprt_rdma_enable_swap(struct rpc_xprt *xprt)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
xprt_rdma_disable_swap(struct rpc_xprt *xprt)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Plumbing for rpc transport switch and kernel module
|
|
*/
|
|
|
|
static struct rpc_xprt_ops xprt_rdma_procs = {
|
|
.reserve_xprt = xprt_reserve_xprt_cong,
|
|
.release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
|
|
.alloc_slot = xprt_alloc_slot,
|
|
.release_request = xprt_release_rqst_cong, /* ditto */
|
|
.set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
|
|
.rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
|
|
.set_port = xprt_rdma_set_port,
|
|
.connect = xprt_rdma_connect,
|
|
.buf_alloc = xprt_rdma_allocate,
|
|
.buf_free = xprt_rdma_free,
|
|
.send_request = xprt_rdma_send_request,
|
|
.close = xprt_rdma_close,
|
|
.destroy = xprt_rdma_destroy,
|
|
.print_stats = xprt_rdma_print_stats,
|
|
.enable_swap = xprt_rdma_enable_swap,
|
|
.disable_swap = xprt_rdma_disable_swap,
|
|
.inject_disconnect = xprt_rdma_inject_disconnect,
|
|
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
|
|
.bc_setup = xprt_rdma_bc_setup,
|
|
.bc_up = xprt_rdma_bc_up,
|
|
.bc_maxpayload = xprt_rdma_bc_maxpayload,
|
|
.bc_free_rqst = xprt_rdma_bc_free_rqst,
|
|
.bc_destroy = xprt_rdma_bc_destroy,
|
|
#endif
|
|
};
|
|
|
|
static struct xprt_class xprt_rdma = {
|
|
.list = LIST_HEAD_INIT(xprt_rdma.list),
|
|
.name = "rdma",
|
|
.owner = THIS_MODULE,
|
|
.ident = XPRT_TRANSPORT_RDMA,
|
|
.setup = xprt_setup_rdma,
|
|
};
|
|
|
|
void xprt_rdma_cleanup(void)
|
|
{
|
|
int rc;
|
|
|
|
dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
|
|
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
|
|
if (sunrpc_table_header) {
|
|
unregister_sysctl_table(sunrpc_table_header);
|
|
sunrpc_table_header = NULL;
|
|
}
|
|
#endif
|
|
rc = xprt_unregister_transport(&xprt_rdma);
|
|
if (rc)
|
|
dprintk("RPC: %s: xprt_unregister returned %i\n",
|
|
__func__, rc);
|
|
|
|
rpcrdma_destroy_wq();
|
|
frwr_destroy_recovery_wq();
|
|
|
|
rc = xprt_unregister_transport(&xprt_rdma_bc);
|
|
if (rc)
|
|
dprintk("RPC: %s: xprt_unregister(bc) returned %i\n",
|
|
__func__, rc);
|
|
}
|
|
|
|
int xprt_rdma_init(void)
|
|
{
|
|
int rc;
|
|
|
|
rc = frwr_alloc_recovery_wq();
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = rpcrdma_alloc_wq();
|
|
if (rc) {
|
|
frwr_destroy_recovery_wq();
|
|
return rc;
|
|
}
|
|
|
|
rc = xprt_register_transport(&xprt_rdma);
|
|
if (rc) {
|
|
rpcrdma_destroy_wq();
|
|
frwr_destroy_recovery_wq();
|
|
return rc;
|
|
}
|
|
|
|
rc = xprt_register_transport(&xprt_rdma_bc);
|
|
if (rc) {
|
|
xprt_unregister_transport(&xprt_rdma);
|
|
rpcrdma_destroy_wq();
|
|
frwr_destroy_recovery_wq();
|
|
return rc;
|
|
}
|
|
|
|
dprintk("RPCRDMA Module Init, register RPC RDMA transport\n");
|
|
|
|
dprintk("Defaults:\n");
|
|
dprintk("\tSlots %d\n"
|
|
"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
|
|
xprt_rdma_slot_table_entries,
|
|
xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
|
|
dprintk("\tPadding %d\n\tMemreg %d\n",
|
|
xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
|
|
|
|
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
|
|
if (!sunrpc_table_header)
|
|
sunrpc_table_header = register_sysctl_table(sunrpc_table);
|
|
#endif
|
|
return 0;
|
|
}
|