Since the driver stack no longer depends on lookup with id number in a global array of pointers, the limitation for the number of eDMAs are no longer needed. We can handle as many eDMAs in legacy and DT boot as we have memory for them to allocate the needed structures. Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com> Signed-off-by: Vinod Koul <vinod.koul@intel.com>
1432 lines
38 KiB
C
1432 lines
38 KiB
C
/*
|
|
* EDMA3 support for DaVinci
|
|
*
|
|
* Copyright (C) 2006-2009 Texas Instruments.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
#include <linux/err.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/edma.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include <linux/platform_data/edma.h>
|
|
|
|
/* Offsets matching "struct edmacc_param" */
|
|
#define PARM_OPT 0x00
|
|
#define PARM_SRC 0x04
|
|
#define PARM_A_B_CNT 0x08
|
|
#define PARM_DST 0x0c
|
|
#define PARM_SRC_DST_BIDX 0x10
|
|
#define PARM_LINK_BCNTRLD 0x14
|
|
#define PARM_SRC_DST_CIDX 0x18
|
|
#define PARM_CCNT 0x1c
|
|
|
|
#define PARM_SIZE 0x20
|
|
|
|
/* Offsets for EDMA CC global channel registers and their shadows */
|
|
#define SH_ER 0x00 /* 64 bits */
|
|
#define SH_ECR 0x08 /* 64 bits */
|
|
#define SH_ESR 0x10 /* 64 bits */
|
|
#define SH_CER 0x18 /* 64 bits */
|
|
#define SH_EER 0x20 /* 64 bits */
|
|
#define SH_EECR 0x28 /* 64 bits */
|
|
#define SH_EESR 0x30 /* 64 bits */
|
|
#define SH_SER 0x38 /* 64 bits */
|
|
#define SH_SECR 0x40 /* 64 bits */
|
|
#define SH_IER 0x50 /* 64 bits */
|
|
#define SH_IECR 0x58 /* 64 bits */
|
|
#define SH_IESR 0x60 /* 64 bits */
|
|
#define SH_IPR 0x68 /* 64 bits */
|
|
#define SH_ICR 0x70 /* 64 bits */
|
|
#define SH_IEVAL 0x78
|
|
#define SH_QER 0x80
|
|
#define SH_QEER 0x84
|
|
#define SH_QEECR 0x88
|
|
#define SH_QEESR 0x8c
|
|
#define SH_QSER 0x90
|
|
#define SH_QSECR 0x94
|
|
#define SH_SIZE 0x200
|
|
|
|
/* Offsets for EDMA CC global registers */
|
|
#define EDMA_REV 0x0000
|
|
#define EDMA_CCCFG 0x0004
|
|
#define EDMA_QCHMAP 0x0200 /* 8 registers */
|
|
#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
|
|
#define EDMA_QDMAQNUM 0x0260
|
|
#define EDMA_QUETCMAP 0x0280
|
|
#define EDMA_QUEPRI 0x0284
|
|
#define EDMA_EMR 0x0300 /* 64 bits */
|
|
#define EDMA_EMCR 0x0308 /* 64 bits */
|
|
#define EDMA_QEMR 0x0310
|
|
#define EDMA_QEMCR 0x0314
|
|
#define EDMA_CCERR 0x0318
|
|
#define EDMA_CCERRCLR 0x031c
|
|
#define EDMA_EEVAL 0x0320
|
|
#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
|
|
#define EDMA_QRAE 0x0380 /* 4 registers */
|
|
#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
|
|
#define EDMA_QSTAT 0x0600 /* 2 registers */
|
|
#define EDMA_QWMTHRA 0x0620
|
|
#define EDMA_QWMTHRB 0x0624
|
|
#define EDMA_CCSTAT 0x0640
|
|
|
|
#define EDMA_M 0x1000 /* global channel registers */
|
|
#define EDMA_ECR 0x1008
|
|
#define EDMA_ECRH 0x100C
|
|
#define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
|
|
#define EDMA_PARM 0x4000 /* 128 param entries */
|
|
|
|
#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
|
|
|
|
#define EDMA_DCHMAP 0x0100 /* 64 registers */
|
|
|
|
/* CCCFG register */
|
|
#define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
|
|
#define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
|
|
#define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
|
|
#define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
|
|
#define CHMAP_EXIST BIT(24)
|
|
|
|
#define EDMA_MAX_DMACH 64
|
|
#define EDMA_MAX_PARAMENTRY 512
|
|
|
|
/*****************************************************************************/
|
|
struct edma {
|
|
struct device *dev;
|
|
void __iomem *base;
|
|
|
|
/* how many dma resources of each type */
|
|
unsigned num_channels;
|
|
unsigned num_region;
|
|
unsigned num_slots;
|
|
unsigned num_tc;
|
|
enum dma_event_q default_queue;
|
|
|
|
/* list of channels with no even trigger; terminated by "-1" */
|
|
const s8 *noevent;
|
|
|
|
struct edma_soc_info *info;
|
|
int id;
|
|
bool unused_chan_list_done;
|
|
/* The edma_inuse bit for each PaRAM slot is clear unless the
|
|
* channel is in use ... by ARM or DSP, for QDMA, or whatever.
|
|
*/
|
|
DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
|
|
|
|
/* The edma_unused bit for each channel is clear unless
|
|
* it is not being used on this platform. It uses a bit
|
|
* of SOC-specific initialization code.
|
|
*/
|
|
DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
|
|
|
|
struct dma_interrupt_data {
|
|
void (*callback)(unsigned channel, unsigned short ch_status,
|
|
void *data);
|
|
void *data;
|
|
} intr_data[EDMA_MAX_DMACH];
|
|
};
|
|
/*****************************************************************************/
|
|
|
|
static inline unsigned int edma_read(struct edma *cc, int offset)
|
|
{
|
|
return (unsigned int)__raw_readl(cc->base + offset);
|
|
}
|
|
|
|
static inline void edma_write(struct edma *cc, int offset, int val)
|
|
{
|
|
__raw_writel(val, cc->base + offset);
|
|
}
|
|
static inline void edma_modify(struct edma *cc, int offset, unsigned and,
|
|
unsigned or)
|
|
{
|
|
unsigned val = edma_read(cc, offset);
|
|
val &= and;
|
|
val |= or;
|
|
edma_write(cc, offset, val);
|
|
}
|
|
static inline void edma_and(struct edma *cc, int offset, unsigned and)
|
|
{
|
|
unsigned val = edma_read(cc, offset);
|
|
val &= and;
|
|
edma_write(cc, offset, val);
|
|
}
|
|
static inline void edma_or(struct edma *cc, int offset, unsigned or)
|
|
{
|
|
unsigned val = edma_read(cc, offset);
|
|
val |= or;
|
|
edma_write(cc, offset, val);
|
|
}
|
|
static inline unsigned int edma_read_array(struct edma *cc, int offset, int i)
|
|
{
|
|
return edma_read(cc, offset + (i << 2));
|
|
}
|
|
static inline void edma_write_array(struct edma *cc, int offset, int i,
|
|
unsigned val)
|
|
{
|
|
edma_write(cc, offset + (i << 2), val);
|
|
}
|
|
static inline void edma_modify_array(struct edma *cc, int offset, int i,
|
|
unsigned and, unsigned or)
|
|
{
|
|
edma_modify(cc, offset + (i << 2), and, or);
|
|
}
|
|
static inline void edma_or_array(struct edma *cc, int offset, int i, unsigned or)
|
|
{
|
|
edma_or(cc, offset + (i << 2), or);
|
|
}
|
|
static inline void edma_or_array2(struct edma *cc, int offset, int i, int j,
|
|
unsigned or)
|
|
{
|
|
edma_or(cc, offset + ((i*2 + j) << 2), or);
|
|
}
|
|
static inline void edma_write_array2(struct edma *cc, int offset, int i, int j,
|
|
unsigned val)
|
|
{
|
|
edma_write(cc, offset + ((i*2 + j) << 2), val);
|
|
}
|
|
static inline unsigned int edma_shadow0_read(struct edma *cc, int offset)
|
|
{
|
|
return edma_read(cc, EDMA_SHADOW0 + offset);
|
|
}
|
|
static inline unsigned int edma_shadow0_read_array(struct edma *cc, int offset,
|
|
int i)
|
|
{
|
|
return edma_read(cc, EDMA_SHADOW0 + offset + (i << 2));
|
|
}
|
|
static inline void edma_shadow0_write(struct edma *cc, int offset, unsigned val)
|
|
{
|
|
edma_write(cc, EDMA_SHADOW0 + offset, val);
|
|
}
|
|
static inline void edma_shadow0_write_array(struct edma *cc, int offset, int i,
|
|
unsigned val)
|
|
{
|
|
edma_write(cc, EDMA_SHADOW0 + offset + (i << 2), val);
|
|
}
|
|
static inline unsigned int edma_parm_read(struct edma *cc, int offset,
|
|
int param_no)
|
|
{
|
|
return edma_read(cc, EDMA_PARM + offset + (param_no << 5));
|
|
}
|
|
static inline void edma_parm_write(struct edma *cc, int offset, int param_no,
|
|
unsigned val)
|
|
{
|
|
edma_write(cc, EDMA_PARM + offset + (param_no << 5), val);
|
|
}
|
|
static inline void edma_parm_modify(struct edma *cc, int offset, int param_no,
|
|
unsigned and, unsigned or)
|
|
{
|
|
edma_modify(cc, EDMA_PARM + offset + (param_no << 5), and, or);
|
|
}
|
|
static inline void edma_parm_and(struct edma *cc, int offset, int param_no,
|
|
unsigned and)
|
|
{
|
|
edma_and(cc, EDMA_PARM + offset + (param_no << 5), and);
|
|
}
|
|
static inline void edma_parm_or(struct edma *cc, int offset, int param_no,
|
|
unsigned or)
|
|
{
|
|
edma_or(cc, EDMA_PARM + offset + (param_no << 5), or);
|
|
}
|
|
|
|
static inline void set_bits(int offset, int len, unsigned long *p)
|
|
{
|
|
for (; len > 0; len--)
|
|
set_bit(offset + (len - 1), p);
|
|
}
|
|
|
|
static inline void clear_bits(int offset, int len, unsigned long *p)
|
|
{
|
|
for (; len > 0; len--)
|
|
clear_bit(offset + (len - 1), p);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
static int arch_num_cc;
|
|
|
|
/* dummy param set used to (re)initialize parameter RAM slots */
|
|
static const struct edmacc_param dummy_paramset = {
|
|
.link_bcntrld = 0xffff,
|
|
.ccnt = 1,
|
|
};
|
|
|
|
static const struct of_device_id edma_of_ids[] = {
|
|
{ .compatible = "ti,edma3", },
|
|
{}
|
|
};
|
|
|
|
/*****************************************************************************/
|
|
|
|
static void map_dmach_queue(struct edma *cc, unsigned ch_no,
|
|
enum dma_event_q queue_no)
|
|
{
|
|
int bit = (ch_no & 0x7) * 4;
|
|
|
|
/* default to low priority queue */
|
|
if (queue_no == EVENTQ_DEFAULT)
|
|
queue_no = cc->default_queue;
|
|
|
|
queue_no &= 7;
|
|
edma_modify_array(cc, EDMA_DMAQNUM, (ch_no >> 3),
|
|
~(0x7 << bit), queue_no << bit);
|
|
}
|
|
|
|
static void assign_priority_to_queue(struct edma *cc, int queue_no,
|
|
int priority)
|
|
{
|
|
int bit = queue_no * 4;
|
|
edma_modify(cc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
|
|
}
|
|
|
|
/**
|
|
* map_dmach_param - Maps channel number to param entry number
|
|
*
|
|
* This maps the dma channel number to param entry numberter. In
|
|
* other words using the DMA channel mapping registers a param entry
|
|
* can be mapped to any channel
|
|
*
|
|
* Callers are responsible for ensuring the channel mapping logic is
|
|
* included in that particular EDMA variant (Eg : dm646x)
|
|
*
|
|
*/
|
|
static void map_dmach_param(struct edma *cc)
|
|
{
|
|
int i;
|
|
for (i = 0; i < EDMA_MAX_DMACH; i++)
|
|
edma_write_array(cc, EDMA_DCHMAP , i , (i << 5));
|
|
}
|
|
|
|
static inline void setup_dma_interrupt(struct edma *cc, unsigned lch,
|
|
void (*callback)(unsigned channel, u16 ch_status, void *data),
|
|
void *data)
|
|
{
|
|
lch = EDMA_CHAN_SLOT(lch);
|
|
|
|
if (!callback)
|
|
edma_shadow0_write_array(cc, SH_IECR, lch >> 5,
|
|
BIT(lch & 0x1f));
|
|
|
|
cc->intr_data[lch].callback = callback;
|
|
cc->intr_data[lch].data = data;
|
|
|
|
if (callback) {
|
|
edma_shadow0_write_array(cc, SH_ICR, lch >> 5, BIT(lch & 0x1f));
|
|
edma_shadow0_write_array(cc, SH_IESR, lch >> 5,
|
|
BIT(lch & 0x1f));
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* DMA interrupt handler
|
|
*
|
|
*****************************************************************************/
|
|
static irqreturn_t dma_irq_handler(int irq, void *data)
|
|
{
|
|
struct edma *cc = data;
|
|
int ctlr;
|
|
u32 sh_ier;
|
|
u32 sh_ipr;
|
|
u32 bank;
|
|
|
|
ctlr = cc->id;
|
|
if (ctlr < 0)
|
|
return IRQ_NONE;
|
|
|
|
dev_dbg(cc->dev, "dma_irq_handler\n");
|
|
|
|
sh_ipr = edma_shadow0_read_array(cc, SH_IPR, 0);
|
|
if (!sh_ipr) {
|
|
sh_ipr = edma_shadow0_read_array(cc, SH_IPR, 1);
|
|
if (!sh_ipr)
|
|
return IRQ_NONE;
|
|
sh_ier = edma_shadow0_read_array(cc, SH_IER, 1);
|
|
bank = 1;
|
|
} else {
|
|
sh_ier = edma_shadow0_read_array(cc, SH_IER, 0);
|
|
bank = 0;
|
|
}
|
|
|
|
do {
|
|
u32 slot;
|
|
u32 channel;
|
|
|
|
dev_dbg(cc->dev, "IPR%d %08x\n", bank, sh_ipr);
|
|
|
|
slot = __ffs(sh_ipr);
|
|
sh_ipr &= ~(BIT(slot));
|
|
|
|
if (sh_ier & BIT(slot)) {
|
|
channel = (bank << 5) | slot;
|
|
/* Clear the corresponding IPR bits */
|
|
edma_shadow0_write_array(cc, SH_ICR, bank, BIT(slot));
|
|
if (cc->intr_data[channel].callback)
|
|
cc->intr_data[channel].callback(
|
|
EDMA_CTLR_CHAN(ctlr, channel),
|
|
EDMA_DMA_COMPLETE,
|
|
cc->intr_data[channel].data);
|
|
}
|
|
} while (sh_ipr);
|
|
|
|
edma_shadow0_write(cc, SH_IEVAL, 1);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* DMA error interrupt handler
|
|
*
|
|
*****************************************************************************/
|
|
static irqreturn_t dma_ccerr_handler(int irq, void *data)
|
|
{
|
|
struct edma *cc = data;
|
|
int i;
|
|
int ctlr;
|
|
unsigned int cnt = 0;
|
|
|
|
ctlr = cc->id;
|
|
if (ctlr < 0)
|
|
return IRQ_NONE;
|
|
|
|
dev_dbg(cc->dev, "dma_ccerr_handler\n");
|
|
|
|
if ((edma_read_array(cc, EDMA_EMR, 0) == 0) &&
|
|
(edma_read_array(cc, EDMA_EMR, 1) == 0) &&
|
|
(edma_read(cc, EDMA_QEMR) == 0) &&
|
|
(edma_read(cc, EDMA_CCERR) == 0))
|
|
return IRQ_NONE;
|
|
|
|
while (1) {
|
|
int j = -1;
|
|
if (edma_read_array(cc, EDMA_EMR, 0))
|
|
j = 0;
|
|
else if (edma_read_array(cc, EDMA_EMR, 1))
|
|
j = 1;
|
|
if (j >= 0) {
|
|
dev_dbg(cc->dev, "EMR%d %08x\n", j,
|
|
edma_read_array(cc, EDMA_EMR, j));
|
|
for (i = 0; i < 32; i++) {
|
|
int k = (j << 5) + i;
|
|
if (edma_read_array(cc, EDMA_EMR, j) &
|
|
BIT(i)) {
|
|
/* Clear the corresponding EMR bits */
|
|
edma_write_array(cc, EDMA_EMCR, j,
|
|
BIT(i));
|
|
/* Clear any SER */
|
|
edma_shadow0_write_array(cc, SH_SECR,
|
|
j, BIT(i));
|
|
if (cc->intr_data[k].callback) {
|
|
cc->intr_data[k].callback(
|
|
EDMA_CTLR_CHAN(ctlr, k),
|
|
EDMA_DMA_CC_ERROR,
|
|
cc->intr_data[k].data);
|
|
}
|
|
}
|
|
}
|
|
} else if (edma_read(cc, EDMA_QEMR)) {
|
|
dev_dbg(cc->dev, "QEMR %02x\n",
|
|
edma_read(cc, EDMA_QEMR));
|
|
for (i = 0; i < 8; i++) {
|
|
if (edma_read(cc, EDMA_QEMR) & BIT(i)) {
|
|
/* Clear the corresponding IPR bits */
|
|
edma_write(cc, EDMA_QEMCR, BIT(i));
|
|
edma_shadow0_write(cc, SH_QSECR,
|
|
BIT(i));
|
|
|
|
/* NOTE: not reported!! */
|
|
}
|
|
}
|
|
} else if (edma_read(cc, EDMA_CCERR)) {
|
|
dev_dbg(cc->dev, "CCERR %08x\n",
|
|
edma_read(cc, EDMA_CCERR));
|
|
/* FIXME: CCERR.BIT(16) ignored! much better
|
|
* to just write CCERRCLR with CCERR value...
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
if (edma_read(cc, EDMA_CCERR) & BIT(i)) {
|
|
/* Clear the corresponding IPR bits */
|
|
edma_write(cc, EDMA_CCERRCLR, BIT(i));
|
|
|
|
/* NOTE: not reported!! */
|
|
}
|
|
}
|
|
}
|
|
if ((edma_read_array(cc, EDMA_EMR, 0) == 0) &&
|
|
(edma_read_array(cc, EDMA_EMR, 1) == 0) &&
|
|
(edma_read(cc, EDMA_QEMR) == 0) &&
|
|
(edma_read(cc, EDMA_CCERR) == 0))
|
|
break;
|
|
cnt++;
|
|
if (cnt > 10)
|
|
break;
|
|
}
|
|
edma_write(cc, EDMA_EEVAL, 1);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int prepare_unused_channel_list(struct device *dev, void *data)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct edma *cc = data;
|
|
int i, count;
|
|
struct of_phandle_args dma_spec;
|
|
|
|
if (dev->of_node) {
|
|
struct platform_device *dma_pdev;
|
|
|
|
count = of_property_count_strings(dev->of_node, "dma-names");
|
|
if (count < 0)
|
|
return 0;
|
|
for (i = 0; i < count; i++) {
|
|
|
|
if (of_parse_phandle_with_args(dev->of_node, "dmas",
|
|
"#dma-cells", i,
|
|
&dma_spec))
|
|
continue;
|
|
|
|
if (!of_match_node(edma_of_ids, dma_spec.np)) {
|
|
of_node_put(dma_spec.np);
|
|
continue;
|
|
}
|
|
|
|
dma_pdev = of_find_device_by_node(dma_spec.np);
|
|
if (&dma_pdev->dev != cc->dev)
|
|
continue;
|
|
|
|
clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
|
|
cc->edma_unused);
|
|
of_node_put(dma_spec.np);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* For non-OF case */
|
|
for (i = 0; i < pdev->num_resources; i++) {
|
|
struct resource *res = &pdev->resource[i];
|
|
|
|
if ((res->flags & IORESOURCE_DMA) && (int)res->start >= 0) {
|
|
clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
|
|
cc->edma_unused);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
/* Resource alloc/free: dma channels, parameter RAM slots */
|
|
|
|
/**
|
|
* edma_alloc_channel - allocate DMA channel and paired parameter RAM
|
|
* @channel: specific channel to allocate; negative for "any unmapped channel"
|
|
* @callback: optional; to be issued on DMA completion or errors
|
|
* @data: passed to callback
|
|
* @eventq_no: an EVENTQ_* constant, used to choose which Transfer
|
|
* Controller (TC) executes requests using this channel. Use
|
|
* EVENTQ_DEFAULT unless you really need a high priority queue.
|
|
*
|
|
* This allocates a DMA channel and its associated parameter RAM slot.
|
|
* The parameter RAM is initialized to hold a dummy transfer.
|
|
*
|
|
* Normal use is to pass a specific channel number as @channel, to make
|
|
* use of hardware events mapped to that channel. When the channel will
|
|
* be used only for software triggering or event chaining, channels not
|
|
* mapped to hardware events (or mapped to unused events) are preferable.
|
|
*
|
|
* DMA transfers start from a channel using edma_start(), or by
|
|
* chaining. When the transfer described in that channel's parameter RAM
|
|
* slot completes, that slot's data may be reloaded through a link.
|
|
*
|
|
* DMA errors are only reported to the @callback associated with the
|
|
* channel driving that transfer, but transfer completion callbacks can
|
|
* be sent to another channel under control of the TCC field in
|
|
* the option word of the transfer's parameter RAM set. Drivers must not
|
|
* use DMA transfer completion callbacks for channels they did not allocate.
|
|
* (The same applies to TCC codes used in transfer chaining.)
|
|
*
|
|
* Returns the number of the channel, else negative errno.
|
|
*/
|
|
int edma_alloc_channel(struct edma *cc, int channel,
|
|
void (*callback)(unsigned channel, u16 ch_status, void *data),
|
|
void *data,
|
|
enum dma_event_q eventq_no)
|
|
{
|
|
unsigned done = 0;
|
|
int ret = 0;
|
|
|
|
if (!cc->unused_chan_list_done) {
|
|
/*
|
|
* Scan all the platform devices to find out the EDMA channels
|
|
* used and clear them in the unused list, making the rest
|
|
* available for ARM usage.
|
|
*/
|
|
ret = bus_for_each_dev(&platform_bus_type, NULL, cc,
|
|
prepare_unused_channel_list);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
cc->unused_chan_list_done = true;
|
|
}
|
|
|
|
if (channel >= 0) {
|
|
if (cc->id != EDMA_CTLR(channel)) {
|
|
dev_err(cc->dev, "%s: ID mismatch for eDMA%d: %d\n",
|
|
__func__, cc->id, EDMA_CTLR(channel));
|
|
return -EINVAL;
|
|
}
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
}
|
|
|
|
if (channel < 0) {
|
|
channel = 0;
|
|
for (;;) {
|
|
channel = find_next_bit(cc->edma_unused,
|
|
cc->num_channels, channel);
|
|
if (channel == cc->num_channels)
|
|
break;
|
|
if (!test_and_set_bit(channel, cc->edma_inuse)) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
channel++;
|
|
}
|
|
if (!done)
|
|
return -ENOMEM;
|
|
} else if (channel >= cc->num_channels) {
|
|
return -EINVAL;
|
|
} else if (test_and_set_bit(channel, cc->edma_inuse)) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* ensure access through shadow region 0 */
|
|
edma_or_array2(cc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
|
|
|
|
/* ensure no events are pending */
|
|
edma_stop(cc, EDMA_CTLR_CHAN(cc->id, channel));
|
|
memcpy_toio(cc->base + PARM_OFFSET(channel), &dummy_paramset,
|
|
PARM_SIZE);
|
|
|
|
if (callback)
|
|
setup_dma_interrupt(cc, EDMA_CTLR_CHAN(cc->id, channel),
|
|
callback, data);
|
|
|
|
map_dmach_queue(cc, channel, eventq_no);
|
|
|
|
return EDMA_CTLR_CHAN(cc->id, channel);
|
|
}
|
|
EXPORT_SYMBOL(edma_alloc_channel);
|
|
|
|
|
|
/**
|
|
* edma_free_channel - deallocate DMA channel
|
|
* @channel: dma channel returned from edma_alloc_channel()
|
|
*
|
|
* This deallocates the DMA channel and associated parameter RAM slot
|
|
* allocated by edma_alloc_channel().
|
|
*
|
|
* Callers are responsible for ensuring the channel is inactive, and
|
|
* will not be reactivated by linking, chaining, or software calls to
|
|
* edma_start().
|
|
*/
|
|
void edma_free_channel(struct edma *cc, unsigned channel)
|
|
{
|
|
|
|
if (cc->id != EDMA_CTLR(channel)) {
|
|
dev_err(cc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
cc->id, EDMA_CTLR(channel));
|
|
return;
|
|
}
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel >= cc->num_channels)
|
|
return;
|
|
|
|
setup_dma_interrupt(cc, channel, NULL, NULL);
|
|
/* REVISIT should probably take out of shadow region 0 */
|
|
|
|
memcpy_toio(cc->base + PARM_OFFSET(channel), &dummy_paramset,
|
|
PARM_SIZE);
|
|
clear_bit(channel, cc->edma_inuse);
|
|
}
|
|
EXPORT_SYMBOL(edma_free_channel);
|
|
|
|
/**
|
|
* edma_alloc_slot - allocate DMA parameter RAM
|
|
* @slot: specific slot to allocate; negative for "any unused slot"
|
|
*
|
|
* This allocates a parameter RAM slot, initializing it to hold a
|
|
* dummy transfer. Slots allocated using this routine have not been
|
|
* mapped to a hardware DMA channel, and will normally be used by
|
|
* linking to them from a slot associated with a DMA channel.
|
|
*
|
|
* Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
|
|
* slots may be allocated on behalf of DSP firmware.
|
|
*
|
|
* Returns the number of the slot, else negative errno.
|
|
*/
|
|
int edma_alloc_slot(struct edma *cc, int slot)
|
|
{
|
|
if (slot > 0)
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
if (slot < 0) {
|
|
slot = cc->num_channels;
|
|
for (;;) {
|
|
slot = find_next_zero_bit(cc->edma_inuse, cc->num_slots,
|
|
slot);
|
|
if (slot == cc->num_slots)
|
|
return -ENOMEM;
|
|
if (!test_and_set_bit(slot, cc->edma_inuse))
|
|
break;
|
|
}
|
|
} else if (slot < cc->num_channels || slot >= cc->num_slots) {
|
|
return -EINVAL;
|
|
} else if (test_and_set_bit(slot, cc->edma_inuse)) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
memcpy_toio(cc->base + PARM_OFFSET(slot), &dummy_paramset, PARM_SIZE);
|
|
|
|
return slot;
|
|
}
|
|
EXPORT_SYMBOL(edma_alloc_slot);
|
|
|
|
/**
|
|
* edma_free_slot - deallocate DMA parameter RAM
|
|
* @slot: parameter RAM slot returned from edma_alloc_slot()
|
|
*
|
|
* This deallocates the parameter RAM slot allocated by edma_alloc_slot().
|
|
* Callers are responsible for ensuring the slot is inactive, and will
|
|
* not be activated.
|
|
*/
|
|
void edma_free_slot(struct edma *cc, unsigned slot)
|
|
{
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
if (slot < cc->num_channels || slot >= cc->num_slots)
|
|
return;
|
|
|
|
memcpy_toio(cc->base + PARM_OFFSET(slot), &dummy_paramset, PARM_SIZE);
|
|
clear_bit(slot, cc->edma_inuse);
|
|
}
|
|
EXPORT_SYMBOL(edma_free_slot);
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
/* Parameter RAM operations (i) -- read/write partial slots */
|
|
|
|
/**
|
|
* edma_get_position - returns the current transfer point
|
|
* @slot: parameter RAM slot being examined
|
|
* @dst: true selects the dest position, false the source
|
|
*
|
|
* Returns the position of the current active slot
|
|
*/
|
|
dma_addr_t edma_get_position(struct edma *cc, unsigned slot, bool dst)
|
|
{
|
|
u32 offs;
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
offs = PARM_OFFSET(slot);
|
|
offs += dst ? PARM_DST : PARM_SRC;
|
|
|
|
return edma_read(cc, offs);
|
|
}
|
|
|
|
/**
|
|
* edma_link - link one parameter RAM slot to another
|
|
* @from: parameter RAM slot originating the link
|
|
* @to: parameter RAM slot which is the link target
|
|
*
|
|
* The originating slot should not be part of any active DMA transfer.
|
|
*/
|
|
void edma_link(struct edma *cc, unsigned from, unsigned to)
|
|
{
|
|
from = EDMA_CHAN_SLOT(from);
|
|
to = EDMA_CHAN_SLOT(to);
|
|
if (from >= cc->num_slots || to >= cc->num_slots)
|
|
return;
|
|
|
|
edma_parm_modify(cc, PARM_LINK_BCNTRLD, from, 0xffff0000,
|
|
PARM_OFFSET(to));
|
|
}
|
|
EXPORT_SYMBOL(edma_link);
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
/* Parameter RAM operations (ii) -- read/write whole parameter sets */
|
|
|
|
/**
|
|
* edma_write_slot - write parameter RAM data for slot
|
|
* @slot: number of parameter RAM slot being modified
|
|
* @param: data to be written into parameter RAM slot
|
|
*
|
|
* Use this to assign all parameters of a transfer at once. This
|
|
* allows more efficient setup of transfers than issuing multiple
|
|
* calls to set up those parameters in small pieces, and provides
|
|
* complete control over all transfer options.
|
|
*/
|
|
void edma_write_slot(struct edma *cc, unsigned slot,
|
|
const struct edmacc_param *param)
|
|
{
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
if (slot >= cc->num_slots)
|
|
return;
|
|
memcpy_toio(cc->base + PARM_OFFSET(slot), param, PARM_SIZE);
|
|
}
|
|
EXPORT_SYMBOL(edma_write_slot);
|
|
|
|
/**
|
|
* edma_read_slot - read parameter RAM data from slot
|
|
* @slot: number of parameter RAM slot being copied
|
|
* @param: where to store copy of parameter RAM data
|
|
*
|
|
* Use this to read data from a parameter RAM slot, perhaps to
|
|
* save them as a template for later reuse.
|
|
*/
|
|
void edma_read_slot(struct edma *cc, unsigned slot, struct edmacc_param *param)
|
|
{
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
if (slot >= cc->num_slots)
|
|
return;
|
|
memcpy_fromio(param, cc->base + PARM_OFFSET(slot), PARM_SIZE);
|
|
}
|
|
EXPORT_SYMBOL(edma_read_slot);
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
/* Various EDMA channel control operations */
|
|
|
|
/**
|
|
* edma_pause - pause dma on a channel
|
|
* @channel: on which edma_start() has been called
|
|
*
|
|
* This temporarily disables EDMA hardware events on the specified channel,
|
|
* preventing them from triggering new transfers on its behalf
|
|
*/
|
|
void edma_pause(struct edma *cc, unsigned channel)
|
|
{
|
|
if (cc->id != EDMA_CTLR(channel)) {
|
|
dev_err(cc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
cc->id, EDMA_CTLR(channel));
|
|
return;
|
|
}
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel < cc->num_channels) {
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
edma_shadow0_write_array(cc, SH_EECR, channel >> 5, mask);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(edma_pause);
|
|
|
|
/**
|
|
* edma_resume - resumes dma on a paused channel
|
|
* @channel: on which edma_pause() has been called
|
|
*
|
|
* This re-enables EDMA hardware events on the specified channel.
|
|
*/
|
|
void edma_resume(struct edma *cc, unsigned channel)
|
|
{
|
|
if (cc->id != EDMA_CTLR(channel)) {
|
|
dev_err(cc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
cc->id, EDMA_CTLR(channel));
|
|
return;
|
|
}
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel < cc->num_channels) {
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
edma_shadow0_write_array(cc, SH_EESR, channel >> 5, mask);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(edma_resume);
|
|
|
|
int edma_trigger_channel(struct edma *cc, unsigned channel)
|
|
{
|
|
unsigned int mask;
|
|
|
|
if (cc->id != EDMA_CTLR(channel)) {
|
|
dev_err(cc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
cc->id, EDMA_CTLR(channel));
|
|
return -EINVAL;
|
|
}
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
mask = BIT(channel & 0x1f);
|
|
|
|
edma_shadow0_write_array(cc, SH_ESR, (channel >> 5), mask);
|
|
|
|
pr_debug("EDMA: ESR%d %08x\n", (channel >> 5),
|
|
edma_shadow0_read_array(cc, SH_ESR, (channel >> 5)));
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(edma_trigger_channel);
|
|
|
|
/**
|
|
* edma_start - start dma on a channel
|
|
* @channel: channel being activated
|
|
*
|
|
* Channels with event associations will be triggered by their hardware
|
|
* events, and channels without such associations will be triggered by
|
|
* software. (At this writing there is no interface for using software
|
|
* triggers except with channels that don't support hardware triggers.)
|
|
*
|
|
* Returns zero on success, else negative errno.
|
|
*/
|
|
int edma_start(struct edma *cc, unsigned channel)
|
|
{
|
|
if (cc->id != EDMA_CTLR(channel)) {
|
|
dev_err(cc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
cc->id, EDMA_CTLR(channel));
|
|
return -EINVAL;
|
|
}
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel < cc->num_channels) {
|
|
int j = channel >> 5;
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
/* EDMA channels without event association */
|
|
if (test_bit(channel, cc->edma_unused)) {
|
|
pr_debug("EDMA: ESR%d %08x\n", j,
|
|
edma_shadow0_read_array(cc, SH_ESR, j));
|
|
edma_shadow0_write_array(cc, SH_ESR, j, mask);
|
|
return 0;
|
|
}
|
|
|
|
/* EDMA channel with event association */
|
|
pr_debug("EDMA: ER%d %08x\n", j,
|
|
edma_shadow0_read_array(cc, SH_ER, j));
|
|
/* Clear any pending event or error */
|
|
edma_write_array(cc, EDMA_ECR, j, mask);
|
|
edma_write_array(cc, EDMA_EMCR, j, mask);
|
|
/* Clear any SER */
|
|
edma_shadow0_write_array(cc, SH_SECR, j, mask);
|
|
edma_shadow0_write_array(cc, SH_EESR, j, mask);
|
|
pr_debug("EDMA: EER%d %08x\n", j,
|
|
edma_shadow0_read_array(cc, SH_EER, j));
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(edma_start);
|
|
|
|
/**
|
|
* edma_stop - stops dma on the channel passed
|
|
* @channel: channel being deactivated
|
|
*
|
|
* When @lch is a channel, any active transfer is paused and
|
|
* all pending hardware events are cleared. The current transfer
|
|
* may not be resumed, and the channel's Parameter RAM should be
|
|
* reinitialized before being reused.
|
|
*/
|
|
void edma_stop(struct edma *cc, unsigned channel)
|
|
{
|
|
if (cc->id != EDMA_CTLR(channel)) {
|
|
dev_err(cc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
cc->id, EDMA_CTLR(channel));
|
|
return;
|
|
}
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel < cc->num_channels) {
|
|
int j = channel >> 5;
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
edma_shadow0_write_array(cc, SH_EECR, j, mask);
|
|
edma_shadow0_write_array(cc, SH_ECR, j, mask);
|
|
edma_shadow0_write_array(cc, SH_SECR, j, mask);
|
|
edma_write_array(cc, EDMA_EMCR, j, mask);
|
|
|
|
/* clear possibly pending completion interrupt */
|
|
edma_shadow0_write_array(cc, SH_ICR, j, mask);
|
|
|
|
pr_debug("EDMA: EER%d %08x\n", j,
|
|
edma_shadow0_read_array(cc, SH_EER, j));
|
|
|
|
/* REVISIT: consider guarding against inappropriate event
|
|
* chaining by overwriting with dummy_paramset.
|
|
*/
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(edma_stop);
|
|
|
|
/******************************************************************************
|
|
*
|
|
* It cleans ParamEntry qand bring back EDMA to initial state if media has
|
|
* been removed before EDMA has finished.It is usedful for removable media.
|
|
* Arguments:
|
|
* ch_no - channel no
|
|
*
|
|
* Return: zero on success, or corresponding error no on failure
|
|
*
|
|
* FIXME this should not be needed ... edma_stop() should suffice.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
void edma_clean_channel(struct edma *cc, unsigned channel)
|
|
{
|
|
if (cc->id != EDMA_CTLR(channel)) {
|
|
dev_err(cc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
cc->id, EDMA_CTLR(channel));
|
|
return;
|
|
}
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel < cc->num_channels) {
|
|
int j = (channel >> 5);
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
pr_debug("EDMA: EMR%d %08x\n", j,
|
|
edma_read_array(cc, EDMA_EMR, j));
|
|
edma_shadow0_write_array(cc, SH_ECR, j, mask);
|
|
/* Clear the corresponding EMR bits */
|
|
edma_write_array(cc, EDMA_EMCR, j, mask);
|
|
/* Clear any SER */
|
|
edma_shadow0_write_array(cc, SH_SECR, j, mask);
|
|
edma_write(cc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(edma_clean_channel);
|
|
|
|
/*
|
|
* edma_assign_channel_eventq - move given channel to desired eventq
|
|
* Arguments:
|
|
* channel - channel number
|
|
* eventq_no - queue to move the channel
|
|
*
|
|
* Can be used to move a channel to a selected event queue.
|
|
*/
|
|
void edma_assign_channel_eventq(struct edma *cc, unsigned channel,
|
|
enum dma_event_q eventq_no)
|
|
{
|
|
if (cc->id != EDMA_CTLR(channel)) {
|
|
dev_err(cc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
cc->id, EDMA_CTLR(channel));
|
|
return;
|
|
}
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
if (channel >= cc->num_channels)
|
|
return;
|
|
|
|
/* default to low priority queue */
|
|
if (eventq_no == EVENTQ_DEFAULT)
|
|
eventq_no = cc->default_queue;
|
|
if (eventq_no >= cc->num_tc)
|
|
return;
|
|
|
|
map_dmach_queue(cc, channel, eventq_no);
|
|
}
|
|
EXPORT_SYMBOL(edma_assign_channel_eventq);
|
|
|
|
struct edma *edma_get_data(struct device *edma_dev)
|
|
{
|
|
return dev_get_drvdata(edma_dev);
|
|
}
|
|
|
|
|
|
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
|
|
struct edma *edma_cc, int cc_id)
|
|
{
|
|
int i;
|
|
u32 value, cccfg;
|
|
s8 (*queue_priority_map)[2];
|
|
|
|
/* Decode the eDMA3 configuration from CCCFG register */
|
|
cccfg = edma_read(edma_cc, EDMA_CCCFG);
|
|
|
|
value = GET_NUM_REGN(cccfg);
|
|
edma_cc->num_region = BIT(value);
|
|
|
|
value = GET_NUM_DMACH(cccfg);
|
|
edma_cc->num_channels = BIT(value + 1);
|
|
|
|
value = GET_NUM_PAENTRY(cccfg);
|
|
edma_cc->num_slots = BIT(value + 4);
|
|
|
|
value = GET_NUM_EVQUE(cccfg);
|
|
edma_cc->num_tc = value + 1;
|
|
|
|
dev_dbg(dev, "eDMA3 CC%d HW configuration (cccfg: 0x%08x):\n", cc_id,
|
|
cccfg);
|
|
dev_dbg(dev, "num_region: %u\n", edma_cc->num_region);
|
|
dev_dbg(dev, "num_channel: %u\n", edma_cc->num_channels);
|
|
dev_dbg(dev, "num_slot: %u\n", edma_cc->num_slots);
|
|
dev_dbg(dev, "num_tc: %u\n", edma_cc->num_tc);
|
|
|
|
/* Nothing need to be done if queue priority is provided */
|
|
if (pdata->queue_priority_mapping)
|
|
return 0;
|
|
|
|
/*
|
|
* Configure TC/queue priority as follows:
|
|
* Q0 - priority 0
|
|
* Q1 - priority 1
|
|
* Q2 - priority 2
|
|
* ...
|
|
* The meaning of priority numbers: 0 highest priority, 7 lowest
|
|
* priority. So Q0 is the highest priority queue and the last queue has
|
|
* the lowest priority.
|
|
*/
|
|
queue_priority_map = devm_kzalloc(dev,
|
|
(edma_cc->num_tc + 1) * sizeof(s8),
|
|
GFP_KERNEL);
|
|
if (!queue_priority_map)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < edma_cc->num_tc; i++) {
|
|
queue_priority_map[i][0] = i;
|
|
queue_priority_map[i][1] = i;
|
|
}
|
|
queue_priority_map[i][0] = -1;
|
|
queue_priority_map[i][1] = -1;
|
|
|
|
pdata->queue_priority_mapping = queue_priority_map;
|
|
/* Default queue has the lowest priority */
|
|
pdata->default_queue = i - 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
|
|
|
|
static int edma_xbar_event_map(struct device *dev, struct device_node *node,
|
|
struct edma_soc_info *pdata, size_t sz)
|
|
{
|
|
const char pname[] = "ti,edma-xbar-event-map";
|
|
struct resource res;
|
|
void __iomem *xbar;
|
|
s16 (*xbar_chans)[2];
|
|
size_t nelm = sz / sizeof(s16);
|
|
u32 shift, offset, mux;
|
|
int ret, i;
|
|
|
|
xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL);
|
|
if (!xbar_chans)
|
|
return -ENOMEM;
|
|
|
|
ret = of_address_to_resource(node, 1, &res);
|
|
if (ret)
|
|
return -ENOMEM;
|
|
|
|
xbar = devm_ioremap(dev, res.start, resource_size(&res));
|
|
if (!xbar)
|
|
return -ENOMEM;
|
|
|
|
ret = of_property_read_u16_array(node, pname, (u16 *)xbar_chans, nelm);
|
|
if (ret)
|
|
return -EIO;
|
|
|
|
/* Invalidate last entry for the other user of this mess */
|
|
nelm >>= 1;
|
|
xbar_chans[nelm][0] = xbar_chans[nelm][1] = -1;
|
|
|
|
for (i = 0; i < nelm; i++) {
|
|
shift = (xbar_chans[i][1] & 0x03) << 3;
|
|
offset = xbar_chans[i][1] & 0xfffffffc;
|
|
mux = readl(xbar + offset);
|
|
mux &= ~(0xff << shift);
|
|
mux |= xbar_chans[i][0] << shift;
|
|
writel(mux, (xbar + offset));
|
|
}
|
|
|
|
pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
|
|
return 0;
|
|
}
|
|
|
|
static int edma_of_parse_dt(struct device *dev,
|
|
struct device_node *node,
|
|
struct edma_soc_info *pdata)
|
|
{
|
|
int ret = 0;
|
|
struct property *prop;
|
|
size_t sz;
|
|
struct edma_rsv_info *rsv_info;
|
|
|
|
rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
|
|
if (!rsv_info)
|
|
return -ENOMEM;
|
|
pdata->rsv = rsv_info;
|
|
|
|
prop = of_find_property(node, "ti,edma-xbar-event-map", &sz);
|
|
if (prop)
|
|
ret = edma_xbar_event_map(dev, node, pdata, sz);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
|
|
struct device_node *node)
|
|
{
|
|
struct edma_soc_info *info;
|
|
int ret;
|
|
|
|
info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
|
|
if (!info)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = edma_of_parse_dt(dev, node, info);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return info;
|
|
}
|
|
#else
|
|
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
|
|
struct device_node *node)
|
|
{
|
|
return ERR_PTR(-ENOSYS);
|
|
}
|
|
#endif
|
|
|
|
static int edma_probe(struct platform_device *pdev)
|
|
{
|
|
struct edma_soc_info *info = pdev->dev.platform_data;
|
|
s8 (*queue_priority_mapping)[2];
|
|
int i, off, ln;
|
|
const s16 (*rsv_chans)[2];
|
|
const s16 (*rsv_slots)[2];
|
|
const s16 (*xbar_chans)[2];
|
|
int irq;
|
|
char *irq_name;
|
|
struct resource *mem;
|
|
struct device_node *node = pdev->dev.of_node;
|
|
struct device *dev = &pdev->dev;
|
|
int dev_id = pdev->id;
|
|
struct edma *cc;
|
|
int ret;
|
|
struct platform_device_info edma_dev_info = {
|
|
.name = "edma-dma-engine",
|
|
.dma_mask = DMA_BIT_MASK(32),
|
|
.parent = &pdev->dev,
|
|
};
|
|
|
|
if (node) {
|
|
info = edma_setup_info_from_dt(dev, node);
|
|
if (IS_ERR(info)) {
|
|
dev_err(dev, "failed to get DT data\n");
|
|
return PTR_ERR(info);
|
|
}
|
|
}
|
|
|
|
if (!info)
|
|
return -ENODEV;
|
|
|
|
pm_runtime_enable(dev);
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (ret < 0) {
|
|
dev_err(dev, "pm_runtime_get_sync() failed\n");
|
|
return ret;
|
|
}
|
|
|
|
mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
|
|
if (!mem) {
|
|
dev_dbg(dev, "mem resource not found, using index 0\n");
|
|
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!mem) {
|
|
dev_err(dev, "no mem resource?\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
cc = devm_kzalloc(dev, sizeof(struct edma), GFP_KERNEL);
|
|
if (!cc)
|
|
return -ENOMEM;
|
|
|
|
cc->dev = dev;
|
|
cc->id = dev_id;
|
|
/* When booting with DT the pdev->id is -1 */
|
|
if (dev_id < 0) {
|
|
cc->id = 0;
|
|
dev_id = arch_num_cc;
|
|
}
|
|
dev_set_drvdata(dev, cc);
|
|
|
|
cc->base = devm_ioremap_resource(dev, mem);
|
|
if (IS_ERR(cc->base))
|
|
return PTR_ERR(cc->base);
|
|
|
|
/* Get eDMA3 configuration from IP */
|
|
ret = edma_setup_from_hw(dev, info, cc, dev_id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
cc->default_queue = info->default_queue;
|
|
|
|
for (i = 0; i < cc->num_slots; i++)
|
|
memcpy_toio(cc->base + PARM_OFFSET(i), &dummy_paramset,
|
|
PARM_SIZE);
|
|
|
|
/* Mark all channels as unused */
|
|
memset(cc->edma_unused, 0xff, sizeof(cc->edma_unused));
|
|
|
|
if (info->rsv) {
|
|
|
|
/* Clear the reserved channels in unused list */
|
|
rsv_chans = info->rsv->rsv_chans;
|
|
if (rsv_chans) {
|
|
for (i = 0; rsv_chans[i][0] != -1; i++) {
|
|
off = rsv_chans[i][0];
|
|
ln = rsv_chans[i][1];
|
|
clear_bits(off, ln, cc->edma_unused);
|
|
}
|
|
}
|
|
|
|
/* Set the reserved slots in inuse list */
|
|
rsv_slots = info->rsv->rsv_slots;
|
|
if (rsv_slots) {
|
|
for (i = 0; rsv_slots[i][0] != -1; i++) {
|
|
off = rsv_slots[i][0];
|
|
ln = rsv_slots[i][1];
|
|
set_bits(off, ln, cc->edma_inuse);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Clear the xbar mapped channels in unused list */
|
|
xbar_chans = info->xbar_chans;
|
|
if (xbar_chans) {
|
|
for (i = 0; xbar_chans[i][1] != -1; i++) {
|
|
off = xbar_chans[i][1];
|
|
clear_bits(off, 1, cc->edma_unused);
|
|
}
|
|
}
|
|
|
|
irq = platform_get_irq_byname(pdev, "edma3_ccint");
|
|
if (irq < 0 && node)
|
|
irq = irq_of_parse_and_map(node, 0);
|
|
|
|
if (irq >= 0) {
|
|
irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
|
|
dev_name(dev));
|
|
ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
|
|
cc);
|
|
if (ret) {
|
|
dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
|
|
if (irq < 0 && node)
|
|
irq = irq_of_parse_and_map(node, 2);
|
|
|
|
if (irq >= 0) {
|
|
irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
|
|
dev_name(dev));
|
|
ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
|
|
cc);
|
|
if (ret) {
|
|
dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < cc->num_channels; i++)
|
|
map_dmach_queue(cc, i, info->default_queue);
|
|
|
|
queue_priority_mapping = info->queue_priority_mapping;
|
|
|
|
/* Event queue priority mapping */
|
|
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
|
|
assign_priority_to_queue(cc, queue_priority_mapping[i][0],
|
|
queue_priority_mapping[i][1]);
|
|
|
|
/* Map the channel to param entry if channel mapping logic exist */
|
|
if (edma_read(cc, EDMA_CCCFG) & CHMAP_EXIST)
|
|
map_dmach_param(cc);
|
|
|
|
for (i = 0; i < cc->num_region; i++) {
|
|
edma_write_array2(cc, EDMA_DRAE, i, 0, 0x0);
|
|
edma_write_array2(cc, EDMA_DRAE, i, 1, 0x0);
|
|
edma_write_array(cc, EDMA_QRAE, i, 0x0);
|
|
}
|
|
cc->info = info;
|
|
arch_num_cc++;
|
|
|
|
edma_dev_info.id = dev_id;
|
|
|
|
platform_device_register_full(&edma_dev_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int edma_pm_resume(struct device *dev)
|
|
{
|
|
struct edma *cc = dev_get_drvdata(dev);
|
|
int i;
|
|
s8 (*queue_priority_mapping)[2];
|
|
|
|
queue_priority_mapping = cc->info->queue_priority_mapping;
|
|
|
|
/* Event queue priority mapping */
|
|
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
|
|
assign_priority_to_queue(cc, queue_priority_mapping[i][0],
|
|
queue_priority_mapping[i][1]);
|
|
|
|
/* Map the channel to param entry if channel mapping logic */
|
|
if (edma_read(cc, EDMA_CCCFG) & CHMAP_EXIST)
|
|
map_dmach_param(cc);
|
|
|
|
for (i = 0; i < cc->num_channels; i++) {
|
|
if (test_bit(i, cc->edma_inuse)) {
|
|
/* ensure access through shadow region 0 */
|
|
edma_or_array2(cc, EDMA_DRAE, 0, i >> 5, BIT(i & 0x1f));
|
|
|
|
setup_dma_interrupt(cc, EDMA_CTLR_CHAN(cc->id, i),
|
|
cc->intr_data[i].callback,
|
|
cc->intr_data[i].data);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static const struct dev_pm_ops edma_pm_ops = {
|
|
SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, edma_pm_resume)
|
|
};
|
|
|
|
static struct platform_driver edma_driver = {
|
|
.driver = {
|
|
.name = "edma",
|
|
.pm = &edma_pm_ops,
|
|
.of_match_table = edma_of_ids,
|
|
},
|
|
.probe = edma_probe,
|
|
};
|
|
|
|
static int __init edma_init(void)
|
|
{
|
|
return platform_driver_probe(&edma_driver, edma_probe);
|
|
}
|
|
arch_initcall(edma_init);
|
|
|