linux/arch/x86/mm/numa_64.c
Christoph Lameter b263295dbf x86: 64-bit, make sparsemem vmemmap the only memory model
Use sparsemem as the only memory model for UP, SMP and NUMA.  Measurements
indicate that DISCONTIGMEM has a higher overhead than sparsemem.  And
FLATMEMs benefits are minimal.  So I think its best to simply standardize
on sparsemem.

Results of page allocator tests (test can be had via git from slab git
tree branch tests)

Measurements in cycle counts. 1000 allocations were performed and then the
average cycle count was calculated.

Order	FlatMem	Discontig	SparseMem
0	  639	  665		  641
1	  567	  647		  593
2	  679	  774		  692
3	  763	  967		  781
4	  961	 1501		  962
5	 1356	 2344		 1392
6	 2224	 3982		 2336
7	 4869	 7225		 5074
8	12500	14048		12732
9	27926	28223		28165
10	58578	58714		58682

(Note that FlatMem is an SMP config and the rest NUMA configurations)

Memory use:

SMP Sparsemem
-------------

Kernel size:

   text    data     bss     dec     hex filename
3849268  397739 1264856 5511863  541ab7 vmlinux

             total       used       free     shared    buffers     cached
Mem:       8242252      41164    8201088          0        352      11512
-/+ buffers/cache:      29300    8212952
Swap:      9775512          0    9775512

SMP Flatmem
-----------

Kernel size:

   text    data     bss     dec     hex filename
3844612  397739 1264536 5506887  540747 vmlinux

So 4.5k growth in text size vs. FLATMEM.

             total       used       free     shared    buffers     cached
Mem:       8244052      40544    8203508          0        352      11484
-/+ buffers/cache:      28708    8215344

2k growth in overall memory use after boot.

NUMA discontig:

   text    data     bss     dec     hex filename
3888124  470659 1276504 5635287  55fcd7 vmlinux

             total       used       free     shared    buffers     cached
Mem:       8256256      56908    8199348          0        352      11496
-/+ buffers/cache:      45060    8211196
Swap:      9775512          0    9775512

NUMA sparse:

   text    data     bss     dec     hex filename
3896428  470659 1276824 5643911  561e87 vmlinux

8k text growth. Given that we fully inline virt_to_page and friends now
that is rather good.

             total       used       free     shared    buffers     cached
Mem:       8264720      57240    8207480          0        352      11516
-/+ buffers/cache:      45372    8219348
Swap:      9775512          0    9775512

The total available memory is increased by 8k.

This patch makes sparsemem the default and removes discontig and
flatmem support from x86.

[ akpm@linux-foundation.org: allnoconfig build fix ]

Acked-by: Andi Kleen <ak@suse.de>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 13:30:47 +01:00

637 lines
16 KiB
C

/*
* Generic VM initialization for x86-64 NUMA setups.
* Copyright 2002,2003 Andi Kleen, SuSE Labs.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <asm/e820.h>
#include <asm/proto.h>
#include <asm/dma.h>
#include <asm/numa.h>
#include <asm/acpi.h>
#include <asm/k8.h>
#ifndef Dprintk
#define Dprintk(x...)
#endif
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);
bootmem_data_t plat_node_bdata[MAX_NUMNODES];
struct memnode memnode;
int cpu_to_node_map[NR_CPUS] __read_mostly = {
[0 ... NR_CPUS-1] = NUMA_NO_NODE
};
EXPORT_SYMBOL(cpu_to_node_map);
unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
};
cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_to_cpumask_map);
int numa_off __initdata;
unsigned long __initdata nodemap_addr;
unsigned long __initdata nodemap_size;
/*
* Given a shift value, try to populate memnodemap[]
* Returns :
* 1 if OK
* 0 if memnodmap[] too small (of shift too small)
* -1 if node overlap or lost ram (shift too big)
*/
static int __init populate_memnodemap(const struct bootnode *nodes,
int numnodes, int shift)
{
unsigned long addr, end;
int i, res = -1;
memset(memnodemap, 0xff, memnodemapsize);
for (i = 0; i < numnodes; i++) {
addr = nodes[i].start;
end = nodes[i].end;
if (addr >= end)
continue;
if ((end >> shift) >= memnodemapsize)
return 0;
do {
if (memnodemap[addr >> shift] != 0xff)
return -1;
memnodemap[addr >> shift] = i;
addr += (1UL << shift);
} while (addr < end);
res = 1;
}
return res;
}
static int __init allocate_cachealigned_memnodemap(void)
{
unsigned long pad, pad_addr;
memnodemap = memnode.embedded_map;
if (memnodemapsize <= 48)
return 0;
pad = L1_CACHE_BYTES - 1;
pad_addr = 0x8000;
nodemap_size = pad + memnodemapsize;
nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
nodemap_size);
if (nodemap_addr == -1UL) {
printk(KERN_ERR
"NUMA: Unable to allocate Memory to Node hash map\n");
nodemap_addr = nodemap_size = 0;
return -1;
}
pad_addr = (nodemap_addr + pad) & ~pad;
memnodemap = phys_to_virt(pad_addr);
printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
nodemap_addr, nodemap_addr + nodemap_size);
return 0;
}
/*
* The LSB of all start and end addresses in the node map is the value of the
* maximum possible shift.
*/
static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
int numnodes)
{
int i, nodes_used = 0;
unsigned long start, end;
unsigned long bitfield = 0, memtop = 0;
for (i = 0; i < numnodes; i++) {
start = nodes[i].start;
end = nodes[i].end;
if (start >= end)
continue;
bitfield |= start;
nodes_used++;
if (end > memtop)
memtop = end;
}
if (nodes_used <= 1)
i = 63;
else
i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
memnodemapsize = (memtop >> i)+1;
return i;
}
int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
{
int shift;
shift = extract_lsb_from_nodes(nodes, numnodes);
if (allocate_cachealigned_memnodemap())
return -1;
printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
shift);
if (populate_memnodemap(nodes, numnodes, shift) != 1) {
printk(KERN_INFO "Your memory is not aligned you need to "
"rebuild your kernel with a bigger NODEMAPSIZE "
"shift=%d\n", shift);
return -1;
}
return shift;
}
int early_pfn_to_nid(unsigned long pfn)
{
return phys_to_nid(pfn << PAGE_SHIFT);
}
static void * __init early_node_mem(int nodeid, unsigned long start,
unsigned long end, unsigned long size)
{
unsigned long mem = find_e820_area(start, end, size);
void *ptr;
if (mem != -1L)
return __va(mem);
ptr = __alloc_bootmem_nopanic(size,
SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
if (ptr == NULL) {
printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
size, nodeid);
return NULL;
}
return ptr;
}
/* Initialize bootmem allocator for a node */
void __init setup_node_bootmem(int nodeid, unsigned long start,
unsigned long end)
{
unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
unsigned long bootmap_start, nodedata_phys;
void *bootmap;
const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
start = round_up(start, ZONE_ALIGN);
printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
start, end);
start_pfn = start >> PAGE_SHIFT;
end_pfn = end >> PAGE_SHIFT;
node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
if (node_data[nodeid] == NULL)
return;
nodedata_phys = __pa(node_data[nodeid]);
memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
NODE_DATA(nodeid)->node_start_pfn = start_pfn;
NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
/* Find a place for the bootmem map */
bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
bootmap = early_node_mem(nodeid, bootmap_start, end,
bootmap_pages<<PAGE_SHIFT);
if (bootmap == NULL) {
if (nodedata_phys < start || nodedata_phys >= end)
free_bootmem((unsigned long)node_data[nodeid],
pgdat_size);
node_data[nodeid] = NULL;
return;
}
bootmap_start = __pa(bootmap);
Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
bootmap_start >> PAGE_SHIFT,
start_pfn, end_pfn);
free_bootmem_with_active_regions(nodeid, end);
reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
bootmap_pages<<PAGE_SHIFT);
#ifdef CONFIG_ACPI_NUMA
srat_reserve_add_area(nodeid);
#endif
node_set_online(nodeid);
}
/* Initialize final allocator for a zone */
void __init setup_node_zones(int nodeid)
{
unsigned long start_pfn, end_pfn, memmapsize, limit;
start_pfn = node_start_pfn(nodeid);
end_pfn = node_end_pfn(nodeid);
Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
nodeid, start_pfn, end_pfn);
/*
* Try to allocate mem_map at end to not fill up precious <4GB
* memory.
*/
memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
limit = end_pfn << PAGE_SHIFT;
#ifdef CONFIG_FLAT_NODE_MEM_MAP
NODE_DATA(nodeid)->node_mem_map =
__alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
memmapsize, SMP_CACHE_BYTES,
round_down(limit - memmapsize, PAGE_SIZE),
limit);
#endif
}
/*
* There are unfortunately some poorly designed mainboards around that
* only connect memory to a single CPU. This breaks the 1:1 cpu->node
* mapping. To avoid this fill in the mapping for all possible CPUs,
* as the number of CPUs is not known yet. We round robin the existing
* nodes.
*/
void __init numa_init_array(void)
{
int rr, i;
rr = first_node(node_online_map);
for (i = 0; i < NR_CPUS; i++) {
if (cpu_to_node(i) != NUMA_NO_NODE)
continue;
numa_set_node(i, rr);
rr = next_node(rr, node_online_map);
if (rr == MAX_NUMNODES)
rr = first_node(node_online_map);
}
}
#ifdef CONFIG_NUMA_EMU
/* Numa emulation */
char *cmdline __initdata;
/*
* Setups up nid to range from addr to addr + size. If the end
* boundary is greater than max_addr, then max_addr is used instead.
* The return value is 0 if there is additional memory left for
* allocation past addr and -1 otherwise. addr is adjusted to be at
* the end of the node.
*/
static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
u64 size, u64 max_addr)
{
int ret = 0;
nodes[nid].start = *addr;
*addr += size;
if (*addr >= max_addr) {
*addr = max_addr;
ret = -1;
}
nodes[nid].end = *addr;
node_set(nid, node_possible_map);
printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
nodes[nid].start, nodes[nid].end,
(nodes[nid].end - nodes[nid].start) >> 20);
return ret;
}
/*
* Splits num_nodes nodes up equally starting at node_start. The return value
* is the number of nodes split up and addr is adjusted to be at the end of the
* last node allocated.
*/
static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
u64 max_addr, int node_start,
int num_nodes)
{
unsigned int big;
u64 size;
int i;
if (num_nodes <= 0)
return -1;
if (num_nodes > MAX_NUMNODES)
num_nodes = MAX_NUMNODES;
size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
num_nodes;
/*
* Calculate the number of big nodes that can be allocated as a result
* of consolidating the leftovers.
*/
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
FAKE_NODE_MIN_SIZE;
/* Round down to nearest FAKE_NODE_MIN_SIZE. */
size &= FAKE_NODE_MIN_HASH_MASK;
if (!size) {
printk(KERN_ERR "Not enough memory for each node. "
"NUMA emulation disabled.\n");
return -1;
}
for (i = node_start; i < num_nodes + node_start; i++) {
u64 end = *addr + size;
if (i < big)
end += FAKE_NODE_MIN_SIZE;
/*
* The final node can have the remaining system RAM. Other
* nodes receive roughly the same amount of available pages.
*/
if (i == num_nodes + node_start - 1)
end = max_addr;
else
while (end - *addr - e820_hole_size(*addr, end) <
size) {
end += FAKE_NODE_MIN_SIZE;
if (end > max_addr) {
end = max_addr;
break;
}
}
if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
break;
}
return i - node_start + 1;
}
/*
* Splits the remaining system RAM into chunks of size. The remaining memory is
* always assigned to a final node and can be asymmetric. Returns the number of
* nodes split.
*/
static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
u64 max_addr, int node_start, u64 size)
{
int i = node_start;
size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
while (!setup_node_range(i++, nodes, addr, size, max_addr))
;
return i - node_start;
}
/*
* Sets up the system RAM area from start_pfn to end_pfn according to the
* numa=fake command-line option.
*/
static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
{
struct bootnode nodes[MAX_NUMNODES];
u64 size, addr = start_pfn << PAGE_SHIFT;
u64 max_addr = end_pfn << PAGE_SHIFT;
int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
memset(&nodes, 0, sizeof(nodes));
/*
* If the numa=fake command-line is just a single number N, split the
* system RAM into N fake nodes.
*/
if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
long n = simple_strtol(cmdline, NULL, 0);
num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
if (num_nodes < 0)
return num_nodes;
goto out;
}
/* Parse the command line. */
for (coeff_flag = 0; ; cmdline++) {
if (*cmdline && isdigit(*cmdline)) {
num = num * 10 + *cmdline - '0';
continue;
}
if (*cmdline == '*') {
if (num > 0)
coeff = num;
coeff_flag = 1;
}
if (!*cmdline || *cmdline == ',') {
if (!coeff_flag)
coeff = 1;
/*
* Round down to the nearest FAKE_NODE_MIN_SIZE.
* Command-line coefficients are in megabytes.
*/
size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
if (size)
for (i = 0; i < coeff; i++, num_nodes++)
if (setup_node_range(num_nodes, nodes,
&addr, size, max_addr) < 0)
goto done;
if (!*cmdline)
break;
coeff_flag = 0;
coeff = -1;
}
num = 0;
}
done:
if (!num_nodes)
return -1;
/* Fill remainder of system RAM, if appropriate. */
if (addr < max_addr) {
if (coeff_flag && coeff < 0) {
/* Split remaining nodes into num-sized chunks */
num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
num_nodes, num);
goto out;
}
switch (*(cmdline - 1)) {
case '*':
/* Split remaining nodes into coeff chunks */
if (coeff <= 0)
break;
num_nodes += split_nodes_equally(nodes, &addr, max_addr,
num_nodes, coeff);
break;
case ',':
/* Do not allocate remaining system RAM */
break;
default:
/* Give one final node */
setup_node_range(num_nodes, nodes, &addr,
max_addr - addr, max_addr);
num_nodes++;
}
}
out:
memnode_shift = compute_hash_shift(nodes, num_nodes);
if (memnode_shift < 0) {
memnode_shift = 0;
printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
"disabled.\n");
return -1;
}
/*
* We need to vacate all active ranges that may have been registered by
* SRAT and set acpi_numa to -1 so that srat_disabled() always returns
* true. NUMA emulation has succeeded so we will not scan ACPI nodes.
*/
remove_all_active_ranges();
#ifdef CONFIG_ACPI_NUMA
acpi_numa = -1;
#endif
for_each_node_mask(i, node_possible_map) {
e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
nodes[i].end >> PAGE_SHIFT);
setup_node_bootmem(i, nodes[i].start, nodes[i].end);
}
acpi_fake_nodes(nodes, num_nodes);
numa_init_array();
return 0;
}
#endif /* CONFIG_NUMA_EMU */
void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
{
int i;
nodes_clear(node_possible_map);
#ifdef CONFIG_NUMA_EMU
if (cmdline && !numa_emulation(start_pfn, end_pfn))
return;
nodes_clear(node_possible_map);
#endif
#ifdef CONFIG_ACPI_NUMA
if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
end_pfn << PAGE_SHIFT))
return;
nodes_clear(node_possible_map);
#endif
#ifdef CONFIG_K8_NUMA
if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
end_pfn<<PAGE_SHIFT))
return;
nodes_clear(node_possible_map);
#endif
printk(KERN_INFO "%s\n",
numa_off ? "NUMA turned off" : "No NUMA configuration found");
printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
start_pfn << PAGE_SHIFT,
end_pfn << PAGE_SHIFT);
/* setup dummy node covering all memory */
memnode_shift = 63;
memnodemap = memnode.embedded_map;
memnodemap[0] = 0;
nodes_clear(node_online_map);
node_set_online(0);
node_set(0, node_possible_map);
for (i = 0; i < NR_CPUS; i++)
numa_set_node(i, 0);
node_to_cpumask_map[0] = cpumask_of_cpu(0);
e820_register_active_regions(0, start_pfn, end_pfn);
setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
}
__cpuinit void numa_add_cpu(int cpu)
{
set_bit(cpu, &node_to_cpumask_map[cpu_to_node(cpu)]);
}
void __cpuinit numa_set_node(int cpu, int node)
{
cpu_pda(cpu)->nodenumber = node;
cpu_to_node_map[cpu] = node;
}
unsigned long __init numa_free_all_bootmem(void)
{
unsigned long pages = 0;
int i;
for_each_online_node(i)
pages += free_all_bootmem_node(NODE_DATA(i));
return pages;
}
void __init paging_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
int i;
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
max_zone_pfns[ZONE_NORMAL] = end_pfn;
sparse_memory_present_with_active_regions(MAX_NUMNODES);
sparse_init();
for_each_online_node(i)
setup_node_zones(i);
free_area_init_nodes(max_zone_pfns);
}
static __init int numa_setup(char *opt)
{
if (!opt)
return -EINVAL;
if (!strncmp(opt, "off", 3))
numa_off = 1;
#ifdef CONFIG_NUMA_EMU
if (!strncmp(opt, "fake=", 5))
cmdline = opt + 5;
#endif
#ifdef CONFIG_ACPI_NUMA
if (!strncmp(opt, "noacpi", 6))
acpi_numa = -1;
if (!strncmp(opt, "hotadd=", 7))
hotadd_percent = simple_strtoul(opt+7, NULL, 10);
#endif
return 0;
}
early_param("numa", numa_setup);
/*
* Setup early cpu_to_node.
*
* Populate cpu_to_node[] only if x86_cpu_to_apicid[],
* and apicid_to_node[] tables have valid entries for a CPU.
* This means we skip cpu_to_node[] initialisation for NUMA
* emulation and faking node case (when running a kernel compiled
* for NUMA on a non NUMA box), which is OK as cpu_to_node[]
* is already initialized in a round robin manner at numa_init_array,
* prior to this call, and this initialization is good enough
* for the fake NUMA cases.
*/
void __init init_cpu_to_node(void)
{
int i;
for (i = 0; i < NR_CPUS; i++) {
u8 apicid = x86_cpu_to_apicid_init[i];
if (apicid == BAD_APICID)
continue;
if (apicid_to_node[apicid] == NUMA_NO_NODE)
continue;
numa_set_node(i, apicid_to_node[apicid]);
}
}