b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
752 lines
18 KiB
C
752 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* standard tape device functions for ibm tapes.
|
|
*
|
|
* S390 and zSeries version
|
|
* Copyright IBM Corp. 2001, 2002
|
|
* Author(s): Carsten Otte <cotte@de.ibm.com>
|
|
* Michael Holzheu <holzheu@de.ibm.com>
|
|
* Tuan Ngo-Anh <ngoanh@de.ibm.com>
|
|
* Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
* Stefan Bader <shbader@de.ibm.com>
|
|
*/
|
|
|
|
#define KMSG_COMPONENT "tape"
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
#include <linux/stddef.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/timer.h>
|
|
|
|
#include <asm/types.h>
|
|
#include <asm/idals.h>
|
|
#include <asm/ebcdic.h>
|
|
#include <asm/tape390.h>
|
|
|
|
#define TAPE_DBF_AREA tape_core_dbf
|
|
|
|
#include "tape.h"
|
|
#include "tape_std.h"
|
|
|
|
/*
|
|
* tape_std_assign
|
|
*/
|
|
static void
|
|
tape_std_assign_timeout(unsigned long data)
|
|
{
|
|
struct tape_request * request;
|
|
struct tape_device * device;
|
|
int rc;
|
|
|
|
request = (struct tape_request *) data;
|
|
device = request->device;
|
|
BUG_ON(!device);
|
|
|
|
DBF_EVENT(3, "%08x: Assignment timeout. Device busy.\n",
|
|
device->cdev_id);
|
|
rc = tape_cancel_io(device, request);
|
|
if(rc)
|
|
DBF_EVENT(3, "(%08x): Assign timeout: Cancel failed with rc = "
|
|
"%i\n", device->cdev_id, rc);
|
|
}
|
|
|
|
int
|
|
tape_std_assign(struct tape_device *device)
|
|
{
|
|
int rc;
|
|
struct timer_list timeout;
|
|
struct tape_request *request;
|
|
|
|
request = tape_alloc_request(2, 11);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
|
|
request->op = TO_ASSIGN;
|
|
tape_ccw_cc(request->cpaddr, ASSIGN, 11, request->cpdata);
|
|
tape_ccw_end(request->cpaddr + 1, NOP, 0, NULL);
|
|
|
|
/*
|
|
* The assign command sometimes blocks if the device is assigned
|
|
* to another host (actually this shouldn't happen but it does).
|
|
* So we set up a timeout for this call.
|
|
*/
|
|
init_timer_on_stack(&timeout);
|
|
timeout.function = tape_std_assign_timeout;
|
|
timeout.data = (unsigned long) request;
|
|
timeout.expires = jiffies + 2 * HZ;
|
|
add_timer(&timeout);
|
|
|
|
rc = tape_do_io_interruptible(device, request);
|
|
|
|
del_timer_sync(&timeout);
|
|
destroy_timer_on_stack(&timeout);
|
|
|
|
if (rc != 0) {
|
|
DBF_EVENT(3, "%08x: assign failed - device might be busy\n",
|
|
device->cdev_id);
|
|
} else {
|
|
DBF_EVENT(3, "%08x: Tape assigned\n", device->cdev_id);
|
|
}
|
|
tape_free_request(request);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* tape_std_unassign
|
|
*/
|
|
int
|
|
tape_std_unassign (struct tape_device *device)
|
|
{
|
|
int rc;
|
|
struct tape_request *request;
|
|
|
|
if (device->tape_state == TS_NOT_OPER) {
|
|
DBF_EVENT(3, "(%08x): Can't unassign device\n",
|
|
device->cdev_id);
|
|
return -EIO;
|
|
}
|
|
|
|
request = tape_alloc_request(2, 11);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
|
|
request->op = TO_UNASSIGN;
|
|
tape_ccw_cc(request->cpaddr, UNASSIGN, 11, request->cpdata);
|
|
tape_ccw_end(request->cpaddr + 1, NOP, 0, NULL);
|
|
|
|
if ((rc = tape_do_io(device, request)) != 0) {
|
|
DBF_EVENT(3, "%08x: Unassign failed\n", device->cdev_id);
|
|
} else {
|
|
DBF_EVENT(3, "%08x: Tape unassigned\n", device->cdev_id);
|
|
}
|
|
tape_free_request(request);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* TAPE390_DISPLAY: Show a string on the tape display.
|
|
*/
|
|
int
|
|
tape_std_display(struct tape_device *device, struct display_struct *disp)
|
|
{
|
|
struct tape_request *request;
|
|
int rc;
|
|
|
|
request = tape_alloc_request(2, 17);
|
|
if (IS_ERR(request)) {
|
|
DBF_EVENT(3, "TAPE: load display failed\n");
|
|
return PTR_ERR(request);
|
|
}
|
|
request->op = TO_DIS;
|
|
|
|
*(unsigned char *) request->cpdata = disp->cntrl;
|
|
DBF_EVENT(5, "TAPE: display cntrl=%04x\n", disp->cntrl);
|
|
memcpy(((unsigned char *) request->cpdata) + 1, disp->message1, 8);
|
|
memcpy(((unsigned char *) request->cpdata) + 9, disp->message2, 8);
|
|
ASCEBC(((unsigned char*) request->cpdata) + 1, 16);
|
|
|
|
tape_ccw_cc(request->cpaddr, LOAD_DISPLAY, 17, request->cpdata);
|
|
tape_ccw_end(request->cpaddr + 1, NOP, 0, NULL);
|
|
|
|
rc = tape_do_io_interruptible(device, request);
|
|
tape_free_request(request);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Read block id.
|
|
*/
|
|
int
|
|
tape_std_read_block_id(struct tape_device *device, __u64 *id)
|
|
{
|
|
struct tape_request *request;
|
|
int rc;
|
|
|
|
request = tape_alloc_request(3, 8);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_RBI;
|
|
/* setup ccws */
|
|
tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1, device->modeset_byte);
|
|
tape_ccw_cc(request->cpaddr + 1, READ_BLOCK_ID, 8, request->cpdata);
|
|
tape_ccw_end(request->cpaddr + 2, NOP, 0, NULL);
|
|
/* execute it */
|
|
rc = tape_do_io(device, request);
|
|
if (rc == 0)
|
|
/* Get result from read buffer. */
|
|
*id = *(__u64 *) request->cpdata;
|
|
tape_free_request(request);
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
tape_std_terminate_write(struct tape_device *device)
|
|
{
|
|
int rc;
|
|
|
|
if(device->required_tapemarks == 0)
|
|
return 0;
|
|
|
|
DBF_LH(5, "tape%d: terminate write %dxEOF\n", device->first_minor,
|
|
device->required_tapemarks);
|
|
|
|
rc = tape_mtop(device, MTWEOF, device->required_tapemarks);
|
|
if (rc)
|
|
return rc;
|
|
|
|
device->required_tapemarks = 0;
|
|
return tape_mtop(device, MTBSR, 1);
|
|
}
|
|
|
|
/*
|
|
* MTLOAD: Loads the tape.
|
|
* The default implementation just wait until the tape medium state changes
|
|
* to MS_LOADED.
|
|
*/
|
|
int
|
|
tape_std_mtload(struct tape_device *device, int count)
|
|
{
|
|
return wait_event_interruptible(device->state_change_wq,
|
|
(device->medium_state == MS_LOADED));
|
|
}
|
|
|
|
/*
|
|
* MTSETBLK: Set block size.
|
|
*/
|
|
int
|
|
tape_std_mtsetblk(struct tape_device *device, int count)
|
|
{
|
|
struct idal_buffer *new;
|
|
|
|
DBF_LH(6, "tape_std_mtsetblk(%d)\n", count);
|
|
if (count <= 0) {
|
|
/*
|
|
* Just set block_size to 0. tapechar_read/tapechar_write
|
|
* will realloc the idal buffer if a bigger one than the
|
|
* current is needed.
|
|
*/
|
|
device->char_data.block_size = 0;
|
|
return 0;
|
|
}
|
|
if (device->char_data.idal_buf != NULL &&
|
|
device->char_data.idal_buf->size == count)
|
|
/* We already have a idal buffer of that size. */
|
|
return 0;
|
|
|
|
if (count > MAX_BLOCKSIZE) {
|
|
DBF_EVENT(3, "Invalid block size (%d > %d) given.\n",
|
|
count, MAX_BLOCKSIZE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allocate a new idal buffer. */
|
|
new = idal_buffer_alloc(count, 0);
|
|
if (IS_ERR(new))
|
|
return -ENOMEM;
|
|
if (device->char_data.idal_buf != NULL)
|
|
idal_buffer_free(device->char_data.idal_buf);
|
|
device->char_data.idal_buf = new;
|
|
device->char_data.block_size = count;
|
|
|
|
DBF_LH(6, "new blocksize is %d\n", device->char_data.block_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* MTRESET: Set block size to 0.
|
|
*/
|
|
int
|
|
tape_std_mtreset(struct tape_device *device, int count)
|
|
{
|
|
DBF_EVENT(6, "TCHAR:devreset:\n");
|
|
device->char_data.block_size = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* MTFSF: Forward space over 'count' file marks. The tape is positioned
|
|
* at the EOT (End of Tape) side of the file mark.
|
|
*/
|
|
int
|
|
tape_std_mtfsf(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
struct ccw1 *ccw;
|
|
|
|
request = tape_alloc_request(mt_count + 2, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_FSF;
|
|
/* setup ccws */
|
|
ccw = tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1,
|
|
device->modeset_byte);
|
|
ccw = tape_ccw_repeat(ccw, FORSPACEFILE, mt_count);
|
|
ccw = tape_ccw_end(ccw, NOP, 0, NULL);
|
|
|
|
/* execute it */
|
|
return tape_do_io_free(device, request);
|
|
}
|
|
|
|
/*
|
|
* MTFSR: Forward space over 'count' tape blocks (blocksize is set
|
|
* via MTSETBLK.
|
|
*/
|
|
int
|
|
tape_std_mtfsr(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
struct ccw1 *ccw;
|
|
int rc;
|
|
|
|
request = tape_alloc_request(mt_count + 2, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_FSB;
|
|
/* setup ccws */
|
|
ccw = tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1,
|
|
device->modeset_byte);
|
|
ccw = tape_ccw_repeat(ccw, FORSPACEBLOCK, mt_count);
|
|
ccw = tape_ccw_end(ccw, NOP, 0, NULL);
|
|
|
|
/* execute it */
|
|
rc = tape_do_io(device, request);
|
|
if (rc == 0 && request->rescnt > 0) {
|
|
DBF_LH(3, "FSR over tapemark\n");
|
|
rc = 1;
|
|
}
|
|
tape_free_request(request);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* MTBSR: Backward space over 'count' tape blocks.
|
|
* (blocksize is set via MTSETBLK.
|
|
*/
|
|
int
|
|
tape_std_mtbsr(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
struct ccw1 *ccw;
|
|
int rc;
|
|
|
|
request = tape_alloc_request(mt_count + 2, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_BSB;
|
|
/* setup ccws */
|
|
ccw = tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1,
|
|
device->modeset_byte);
|
|
ccw = tape_ccw_repeat(ccw, BACKSPACEBLOCK, mt_count);
|
|
ccw = tape_ccw_end(ccw, NOP, 0, NULL);
|
|
|
|
/* execute it */
|
|
rc = tape_do_io(device, request);
|
|
if (rc == 0 && request->rescnt > 0) {
|
|
DBF_LH(3, "BSR over tapemark\n");
|
|
rc = 1;
|
|
}
|
|
tape_free_request(request);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* MTWEOF: Write 'count' file marks at the current position.
|
|
*/
|
|
int
|
|
tape_std_mtweof(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
struct ccw1 *ccw;
|
|
|
|
request = tape_alloc_request(mt_count + 2, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_WTM;
|
|
/* setup ccws */
|
|
ccw = tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1,
|
|
device->modeset_byte);
|
|
ccw = tape_ccw_repeat(ccw, WRITETAPEMARK, mt_count);
|
|
ccw = tape_ccw_end(ccw, NOP, 0, NULL);
|
|
|
|
/* execute it */
|
|
return tape_do_io_free(device, request);
|
|
}
|
|
|
|
/*
|
|
* MTBSFM: Backward space over 'count' file marks.
|
|
* The tape is positioned at the BOT (Begin Of Tape) side of the
|
|
* last skipped file mark.
|
|
*/
|
|
int
|
|
tape_std_mtbsfm(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
struct ccw1 *ccw;
|
|
|
|
request = tape_alloc_request(mt_count + 2, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_BSF;
|
|
/* setup ccws */
|
|
ccw = tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1,
|
|
device->modeset_byte);
|
|
ccw = tape_ccw_repeat(ccw, BACKSPACEFILE, mt_count);
|
|
ccw = tape_ccw_end(ccw, NOP, 0, NULL);
|
|
|
|
/* execute it */
|
|
return tape_do_io_free(device, request);
|
|
}
|
|
|
|
/*
|
|
* MTBSF: Backward space over 'count' file marks. The tape is positioned at
|
|
* the EOT (End of Tape) side of the last skipped file mark.
|
|
*/
|
|
int
|
|
tape_std_mtbsf(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
struct ccw1 *ccw;
|
|
int rc;
|
|
|
|
request = tape_alloc_request(mt_count + 2, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_BSF;
|
|
/* setup ccws */
|
|
ccw = tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1,
|
|
device->modeset_byte);
|
|
ccw = tape_ccw_repeat(ccw, BACKSPACEFILE, mt_count);
|
|
ccw = tape_ccw_end(ccw, NOP, 0, NULL);
|
|
/* execute it */
|
|
rc = tape_do_io_free(device, request);
|
|
if (rc == 0) {
|
|
rc = tape_mtop(device, MTFSR, 1);
|
|
if (rc > 0)
|
|
rc = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* MTFSFM: Forward space over 'count' file marks.
|
|
* The tape is positioned at the BOT (Begin Of Tape) side
|
|
* of the last skipped file mark.
|
|
*/
|
|
int
|
|
tape_std_mtfsfm(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
struct ccw1 *ccw;
|
|
int rc;
|
|
|
|
request = tape_alloc_request(mt_count + 2, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_FSF;
|
|
/* setup ccws */
|
|
ccw = tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1,
|
|
device->modeset_byte);
|
|
ccw = tape_ccw_repeat(ccw, FORSPACEFILE, mt_count);
|
|
ccw = tape_ccw_end(ccw, NOP, 0, NULL);
|
|
/* execute it */
|
|
rc = tape_do_io_free(device, request);
|
|
if (rc == 0) {
|
|
rc = tape_mtop(device, MTBSR, 1);
|
|
if (rc > 0)
|
|
rc = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* MTREW: Rewind the tape.
|
|
*/
|
|
int
|
|
tape_std_mtrew(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
|
|
request = tape_alloc_request(3, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_REW;
|
|
/* setup ccws */
|
|
tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1,
|
|
device->modeset_byte);
|
|
tape_ccw_cc(request->cpaddr + 1, REWIND, 0, NULL);
|
|
tape_ccw_end(request->cpaddr + 2, NOP, 0, NULL);
|
|
|
|
/* execute it */
|
|
return tape_do_io_free(device, request);
|
|
}
|
|
|
|
/*
|
|
* MTOFFL: Rewind the tape and put the drive off-line.
|
|
* Implement 'rewind unload'
|
|
*/
|
|
int
|
|
tape_std_mtoffl(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
|
|
request = tape_alloc_request(3, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_RUN;
|
|
/* setup ccws */
|
|
tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1, device->modeset_byte);
|
|
tape_ccw_cc(request->cpaddr + 1, REWIND_UNLOAD, 0, NULL);
|
|
tape_ccw_end(request->cpaddr + 2, NOP, 0, NULL);
|
|
|
|
/* execute it */
|
|
return tape_do_io_free(device, request);
|
|
}
|
|
|
|
/*
|
|
* MTNOP: 'No operation'.
|
|
*/
|
|
int
|
|
tape_std_mtnop(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
|
|
request = tape_alloc_request(2, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_NOP;
|
|
/* setup ccws */
|
|
tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1, device->modeset_byte);
|
|
tape_ccw_end(request->cpaddr + 1, NOP, 0, NULL);
|
|
/* execute it */
|
|
return tape_do_io_free(device, request);
|
|
}
|
|
|
|
/*
|
|
* MTEOM: positions at the end of the portion of the tape already used
|
|
* for recordind data. MTEOM positions after the last file mark, ready for
|
|
* appending another file.
|
|
*/
|
|
int
|
|
tape_std_mteom(struct tape_device *device, int mt_count)
|
|
{
|
|
int rc;
|
|
|
|
/*
|
|
* Seek from the beginning of tape (rewind).
|
|
*/
|
|
if ((rc = tape_mtop(device, MTREW, 1)) < 0)
|
|
return rc;
|
|
|
|
/*
|
|
* The logical end of volume is given by two sewuential tapemarks.
|
|
* Look for this by skipping to the next file (over one tapemark)
|
|
* and then test for another one (fsr returns 1 if a tapemark was
|
|
* encountered).
|
|
*/
|
|
do {
|
|
if ((rc = tape_mtop(device, MTFSF, 1)) < 0)
|
|
return rc;
|
|
if ((rc = tape_mtop(device, MTFSR, 1)) < 0)
|
|
return rc;
|
|
} while (rc == 0);
|
|
|
|
return tape_mtop(device, MTBSR, 1);
|
|
}
|
|
|
|
/*
|
|
* MTRETEN: Retension the tape, i.e. forward space to end of tape and rewind.
|
|
*/
|
|
int
|
|
tape_std_mtreten(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
|
|
request = tape_alloc_request(4, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_FSF;
|
|
/* setup ccws */
|
|
tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1, device->modeset_byte);
|
|
tape_ccw_cc(request->cpaddr + 1,FORSPACEFILE, 0, NULL);
|
|
tape_ccw_cc(request->cpaddr + 2, NOP, 0, NULL);
|
|
tape_ccw_end(request->cpaddr + 3, CCW_CMD_TIC, 0, request->cpaddr);
|
|
/* execute it, MTRETEN rc gets ignored */
|
|
tape_do_io_interruptible(device, request);
|
|
tape_free_request(request);
|
|
return tape_mtop(device, MTREW, 1);
|
|
}
|
|
|
|
/*
|
|
* MTERASE: erases the tape.
|
|
*/
|
|
int
|
|
tape_std_mterase(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
|
|
request = tape_alloc_request(6, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_DSE;
|
|
/* setup ccws */
|
|
tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1, device->modeset_byte);
|
|
tape_ccw_cc(request->cpaddr + 1, REWIND, 0, NULL);
|
|
tape_ccw_cc(request->cpaddr + 2, ERASE_GAP, 0, NULL);
|
|
tape_ccw_cc(request->cpaddr + 3, DATA_SEC_ERASE, 0, NULL);
|
|
tape_ccw_cc(request->cpaddr + 4, REWIND, 0, NULL);
|
|
tape_ccw_end(request->cpaddr + 5, NOP, 0, NULL);
|
|
|
|
/* execute it */
|
|
return tape_do_io_free(device, request);
|
|
}
|
|
|
|
/*
|
|
* MTUNLOAD: Rewind the tape and unload it.
|
|
*/
|
|
int
|
|
tape_std_mtunload(struct tape_device *device, int mt_count)
|
|
{
|
|
return tape_mtop(device, MTOFFL, mt_count);
|
|
}
|
|
|
|
/*
|
|
* MTCOMPRESSION: used to enable compression.
|
|
* Sets the IDRC on/off.
|
|
*/
|
|
int
|
|
tape_std_mtcompression(struct tape_device *device, int mt_count)
|
|
{
|
|
struct tape_request *request;
|
|
|
|
if (mt_count < 0 || mt_count > 1) {
|
|
DBF_EXCEPTION(6, "xcom parm\n");
|
|
return -EINVAL;
|
|
}
|
|
request = tape_alloc_request(2, 0);
|
|
if (IS_ERR(request))
|
|
return PTR_ERR(request);
|
|
request->op = TO_NOP;
|
|
/* setup ccws */
|
|
if (mt_count == 0)
|
|
*device->modeset_byte &= ~0x08;
|
|
else
|
|
*device->modeset_byte |= 0x08;
|
|
tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1, device->modeset_byte);
|
|
tape_ccw_end(request->cpaddr + 1, NOP, 0, NULL);
|
|
/* execute it */
|
|
return tape_do_io_free(device, request);
|
|
}
|
|
|
|
/*
|
|
* Read Block
|
|
*/
|
|
struct tape_request *
|
|
tape_std_read_block(struct tape_device *device, size_t count)
|
|
{
|
|
struct tape_request *request;
|
|
|
|
/*
|
|
* We have to alloc 4 ccws in order to be able to transform request
|
|
* into a read backward request in error case.
|
|
*/
|
|
request = tape_alloc_request(4, 0);
|
|
if (IS_ERR(request)) {
|
|
DBF_EXCEPTION(6, "xrbl fail");
|
|
return request;
|
|
}
|
|
request->op = TO_RFO;
|
|
tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1, device->modeset_byte);
|
|
tape_ccw_end_idal(request->cpaddr + 1, READ_FORWARD,
|
|
device->char_data.idal_buf);
|
|
DBF_EVENT(6, "xrbl ccwg\n");
|
|
return request;
|
|
}
|
|
|
|
/*
|
|
* Read Block backward transformation function.
|
|
*/
|
|
void
|
|
tape_std_read_backward(struct tape_device *device, struct tape_request *request)
|
|
{
|
|
/*
|
|
* We have allocated 4 ccws in tape_std_read, so we can now
|
|
* transform the request to a read backward, followed by a
|
|
* forward space block.
|
|
*/
|
|
request->op = TO_RBA;
|
|
tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1, device->modeset_byte);
|
|
tape_ccw_cc_idal(request->cpaddr + 1, READ_BACKWARD,
|
|
device->char_data.idal_buf);
|
|
tape_ccw_cc(request->cpaddr + 2, FORSPACEBLOCK, 0, NULL);
|
|
tape_ccw_end(request->cpaddr + 3, NOP, 0, NULL);
|
|
DBF_EVENT(6, "xrop ccwg");}
|
|
|
|
/*
|
|
* Write Block
|
|
*/
|
|
struct tape_request *
|
|
tape_std_write_block(struct tape_device *device, size_t count)
|
|
{
|
|
struct tape_request *request;
|
|
|
|
request = tape_alloc_request(2, 0);
|
|
if (IS_ERR(request)) {
|
|
DBF_EXCEPTION(6, "xwbl fail\n");
|
|
return request;
|
|
}
|
|
request->op = TO_WRI;
|
|
tape_ccw_cc(request->cpaddr, MODE_SET_DB, 1, device->modeset_byte);
|
|
tape_ccw_end_idal(request->cpaddr + 1, WRITE_CMD,
|
|
device->char_data.idal_buf);
|
|
DBF_EVENT(6, "xwbl ccwg\n");
|
|
return request;
|
|
}
|
|
|
|
/*
|
|
* This routine is called by frontend after an ENOSP on write
|
|
*/
|
|
void
|
|
tape_std_process_eov(struct tape_device *device)
|
|
{
|
|
/*
|
|
* End of volume: We have to backspace the last written record, then
|
|
* we TRY to write a tapemark and then backspace over the written TM
|
|
*/
|
|
if (tape_mtop(device, MTBSR, 1) == 0 &&
|
|
tape_mtop(device, MTWEOF, 1) == 0) {
|
|
tape_mtop(device, MTBSR, 1);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(tape_std_assign);
|
|
EXPORT_SYMBOL(tape_std_unassign);
|
|
EXPORT_SYMBOL(tape_std_display);
|
|
EXPORT_SYMBOL(tape_std_read_block_id);
|
|
EXPORT_SYMBOL(tape_std_mtload);
|
|
EXPORT_SYMBOL(tape_std_mtsetblk);
|
|
EXPORT_SYMBOL(tape_std_mtreset);
|
|
EXPORT_SYMBOL(tape_std_mtfsf);
|
|
EXPORT_SYMBOL(tape_std_mtfsr);
|
|
EXPORT_SYMBOL(tape_std_mtbsr);
|
|
EXPORT_SYMBOL(tape_std_mtweof);
|
|
EXPORT_SYMBOL(tape_std_mtbsfm);
|
|
EXPORT_SYMBOL(tape_std_mtbsf);
|
|
EXPORT_SYMBOL(tape_std_mtfsfm);
|
|
EXPORT_SYMBOL(tape_std_mtrew);
|
|
EXPORT_SYMBOL(tape_std_mtoffl);
|
|
EXPORT_SYMBOL(tape_std_mtnop);
|
|
EXPORT_SYMBOL(tape_std_mteom);
|
|
EXPORT_SYMBOL(tape_std_mtreten);
|
|
EXPORT_SYMBOL(tape_std_mterase);
|
|
EXPORT_SYMBOL(tape_std_mtunload);
|
|
EXPORT_SYMBOL(tape_std_mtcompression);
|
|
EXPORT_SYMBOL(tape_std_read_block);
|
|
EXPORT_SYMBOL(tape_std_read_backward);
|
|
EXPORT_SYMBOL(tape_std_write_block);
|
|
EXPORT_SYMBOL(tape_std_process_eov);
|