b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
577 lines
15 KiB
C
577 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* SCLP line mode terminal driver.
|
|
*
|
|
* S390 version
|
|
* Copyright IBM Corp. 1999
|
|
* Author(s): Martin Peschke <mpeschke@de.ibm.com>
|
|
* Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
*/
|
|
|
|
#include <linux/kmod.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_driver.h>
|
|
#include <linux/tty_flip.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include "ctrlchar.h"
|
|
#include "sclp.h"
|
|
#include "sclp_rw.h"
|
|
#include "sclp_tty.h"
|
|
|
|
/*
|
|
* size of a buffer that collects single characters coming in
|
|
* via sclp_tty_put_char()
|
|
*/
|
|
#define SCLP_TTY_BUF_SIZE 512
|
|
|
|
/*
|
|
* There is exactly one SCLP terminal, so we can keep things simple
|
|
* and allocate all variables statically.
|
|
*/
|
|
|
|
/* Lock to guard over changes to global variables. */
|
|
static spinlock_t sclp_tty_lock;
|
|
/* List of free pages that can be used for console output buffering. */
|
|
static struct list_head sclp_tty_pages;
|
|
/* List of full struct sclp_buffer structures ready for output. */
|
|
static struct list_head sclp_tty_outqueue;
|
|
/* Counter how many buffers are emitted. */
|
|
static int sclp_tty_buffer_count;
|
|
/* Pointer to current console buffer. */
|
|
static struct sclp_buffer *sclp_ttybuf;
|
|
/* Timer for delayed output of console messages. */
|
|
static struct timer_list sclp_tty_timer;
|
|
|
|
static struct tty_port sclp_port;
|
|
static unsigned char sclp_tty_chars[SCLP_TTY_BUF_SIZE];
|
|
static unsigned short int sclp_tty_chars_count;
|
|
|
|
struct tty_driver *sclp_tty_driver;
|
|
|
|
static int sclp_tty_tolower;
|
|
static int sclp_tty_columns = 80;
|
|
|
|
#define SPACES_PER_TAB 8
|
|
#define CASE_DELIMITER 0x6c /* to separate upper and lower case (% in EBCDIC) */
|
|
|
|
/* This routine is called whenever we try to open a SCLP terminal. */
|
|
static int
|
|
sclp_tty_open(struct tty_struct *tty, struct file *filp)
|
|
{
|
|
tty_port_tty_set(&sclp_port, tty);
|
|
tty->driver_data = NULL;
|
|
sclp_port.low_latency = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* This routine is called when the SCLP terminal is closed. */
|
|
static void
|
|
sclp_tty_close(struct tty_struct *tty, struct file *filp)
|
|
{
|
|
if (tty->count > 1)
|
|
return;
|
|
tty_port_tty_set(&sclp_port, NULL);
|
|
}
|
|
|
|
/*
|
|
* This routine returns the numbers of characters the tty driver
|
|
* will accept for queuing to be written. This number is subject
|
|
* to change as output buffers get emptied, or if the output flow
|
|
* control is acted. This is not an exact number because not every
|
|
* character needs the same space in the sccb. The worst case is
|
|
* a string of newlines. Every newline creates a new message which
|
|
* needs 82 bytes.
|
|
*/
|
|
static int
|
|
sclp_tty_write_room (struct tty_struct *tty)
|
|
{
|
|
unsigned long flags;
|
|
struct list_head *l;
|
|
int count;
|
|
|
|
spin_lock_irqsave(&sclp_tty_lock, flags);
|
|
count = 0;
|
|
if (sclp_ttybuf != NULL)
|
|
count = sclp_buffer_space(sclp_ttybuf) / sizeof(struct msg_buf);
|
|
list_for_each(l, &sclp_tty_pages)
|
|
count += NR_EMPTY_MSG_PER_SCCB;
|
|
spin_unlock_irqrestore(&sclp_tty_lock, flags);
|
|
return count;
|
|
}
|
|
|
|
static void
|
|
sclp_ttybuf_callback(struct sclp_buffer *buffer, int rc)
|
|
{
|
|
unsigned long flags;
|
|
void *page;
|
|
|
|
do {
|
|
page = sclp_unmake_buffer(buffer);
|
|
spin_lock_irqsave(&sclp_tty_lock, flags);
|
|
/* Remove buffer from outqueue */
|
|
list_del(&buffer->list);
|
|
sclp_tty_buffer_count--;
|
|
list_add_tail((struct list_head *) page, &sclp_tty_pages);
|
|
/* Check if there is a pending buffer on the out queue. */
|
|
buffer = NULL;
|
|
if (!list_empty(&sclp_tty_outqueue))
|
|
buffer = list_entry(sclp_tty_outqueue.next,
|
|
struct sclp_buffer, list);
|
|
spin_unlock_irqrestore(&sclp_tty_lock, flags);
|
|
} while (buffer && sclp_emit_buffer(buffer, sclp_ttybuf_callback));
|
|
|
|
tty_port_tty_wakeup(&sclp_port);
|
|
}
|
|
|
|
static inline void
|
|
__sclp_ttybuf_emit(struct sclp_buffer *buffer)
|
|
{
|
|
unsigned long flags;
|
|
int count;
|
|
int rc;
|
|
|
|
spin_lock_irqsave(&sclp_tty_lock, flags);
|
|
list_add_tail(&buffer->list, &sclp_tty_outqueue);
|
|
count = sclp_tty_buffer_count++;
|
|
spin_unlock_irqrestore(&sclp_tty_lock, flags);
|
|
if (count)
|
|
return;
|
|
rc = sclp_emit_buffer(buffer, sclp_ttybuf_callback);
|
|
if (rc)
|
|
sclp_ttybuf_callback(buffer, rc);
|
|
}
|
|
|
|
/*
|
|
* When this routine is called from the timer then we flush the
|
|
* temporary write buffer.
|
|
*/
|
|
static void
|
|
sclp_tty_timeout(unsigned long data)
|
|
{
|
|
unsigned long flags;
|
|
struct sclp_buffer *buf;
|
|
|
|
spin_lock_irqsave(&sclp_tty_lock, flags);
|
|
buf = sclp_ttybuf;
|
|
sclp_ttybuf = NULL;
|
|
spin_unlock_irqrestore(&sclp_tty_lock, flags);
|
|
|
|
if (buf != NULL) {
|
|
__sclp_ttybuf_emit(buf);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write a string to the sclp tty.
|
|
*/
|
|
static int sclp_tty_write_string(const unsigned char *str, int count, int may_fail)
|
|
{
|
|
unsigned long flags;
|
|
void *page;
|
|
int written;
|
|
int overall_written;
|
|
struct sclp_buffer *buf;
|
|
|
|
if (count <= 0)
|
|
return 0;
|
|
overall_written = 0;
|
|
spin_lock_irqsave(&sclp_tty_lock, flags);
|
|
do {
|
|
/* Create a sclp output buffer if none exists yet */
|
|
if (sclp_ttybuf == NULL) {
|
|
while (list_empty(&sclp_tty_pages)) {
|
|
spin_unlock_irqrestore(&sclp_tty_lock, flags);
|
|
if (may_fail)
|
|
goto out;
|
|
else
|
|
sclp_sync_wait();
|
|
spin_lock_irqsave(&sclp_tty_lock, flags);
|
|
}
|
|
page = sclp_tty_pages.next;
|
|
list_del((struct list_head *) page);
|
|
sclp_ttybuf = sclp_make_buffer(page, sclp_tty_columns,
|
|
SPACES_PER_TAB);
|
|
}
|
|
/* try to write the string to the current output buffer */
|
|
written = sclp_write(sclp_ttybuf, str, count);
|
|
overall_written += written;
|
|
if (written == count)
|
|
break;
|
|
/*
|
|
* Not all characters could be written to the current
|
|
* output buffer. Emit the buffer, create a new buffer
|
|
* and then output the rest of the string.
|
|
*/
|
|
buf = sclp_ttybuf;
|
|
sclp_ttybuf = NULL;
|
|
spin_unlock_irqrestore(&sclp_tty_lock, flags);
|
|
__sclp_ttybuf_emit(buf);
|
|
spin_lock_irqsave(&sclp_tty_lock, flags);
|
|
str += written;
|
|
count -= written;
|
|
} while (count > 0);
|
|
/* Setup timer to output current console buffer after 1/10 second */
|
|
if (sclp_ttybuf && sclp_chars_in_buffer(sclp_ttybuf) &&
|
|
!timer_pending(&sclp_tty_timer)) {
|
|
init_timer(&sclp_tty_timer);
|
|
sclp_tty_timer.function = sclp_tty_timeout;
|
|
sclp_tty_timer.data = 0UL;
|
|
sclp_tty_timer.expires = jiffies + HZ/10;
|
|
add_timer(&sclp_tty_timer);
|
|
}
|
|
spin_unlock_irqrestore(&sclp_tty_lock, flags);
|
|
out:
|
|
return overall_written;
|
|
}
|
|
|
|
/*
|
|
* This routine is called by the kernel to write a series of characters to the
|
|
* tty device. The characters may come from user space or kernel space. This
|
|
* routine will return the number of characters actually accepted for writing.
|
|
*/
|
|
static int
|
|
sclp_tty_write(struct tty_struct *tty, const unsigned char *buf, int count)
|
|
{
|
|
if (sclp_tty_chars_count > 0) {
|
|
sclp_tty_write_string(sclp_tty_chars, sclp_tty_chars_count, 0);
|
|
sclp_tty_chars_count = 0;
|
|
}
|
|
return sclp_tty_write_string(buf, count, 1);
|
|
}
|
|
|
|
/*
|
|
* This routine is called by the kernel to write a single character to the tty
|
|
* device. If the kernel uses this routine, it must call the flush_chars()
|
|
* routine (if defined) when it is done stuffing characters into the driver.
|
|
*
|
|
* Characters provided to sclp_tty_put_char() are buffered by the SCLP driver.
|
|
* If the given character is a '\n' the contents of the SCLP write buffer
|
|
* - including previous characters from sclp_tty_put_char() and strings from
|
|
* sclp_write() without final '\n' - will be written.
|
|
*/
|
|
static int
|
|
sclp_tty_put_char(struct tty_struct *tty, unsigned char ch)
|
|
{
|
|
sclp_tty_chars[sclp_tty_chars_count++] = ch;
|
|
if (ch == '\n' || sclp_tty_chars_count >= SCLP_TTY_BUF_SIZE) {
|
|
sclp_tty_write_string(sclp_tty_chars, sclp_tty_chars_count, 0);
|
|
sclp_tty_chars_count = 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This routine is called by the kernel after it has written a series of
|
|
* characters to the tty device using put_char().
|
|
*/
|
|
static void
|
|
sclp_tty_flush_chars(struct tty_struct *tty)
|
|
{
|
|
if (sclp_tty_chars_count > 0) {
|
|
sclp_tty_write_string(sclp_tty_chars, sclp_tty_chars_count, 0);
|
|
sclp_tty_chars_count = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine returns the number of characters in the write buffer of the
|
|
* SCLP driver. The provided number includes all characters that are stored
|
|
* in the SCCB (will be written next time the SCLP is not busy) as well as
|
|
* characters in the write buffer (will not be written as long as there is a
|
|
* final line feed missing).
|
|
*/
|
|
static int
|
|
sclp_tty_chars_in_buffer(struct tty_struct *tty)
|
|
{
|
|
unsigned long flags;
|
|
struct list_head *l;
|
|
struct sclp_buffer *t;
|
|
int count;
|
|
|
|
spin_lock_irqsave(&sclp_tty_lock, flags);
|
|
count = 0;
|
|
if (sclp_ttybuf != NULL)
|
|
count = sclp_chars_in_buffer(sclp_ttybuf);
|
|
list_for_each(l, &sclp_tty_outqueue) {
|
|
t = list_entry(l, struct sclp_buffer, list);
|
|
count += sclp_chars_in_buffer(t);
|
|
}
|
|
spin_unlock_irqrestore(&sclp_tty_lock, flags);
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* removes all content from buffers of low level driver
|
|
*/
|
|
static void
|
|
sclp_tty_flush_buffer(struct tty_struct *tty)
|
|
{
|
|
if (sclp_tty_chars_count > 0) {
|
|
sclp_tty_write_string(sclp_tty_chars, sclp_tty_chars_count, 0);
|
|
sclp_tty_chars_count = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* push input to tty
|
|
*/
|
|
static void
|
|
sclp_tty_input(unsigned char* buf, unsigned int count)
|
|
{
|
|
struct tty_struct *tty = tty_port_tty_get(&sclp_port);
|
|
unsigned int cchar;
|
|
|
|
/*
|
|
* If this tty driver is currently closed
|
|
* then throw the received input away.
|
|
*/
|
|
if (tty == NULL)
|
|
return;
|
|
cchar = ctrlchar_handle(buf, count, tty);
|
|
switch (cchar & CTRLCHAR_MASK) {
|
|
case CTRLCHAR_SYSRQ:
|
|
break;
|
|
case CTRLCHAR_CTRL:
|
|
tty_insert_flip_char(&sclp_port, cchar, TTY_NORMAL);
|
|
tty_flip_buffer_push(&sclp_port);
|
|
break;
|
|
case CTRLCHAR_NONE:
|
|
/* send (normal) input to line discipline */
|
|
if (count < 2 ||
|
|
(strncmp((const char *) buf + count - 2, "^n", 2) &&
|
|
strncmp((const char *) buf + count - 2, "\252n", 2))) {
|
|
/* add the auto \n */
|
|
tty_insert_flip_string(&sclp_port, buf, count);
|
|
tty_insert_flip_char(&sclp_port, '\n', TTY_NORMAL);
|
|
} else
|
|
tty_insert_flip_string(&sclp_port, buf, count - 2);
|
|
tty_flip_buffer_push(&sclp_port);
|
|
break;
|
|
}
|
|
tty_kref_put(tty);
|
|
}
|
|
|
|
/*
|
|
* get a EBCDIC string in upper/lower case,
|
|
* find out characters in lower/upper case separated by a special character,
|
|
* modifiy original string,
|
|
* returns length of resulting string
|
|
*/
|
|
static int sclp_switch_cases(unsigned char *buf, int count)
|
|
{
|
|
unsigned char *ip, *op;
|
|
int toggle;
|
|
|
|
/* initially changing case is off */
|
|
toggle = 0;
|
|
ip = op = buf;
|
|
while (count-- > 0) {
|
|
/* compare with special character */
|
|
if (*ip == CASE_DELIMITER) {
|
|
/* followed by another special character? */
|
|
if (count && ip[1] == CASE_DELIMITER) {
|
|
/*
|
|
* ... then put a single copy of the special
|
|
* character to the output string
|
|
*/
|
|
*op++ = *ip++;
|
|
count--;
|
|
} else
|
|
/*
|
|
* ... special character follower by a normal
|
|
* character toggles the case change behaviour
|
|
*/
|
|
toggle = ~toggle;
|
|
/* skip special character */
|
|
ip++;
|
|
} else
|
|
/* not the special character */
|
|
if (toggle)
|
|
/* but case switching is on */
|
|
if (sclp_tty_tolower)
|
|
/* switch to uppercase */
|
|
*op++ = _ebc_toupper[(int) *ip++];
|
|
else
|
|
/* switch to lowercase */
|
|
*op++ = _ebc_tolower[(int) *ip++];
|
|
else
|
|
/* no case switching, copy the character */
|
|
*op++ = *ip++;
|
|
}
|
|
/* return length of reformatted string. */
|
|
return op - buf;
|
|
}
|
|
|
|
static void sclp_get_input(struct gds_subvector *sv)
|
|
{
|
|
unsigned char *str;
|
|
int count;
|
|
|
|
str = (unsigned char *) (sv + 1);
|
|
count = sv->length - sizeof(*sv);
|
|
if (sclp_tty_tolower)
|
|
EBC_TOLOWER(str, count);
|
|
count = sclp_switch_cases(str, count);
|
|
/* convert EBCDIC to ASCII (modify original input in SCCB) */
|
|
sclp_ebcasc_str(str, count);
|
|
|
|
/* transfer input to high level driver */
|
|
sclp_tty_input(str, count);
|
|
}
|
|
|
|
static inline void sclp_eval_selfdeftextmsg(struct gds_subvector *sv)
|
|
{
|
|
void *end;
|
|
|
|
end = (void *) sv + sv->length;
|
|
for (sv = sv + 1; (void *) sv < end; sv = (void *) sv + sv->length)
|
|
if (sv->key == 0x30)
|
|
sclp_get_input(sv);
|
|
}
|
|
|
|
static inline void sclp_eval_textcmd(struct gds_vector *v)
|
|
{
|
|
struct gds_subvector *sv;
|
|
void *end;
|
|
|
|
end = (void *) v + v->length;
|
|
for (sv = (struct gds_subvector *) (v + 1);
|
|
(void *) sv < end; sv = (void *) sv + sv->length)
|
|
if (sv->key == GDS_KEY_SELFDEFTEXTMSG)
|
|
sclp_eval_selfdeftextmsg(sv);
|
|
|
|
}
|
|
|
|
static inline void sclp_eval_cpmsu(struct gds_vector *v)
|
|
{
|
|
void *end;
|
|
|
|
end = (void *) v + v->length;
|
|
for (v = v + 1; (void *) v < end; v = (void *) v + v->length)
|
|
if (v->gds_id == GDS_ID_TEXTCMD)
|
|
sclp_eval_textcmd(v);
|
|
}
|
|
|
|
|
|
static inline void sclp_eval_mdsmu(struct gds_vector *v)
|
|
{
|
|
v = sclp_find_gds_vector(v + 1, (void *) v + v->length, GDS_ID_CPMSU);
|
|
if (v)
|
|
sclp_eval_cpmsu(v);
|
|
}
|
|
|
|
static void sclp_tty_receiver(struct evbuf_header *evbuf)
|
|
{
|
|
struct gds_vector *v;
|
|
|
|
v = sclp_find_gds_vector(evbuf + 1, (void *) evbuf + evbuf->length,
|
|
GDS_ID_MDSMU);
|
|
if (v)
|
|
sclp_eval_mdsmu(v);
|
|
}
|
|
|
|
static void
|
|
sclp_tty_state_change(struct sclp_register *reg)
|
|
{
|
|
}
|
|
|
|
static struct sclp_register sclp_input_event =
|
|
{
|
|
.receive_mask = EVTYP_OPCMD_MASK | EVTYP_PMSGCMD_MASK,
|
|
.state_change_fn = sclp_tty_state_change,
|
|
.receiver_fn = sclp_tty_receiver
|
|
};
|
|
|
|
static const struct tty_operations sclp_ops = {
|
|
.open = sclp_tty_open,
|
|
.close = sclp_tty_close,
|
|
.write = sclp_tty_write,
|
|
.put_char = sclp_tty_put_char,
|
|
.flush_chars = sclp_tty_flush_chars,
|
|
.write_room = sclp_tty_write_room,
|
|
.chars_in_buffer = sclp_tty_chars_in_buffer,
|
|
.flush_buffer = sclp_tty_flush_buffer,
|
|
};
|
|
|
|
static int __init
|
|
sclp_tty_init(void)
|
|
{
|
|
struct tty_driver *driver;
|
|
void *page;
|
|
int i;
|
|
int rc;
|
|
|
|
if (!CONSOLE_IS_SCLP)
|
|
return 0;
|
|
driver = alloc_tty_driver(1);
|
|
if (!driver)
|
|
return -ENOMEM;
|
|
|
|
rc = sclp_rw_init();
|
|
if (rc) {
|
|
put_tty_driver(driver);
|
|
return rc;
|
|
}
|
|
/* Allocate pages for output buffering */
|
|
INIT_LIST_HEAD(&sclp_tty_pages);
|
|
for (i = 0; i < MAX_KMEM_PAGES; i++) {
|
|
page = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
|
|
if (page == NULL) {
|
|
put_tty_driver(driver);
|
|
return -ENOMEM;
|
|
}
|
|
list_add_tail((struct list_head *) page, &sclp_tty_pages);
|
|
}
|
|
INIT_LIST_HEAD(&sclp_tty_outqueue);
|
|
spin_lock_init(&sclp_tty_lock);
|
|
init_timer(&sclp_tty_timer);
|
|
sclp_ttybuf = NULL;
|
|
sclp_tty_buffer_count = 0;
|
|
if (MACHINE_IS_VM) {
|
|
/*
|
|
* save 4 characters for the CPU number
|
|
* written at start of each line by VM/CP
|
|
*/
|
|
sclp_tty_columns = 76;
|
|
/* case input lines to lowercase */
|
|
sclp_tty_tolower = 1;
|
|
}
|
|
sclp_tty_chars_count = 0;
|
|
|
|
rc = sclp_register(&sclp_input_event);
|
|
if (rc) {
|
|
put_tty_driver(driver);
|
|
return rc;
|
|
}
|
|
|
|
tty_port_init(&sclp_port);
|
|
|
|
driver->driver_name = "sclp_line";
|
|
driver->name = "sclp_line";
|
|
driver->major = TTY_MAJOR;
|
|
driver->minor_start = 64;
|
|
driver->type = TTY_DRIVER_TYPE_SYSTEM;
|
|
driver->subtype = SYSTEM_TYPE_TTY;
|
|
driver->init_termios = tty_std_termios;
|
|
driver->init_termios.c_iflag = IGNBRK | IGNPAR;
|
|
driver->init_termios.c_oflag = ONLCR;
|
|
driver->init_termios.c_lflag = ISIG | ECHO;
|
|
driver->flags = TTY_DRIVER_REAL_RAW;
|
|
tty_set_operations(driver, &sclp_ops);
|
|
tty_port_link_device(&sclp_port, driver, 0);
|
|
rc = tty_register_driver(driver);
|
|
if (rc) {
|
|
put_tty_driver(driver);
|
|
tty_port_destroy(&sclp_port);
|
|
return rc;
|
|
}
|
|
sclp_tty_driver = driver;
|
|
return 0;
|
|
}
|
|
device_initcall(sclp_tty_init);
|