d7a702f0b1
Tony reports that booting his 144-cpu machine with maxcpus=10 triggers the following WARN_ON(): [ 21.045727] WARNING: CPU: 8 PID: 647 at arch/x86/kernel/cpu/perf_event_intel_cqm.c:1267 intel_cqm_cpu_prepare+0x75/0x90() [ 21.045744] CPU: 8 PID: 647 Comm: systemd-udevd Not tainted 4.2.0-rc4 #1 [ 21.045745] Hardware name: Intel Corporation BRICKLAND/BRICKLAND, BIOS BRHSXSD1.86B.0066.R00.1506021730 06/02/2015 [ 21.045747] 0000000000000000 0000000082771b09 ffff880856333ba8 ffffffff81669b67 [ 21.045748] 0000000000000000 0000000000000000 ffff880856333be8 ffffffff8107b02a [ 21.045750] ffff88085b789800 ffff88085f68a020 ffffffff819e2470 000000000000000a [ 21.045750] Call Trace: [ 21.045757] [<ffffffff81669b67>] dump_stack+0x45/0x57 [ 21.045759] [<ffffffff8107b02a>] warn_slowpath_common+0x8a/0xc0 [ 21.045761] [<ffffffff8107b15a>] warn_slowpath_null+0x1a/0x20 [ 21.045762] [<ffffffff81036725>] intel_cqm_cpu_prepare+0x75/0x90 [ 21.045764] [<ffffffff81036872>] intel_cqm_cpu_notifier+0x42/0x160 [ 21.045767] [<ffffffff8109a33d>] notifier_call_chain+0x4d/0x80 [ 21.045769] [<ffffffff8109a44e>] __raw_notifier_call_chain+0xe/0x10 [ 21.045770] [<ffffffff8107b538>] _cpu_up+0xe8/0x190 [ 21.045771] [<ffffffff8107b65a>] cpu_up+0x7a/0xa0 [ 21.045774] [<ffffffff8165e920>] cpu_subsys_online+0x40/0x90 [ 21.045777] [<ffffffff81433b37>] device_online+0x67/0x90 [ 21.045778] [<ffffffff81433bea>] online_store+0x8a/0xa0 [ 21.045782] [<ffffffff81430e78>] dev_attr_store+0x18/0x30 [ 21.045785] [<ffffffff8126b6ba>] sysfs_kf_write+0x3a/0x50 [ 21.045786] [<ffffffff8126ad40>] kernfs_fop_write+0x120/0x170 [ 21.045789] [<ffffffff811f0b77>] __vfs_write+0x37/0x100 [ 21.045791] [<ffffffff811f38b8>] ? __sb_start_write+0x58/0x110 [ 21.045795] [<ffffffff81296d2d>] ? security_file_permission+0x3d/0xc0 [ 21.045796] [<ffffffff811f1279>] vfs_write+0xa9/0x190 [ 21.045797] [<ffffffff811f2075>] SyS_write+0x55/0xc0 [ 21.045800] [<ffffffff81067300>] ? do_page_fault+0x30/0x80 [ 21.045804] [<ffffffff816709ae>] entry_SYSCALL_64_fastpath+0x12/0x71 [ 21.045805] ---[ end trace fe228b836d8af405 ]--- The root cause is that CPU_UP_PREPARE is completely the wrong notifier action from which to access cpu_data(), because smp_store_cpu_info() won't have been executed by the target CPU at that point, which in turn means that ->x86_cache_max_rmid and ->x86_cache_occ_scale haven't been filled out. Instead let's invoke our handler from CPU_STARTING and rename it appropriately. Reported-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Kanaka Juvva <kanaka.d.juvva@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vikas Shivappa <vikas.shivappa@intel.com> Link: http://lkml.kernel.org/r/1438863163-14083-1-git-send-email-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
1392 lines
33 KiB
C
1392 lines
33 KiB
C
/*
|
|
* Intel Cache Quality-of-Service Monitoring (CQM) support.
|
|
*
|
|
* Based very, very heavily on work by Peter Zijlstra.
|
|
*/
|
|
|
|
#include <linux/perf_event.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include "perf_event.h"
|
|
|
|
#define MSR_IA32_PQR_ASSOC 0x0c8f
|
|
#define MSR_IA32_QM_CTR 0x0c8e
|
|
#define MSR_IA32_QM_EVTSEL 0x0c8d
|
|
|
|
static u32 cqm_max_rmid = -1;
|
|
static unsigned int cqm_l3_scale; /* supposedly cacheline size */
|
|
|
|
/**
|
|
* struct intel_pqr_state - State cache for the PQR MSR
|
|
* @rmid: The cached Resource Monitoring ID
|
|
* @closid: The cached Class Of Service ID
|
|
* @rmid_usecnt: The usage counter for rmid
|
|
*
|
|
* The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
|
|
* lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
|
|
* contains both parts, so we need to cache them.
|
|
*
|
|
* The cache also helps to avoid pointless updates if the value does
|
|
* not change.
|
|
*/
|
|
struct intel_pqr_state {
|
|
u32 rmid;
|
|
u32 closid;
|
|
int rmid_usecnt;
|
|
};
|
|
|
|
/*
|
|
* The cached intel_pqr_state is strictly per CPU and can never be
|
|
* updated from a remote CPU. Both functions which modify the state
|
|
* (intel_cqm_event_start and intel_cqm_event_stop) are called with
|
|
* interrupts disabled, which is sufficient for the protection.
|
|
*/
|
|
static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
|
|
|
|
/*
|
|
* Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
|
|
* Also protects event->hw.cqm_rmid
|
|
*
|
|
* Hold either for stability, both for modification of ->hw.cqm_rmid.
|
|
*/
|
|
static DEFINE_MUTEX(cache_mutex);
|
|
static DEFINE_RAW_SPINLOCK(cache_lock);
|
|
|
|
/*
|
|
* Groups of events that have the same target(s), one RMID per group.
|
|
*/
|
|
static LIST_HEAD(cache_groups);
|
|
|
|
/*
|
|
* Mask of CPUs for reading CQM values. We only need one per-socket.
|
|
*/
|
|
static cpumask_t cqm_cpumask;
|
|
|
|
#define RMID_VAL_ERROR (1ULL << 63)
|
|
#define RMID_VAL_UNAVAIL (1ULL << 62)
|
|
|
|
#define QOS_L3_OCCUP_EVENT_ID (1 << 0)
|
|
|
|
#define QOS_EVENT_MASK QOS_L3_OCCUP_EVENT_ID
|
|
|
|
/*
|
|
* This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
|
|
*
|
|
* This rmid is always free and is guaranteed to have an associated
|
|
* near-zero occupancy value, i.e. no cachelines are tagged with this
|
|
* RMID, once __intel_cqm_rmid_rotate() returns.
|
|
*/
|
|
static u32 intel_cqm_rotation_rmid;
|
|
|
|
#define INVALID_RMID (-1)
|
|
|
|
/*
|
|
* Is @rmid valid for programming the hardware?
|
|
*
|
|
* rmid 0 is reserved by the hardware for all non-monitored tasks, which
|
|
* means that we should never come across an rmid with that value.
|
|
* Likewise, an rmid value of -1 is used to indicate "no rmid currently
|
|
* assigned" and is used as part of the rotation code.
|
|
*/
|
|
static inline bool __rmid_valid(u32 rmid)
|
|
{
|
|
if (!rmid || rmid == INVALID_RMID)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static u64 __rmid_read(u32 rmid)
|
|
{
|
|
u64 val;
|
|
|
|
/*
|
|
* Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
|
|
* it just says that to increase confusion.
|
|
*/
|
|
wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
|
|
rdmsrl(MSR_IA32_QM_CTR, val);
|
|
|
|
/*
|
|
* Aside from the ERROR and UNAVAIL bits, assume this thing returns
|
|
* the number of cachelines tagged with @rmid.
|
|
*/
|
|
return val;
|
|
}
|
|
|
|
enum rmid_recycle_state {
|
|
RMID_YOUNG = 0,
|
|
RMID_AVAILABLE,
|
|
RMID_DIRTY,
|
|
};
|
|
|
|
struct cqm_rmid_entry {
|
|
u32 rmid;
|
|
enum rmid_recycle_state state;
|
|
struct list_head list;
|
|
unsigned long queue_time;
|
|
};
|
|
|
|
/*
|
|
* cqm_rmid_free_lru - A least recently used list of RMIDs.
|
|
*
|
|
* Oldest entry at the head, newest (most recently used) entry at the
|
|
* tail. This list is never traversed, it's only used to keep track of
|
|
* the lru order. That is, we only pick entries of the head or insert
|
|
* them on the tail.
|
|
*
|
|
* All entries on the list are 'free', and their RMIDs are not currently
|
|
* in use. To mark an RMID as in use, remove its entry from the lru
|
|
* list.
|
|
*
|
|
*
|
|
* cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
|
|
*
|
|
* This list is contains RMIDs that no one is currently using but that
|
|
* may have a non-zero occupancy value associated with them. The
|
|
* rotation worker moves RMIDs from the limbo list to the free list once
|
|
* the occupancy value drops below __intel_cqm_threshold.
|
|
*
|
|
* Both lists are protected by cache_mutex.
|
|
*/
|
|
static LIST_HEAD(cqm_rmid_free_lru);
|
|
static LIST_HEAD(cqm_rmid_limbo_lru);
|
|
|
|
/*
|
|
* We use a simple array of pointers so that we can lookup a struct
|
|
* cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
|
|
* and __put_rmid() from having to worry about dealing with struct
|
|
* cqm_rmid_entry - they just deal with rmids, i.e. integers.
|
|
*
|
|
* Once this array is initialized it is read-only. No locks are required
|
|
* to access it.
|
|
*
|
|
* All entries for all RMIDs can be looked up in the this array at all
|
|
* times.
|
|
*/
|
|
static struct cqm_rmid_entry **cqm_rmid_ptrs;
|
|
|
|
static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid)
|
|
{
|
|
struct cqm_rmid_entry *entry;
|
|
|
|
entry = cqm_rmid_ptrs[rmid];
|
|
WARN_ON(entry->rmid != rmid);
|
|
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Returns < 0 on fail.
|
|
*
|
|
* We expect to be called with cache_mutex held.
|
|
*/
|
|
static u32 __get_rmid(void)
|
|
{
|
|
struct cqm_rmid_entry *entry;
|
|
|
|
lockdep_assert_held(&cache_mutex);
|
|
|
|
if (list_empty(&cqm_rmid_free_lru))
|
|
return INVALID_RMID;
|
|
|
|
entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
|
|
list_del(&entry->list);
|
|
|
|
return entry->rmid;
|
|
}
|
|
|
|
static void __put_rmid(u32 rmid)
|
|
{
|
|
struct cqm_rmid_entry *entry;
|
|
|
|
lockdep_assert_held(&cache_mutex);
|
|
|
|
WARN_ON(!__rmid_valid(rmid));
|
|
entry = __rmid_entry(rmid);
|
|
|
|
entry->queue_time = jiffies;
|
|
entry->state = RMID_YOUNG;
|
|
|
|
list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
|
|
}
|
|
|
|
static int intel_cqm_setup_rmid_cache(void)
|
|
{
|
|
struct cqm_rmid_entry *entry;
|
|
unsigned int nr_rmids;
|
|
int r = 0;
|
|
|
|
nr_rmids = cqm_max_rmid + 1;
|
|
cqm_rmid_ptrs = kmalloc(sizeof(struct cqm_rmid_entry *) *
|
|
nr_rmids, GFP_KERNEL);
|
|
if (!cqm_rmid_ptrs)
|
|
return -ENOMEM;
|
|
|
|
for (; r <= cqm_max_rmid; r++) {
|
|
struct cqm_rmid_entry *entry;
|
|
|
|
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
|
|
if (!entry)
|
|
goto fail;
|
|
|
|
INIT_LIST_HEAD(&entry->list);
|
|
entry->rmid = r;
|
|
cqm_rmid_ptrs[r] = entry;
|
|
|
|
list_add_tail(&entry->list, &cqm_rmid_free_lru);
|
|
}
|
|
|
|
/*
|
|
* RMID 0 is special and is always allocated. It's used for all
|
|
* tasks that are not monitored.
|
|
*/
|
|
entry = __rmid_entry(0);
|
|
list_del(&entry->list);
|
|
|
|
mutex_lock(&cache_mutex);
|
|
intel_cqm_rotation_rmid = __get_rmid();
|
|
mutex_unlock(&cache_mutex);
|
|
|
|
return 0;
|
|
fail:
|
|
while (r--)
|
|
kfree(cqm_rmid_ptrs[r]);
|
|
|
|
kfree(cqm_rmid_ptrs);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Determine if @a and @b measure the same set of tasks.
|
|
*
|
|
* If @a and @b measure the same set of tasks then we want to share a
|
|
* single RMID.
|
|
*/
|
|
static bool __match_event(struct perf_event *a, struct perf_event *b)
|
|
{
|
|
/* Per-cpu and task events don't mix */
|
|
if ((a->attach_state & PERF_ATTACH_TASK) !=
|
|
(b->attach_state & PERF_ATTACH_TASK))
|
|
return false;
|
|
|
|
#ifdef CONFIG_CGROUP_PERF
|
|
if (a->cgrp != b->cgrp)
|
|
return false;
|
|
#endif
|
|
|
|
/* If not task event, we're machine wide */
|
|
if (!(b->attach_state & PERF_ATTACH_TASK))
|
|
return true;
|
|
|
|
/*
|
|
* Events that target same task are placed into the same cache group.
|
|
*/
|
|
if (a->hw.target == b->hw.target)
|
|
return true;
|
|
|
|
/*
|
|
* Are we an inherited event?
|
|
*/
|
|
if (b->parent == a)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_CGROUP_PERF
|
|
static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
|
|
{
|
|
if (event->attach_state & PERF_ATTACH_TASK)
|
|
return perf_cgroup_from_task(event->hw.target);
|
|
|
|
return event->cgrp;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Determine if @a's tasks intersect with @b's tasks
|
|
*
|
|
* There are combinations of events that we explicitly prohibit,
|
|
*
|
|
* PROHIBITS
|
|
* system-wide -> cgroup and task
|
|
* cgroup -> system-wide
|
|
* -> task in cgroup
|
|
* task -> system-wide
|
|
* -> task in cgroup
|
|
*
|
|
* Call this function before allocating an RMID.
|
|
*/
|
|
static bool __conflict_event(struct perf_event *a, struct perf_event *b)
|
|
{
|
|
#ifdef CONFIG_CGROUP_PERF
|
|
/*
|
|
* We can have any number of cgroups but only one system-wide
|
|
* event at a time.
|
|
*/
|
|
if (a->cgrp && b->cgrp) {
|
|
struct perf_cgroup *ac = a->cgrp;
|
|
struct perf_cgroup *bc = b->cgrp;
|
|
|
|
/*
|
|
* This condition should have been caught in
|
|
* __match_event() and we should be sharing an RMID.
|
|
*/
|
|
WARN_ON_ONCE(ac == bc);
|
|
|
|
if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
|
|
cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
if (a->cgrp || b->cgrp) {
|
|
struct perf_cgroup *ac, *bc;
|
|
|
|
/*
|
|
* cgroup and system-wide events are mutually exclusive
|
|
*/
|
|
if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
|
|
(b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
|
|
return true;
|
|
|
|
/*
|
|
* Ensure neither event is part of the other's cgroup
|
|
*/
|
|
ac = event_to_cgroup(a);
|
|
bc = event_to_cgroup(b);
|
|
if (ac == bc)
|
|
return true;
|
|
|
|
/*
|
|
* Must have cgroup and non-intersecting task events.
|
|
*/
|
|
if (!ac || !bc)
|
|
return false;
|
|
|
|
/*
|
|
* We have cgroup and task events, and the task belongs
|
|
* to a cgroup. Check for for overlap.
|
|
*/
|
|
if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
|
|
cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
/*
|
|
* If one of them is not a task, same story as above with cgroups.
|
|
*/
|
|
if (!(a->attach_state & PERF_ATTACH_TASK) ||
|
|
!(b->attach_state & PERF_ATTACH_TASK))
|
|
return true;
|
|
|
|
/*
|
|
* Must be non-overlapping.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
struct rmid_read {
|
|
u32 rmid;
|
|
atomic64_t value;
|
|
};
|
|
|
|
static void __intel_cqm_event_count(void *info);
|
|
|
|
/*
|
|
* Exchange the RMID of a group of events.
|
|
*/
|
|
static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid)
|
|
{
|
|
struct perf_event *event;
|
|
struct list_head *head = &group->hw.cqm_group_entry;
|
|
u32 old_rmid = group->hw.cqm_rmid;
|
|
|
|
lockdep_assert_held(&cache_mutex);
|
|
|
|
/*
|
|
* If our RMID is being deallocated, perform a read now.
|
|
*/
|
|
if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
|
|
struct rmid_read rr = {
|
|
.value = ATOMIC64_INIT(0),
|
|
.rmid = old_rmid,
|
|
};
|
|
|
|
on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count,
|
|
&rr, 1);
|
|
local64_set(&group->count, atomic64_read(&rr.value));
|
|
}
|
|
|
|
raw_spin_lock_irq(&cache_lock);
|
|
|
|
group->hw.cqm_rmid = rmid;
|
|
list_for_each_entry(event, head, hw.cqm_group_entry)
|
|
event->hw.cqm_rmid = rmid;
|
|
|
|
raw_spin_unlock_irq(&cache_lock);
|
|
|
|
return old_rmid;
|
|
}
|
|
|
|
/*
|
|
* If we fail to assign a new RMID for intel_cqm_rotation_rmid because
|
|
* cachelines are still tagged with RMIDs in limbo, we progressively
|
|
* increment the threshold until we find an RMID in limbo with <=
|
|
* __intel_cqm_threshold lines tagged. This is designed to mitigate the
|
|
* problem where cachelines tagged with an RMID are not steadily being
|
|
* evicted.
|
|
*
|
|
* On successful rotations we decrease the threshold back towards zero.
|
|
*
|
|
* __intel_cqm_max_threshold provides an upper bound on the threshold,
|
|
* and is measured in bytes because it's exposed to userland.
|
|
*/
|
|
static unsigned int __intel_cqm_threshold;
|
|
static unsigned int __intel_cqm_max_threshold;
|
|
|
|
/*
|
|
* Test whether an RMID has a zero occupancy value on this cpu.
|
|
*/
|
|
static void intel_cqm_stable(void *arg)
|
|
{
|
|
struct cqm_rmid_entry *entry;
|
|
|
|
list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
|
|
if (entry->state != RMID_AVAILABLE)
|
|
break;
|
|
|
|
if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
|
|
entry->state = RMID_DIRTY;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we have group events waiting for an RMID that don't conflict with
|
|
* events already running, assign @rmid.
|
|
*/
|
|
static bool intel_cqm_sched_in_event(u32 rmid)
|
|
{
|
|
struct perf_event *leader, *event;
|
|
|
|
lockdep_assert_held(&cache_mutex);
|
|
|
|
leader = list_first_entry(&cache_groups, struct perf_event,
|
|
hw.cqm_groups_entry);
|
|
event = leader;
|
|
|
|
list_for_each_entry_continue(event, &cache_groups,
|
|
hw.cqm_groups_entry) {
|
|
if (__rmid_valid(event->hw.cqm_rmid))
|
|
continue;
|
|
|
|
if (__conflict_event(event, leader))
|
|
continue;
|
|
|
|
intel_cqm_xchg_rmid(event, rmid);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Initially use this constant for both the limbo queue time and the
|
|
* rotation timer interval, pmu::hrtimer_interval_ms.
|
|
*
|
|
* They don't need to be the same, but the two are related since if you
|
|
* rotate faster than you recycle RMIDs, you may run out of available
|
|
* RMIDs.
|
|
*/
|
|
#define RMID_DEFAULT_QUEUE_TIME 250 /* ms */
|
|
|
|
static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
|
|
|
|
/*
|
|
* intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
|
|
* @nr_available: number of freeable RMIDs on the limbo list
|
|
*
|
|
* Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
|
|
* cachelines are tagged with those RMIDs. After this we can reuse them
|
|
* and know that the current set of active RMIDs is stable.
|
|
*
|
|
* Return %true or %false depending on whether stabilization needs to be
|
|
* reattempted.
|
|
*
|
|
* If we return %true then @nr_available is updated to indicate the
|
|
* number of RMIDs on the limbo list that have been queued for the
|
|
* minimum queue time (RMID_AVAILABLE), but whose data occupancy values
|
|
* are above __intel_cqm_threshold.
|
|
*/
|
|
static bool intel_cqm_rmid_stabilize(unsigned int *available)
|
|
{
|
|
struct cqm_rmid_entry *entry, *tmp;
|
|
|
|
lockdep_assert_held(&cache_mutex);
|
|
|
|
*available = 0;
|
|
list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
|
|
unsigned long min_queue_time;
|
|
unsigned long now = jiffies;
|
|
|
|
/*
|
|
* We hold RMIDs placed into limbo for a minimum queue
|
|
* time. Before the minimum queue time has elapsed we do
|
|
* not recycle RMIDs.
|
|
*
|
|
* The reasoning is that until a sufficient time has
|
|
* passed since we stopped using an RMID, any RMID
|
|
* placed onto the limbo list will likely still have
|
|
* data tagged in the cache, which means we'll probably
|
|
* fail to recycle it anyway.
|
|
*
|
|
* We can save ourselves an expensive IPI by skipping
|
|
* any RMIDs that have not been queued for the minimum
|
|
* time.
|
|
*/
|
|
min_queue_time = entry->queue_time +
|
|
msecs_to_jiffies(__rmid_queue_time_ms);
|
|
|
|
if (time_after(min_queue_time, now))
|
|
break;
|
|
|
|
entry->state = RMID_AVAILABLE;
|
|
(*available)++;
|
|
}
|
|
|
|
/*
|
|
* Fast return if none of the RMIDs on the limbo list have been
|
|
* sitting on the queue for the minimum queue time.
|
|
*/
|
|
if (!*available)
|
|
return false;
|
|
|
|
/*
|
|
* Test whether an RMID is free for each package.
|
|
*/
|
|
on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
|
|
|
|
list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
|
|
/*
|
|
* Exhausted all RMIDs that have waited min queue time.
|
|
*/
|
|
if (entry->state == RMID_YOUNG)
|
|
break;
|
|
|
|
if (entry->state == RMID_DIRTY)
|
|
continue;
|
|
|
|
list_del(&entry->list); /* remove from limbo */
|
|
|
|
/*
|
|
* The rotation RMID gets priority if it's
|
|
* currently invalid. In which case, skip adding
|
|
* the RMID to the the free lru.
|
|
*/
|
|
if (!__rmid_valid(intel_cqm_rotation_rmid)) {
|
|
intel_cqm_rotation_rmid = entry->rmid;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we have groups waiting for RMIDs, hand
|
|
* them one now provided they don't conflict.
|
|
*/
|
|
if (intel_cqm_sched_in_event(entry->rmid))
|
|
continue;
|
|
|
|
/*
|
|
* Otherwise place it onto the free list.
|
|
*/
|
|
list_add_tail(&entry->list, &cqm_rmid_free_lru);
|
|
}
|
|
|
|
|
|
return __rmid_valid(intel_cqm_rotation_rmid);
|
|
}
|
|
|
|
/*
|
|
* Pick a victim group and move it to the tail of the group list.
|
|
* @next: The first group without an RMID
|
|
*/
|
|
static void __intel_cqm_pick_and_rotate(struct perf_event *next)
|
|
{
|
|
struct perf_event *rotor;
|
|
u32 rmid;
|
|
|
|
lockdep_assert_held(&cache_mutex);
|
|
|
|
rotor = list_first_entry(&cache_groups, struct perf_event,
|
|
hw.cqm_groups_entry);
|
|
|
|
/*
|
|
* The group at the front of the list should always have a valid
|
|
* RMID. If it doesn't then no groups have RMIDs assigned and we
|
|
* don't need to rotate the list.
|
|
*/
|
|
if (next == rotor)
|
|
return;
|
|
|
|
rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
|
|
__put_rmid(rmid);
|
|
|
|
list_rotate_left(&cache_groups);
|
|
}
|
|
|
|
/*
|
|
* Deallocate the RMIDs from any events that conflict with @event, and
|
|
* place them on the back of the group list.
|
|
*/
|
|
static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
|
|
{
|
|
struct perf_event *group, *g;
|
|
u32 rmid;
|
|
|
|
lockdep_assert_held(&cache_mutex);
|
|
|
|
list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
|
|
if (group == event)
|
|
continue;
|
|
|
|
rmid = group->hw.cqm_rmid;
|
|
|
|
/*
|
|
* Skip events that don't have a valid RMID.
|
|
*/
|
|
if (!__rmid_valid(rmid))
|
|
continue;
|
|
|
|
/*
|
|
* No conflict? No problem! Leave the event alone.
|
|
*/
|
|
if (!__conflict_event(group, event))
|
|
continue;
|
|
|
|
intel_cqm_xchg_rmid(group, INVALID_RMID);
|
|
__put_rmid(rmid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Attempt to rotate the groups and assign new RMIDs.
|
|
*
|
|
* We rotate for two reasons,
|
|
* 1. To handle the scheduling of conflicting events
|
|
* 2. To recycle RMIDs
|
|
*
|
|
* Rotating RMIDs is complicated because the hardware doesn't give us
|
|
* any clues.
|
|
*
|
|
* There's problems with the hardware interface; when you change the
|
|
* task:RMID map cachelines retain their 'old' tags, giving a skewed
|
|
* picture. In order to work around this, we must always keep one free
|
|
* RMID - intel_cqm_rotation_rmid.
|
|
*
|
|
* Rotation works by taking away an RMID from a group (the old RMID),
|
|
* and assigning the free RMID to another group (the new RMID). We must
|
|
* then wait for the old RMID to not be used (no cachelines tagged).
|
|
* This ensure that all cachelines are tagged with 'active' RMIDs. At
|
|
* this point we can start reading values for the new RMID and treat the
|
|
* old RMID as the free RMID for the next rotation.
|
|
*
|
|
* Return %true or %false depending on whether we did any rotating.
|
|
*/
|
|
static bool __intel_cqm_rmid_rotate(void)
|
|
{
|
|
struct perf_event *group, *start = NULL;
|
|
unsigned int threshold_limit;
|
|
unsigned int nr_needed = 0;
|
|
unsigned int nr_available;
|
|
bool rotated = false;
|
|
|
|
mutex_lock(&cache_mutex);
|
|
|
|
again:
|
|
/*
|
|
* Fast path through this function if there are no groups and no
|
|
* RMIDs that need cleaning.
|
|
*/
|
|
if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
|
|
goto out;
|
|
|
|
list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
|
|
if (!__rmid_valid(group->hw.cqm_rmid)) {
|
|
if (!start)
|
|
start = group;
|
|
nr_needed++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We have some event groups, but they all have RMIDs assigned
|
|
* and no RMIDs need cleaning.
|
|
*/
|
|
if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
|
|
goto out;
|
|
|
|
if (!nr_needed)
|
|
goto stabilize;
|
|
|
|
/*
|
|
* We have more event groups without RMIDs than available RMIDs,
|
|
* or we have event groups that conflict with the ones currently
|
|
* scheduled.
|
|
*
|
|
* We force deallocate the rmid of the group at the head of
|
|
* cache_groups. The first event group without an RMID then gets
|
|
* assigned intel_cqm_rotation_rmid. This ensures we always make
|
|
* forward progress.
|
|
*
|
|
* Rotate the cache_groups list so the previous head is now the
|
|
* tail.
|
|
*/
|
|
__intel_cqm_pick_and_rotate(start);
|
|
|
|
/*
|
|
* If the rotation is going to succeed, reduce the threshold so
|
|
* that we don't needlessly reuse dirty RMIDs.
|
|
*/
|
|
if (__rmid_valid(intel_cqm_rotation_rmid)) {
|
|
intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
|
|
intel_cqm_rotation_rmid = __get_rmid();
|
|
|
|
intel_cqm_sched_out_conflicting_events(start);
|
|
|
|
if (__intel_cqm_threshold)
|
|
__intel_cqm_threshold--;
|
|
}
|
|
|
|
rotated = true;
|
|
|
|
stabilize:
|
|
/*
|
|
* We now need to stablize the RMID we freed above (if any) to
|
|
* ensure that the next time we rotate we have an RMID with zero
|
|
* occupancy value.
|
|
*
|
|
* Alternatively, if we didn't need to perform any rotation,
|
|
* we'll have a bunch of RMIDs in limbo that need stabilizing.
|
|
*/
|
|
threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
|
|
|
|
while (intel_cqm_rmid_stabilize(&nr_available) &&
|
|
__intel_cqm_threshold < threshold_limit) {
|
|
unsigned int steal_limit;
|
|
|
|
/*
|
|
* Don't spin if nobody is actively waiting for an RMID,
|
|
* the rotation worker will be kicked as soon as an
|
|
* event needs an RMID anyway.
|
|
*/
|
|
if (!nr_needed)
|
|
break;
|
|
|
|
/* Allow max 25% of RMIDs to be in limbo. */
|
|
steal_limit = (cqm_max_rmid + 1) / 4;
|
|
|
|
/*
|
|
* We failed to stabilize any RMIDs so our rotation
|
|
* logic is now stuck. In order to make forward progress
|
|
* we have a few options:
|
|
*
|
|
* 1. rotate ("steal") another RMID
|
|
* 2. increase the threshold
|
|
* 3. do nothing
|
|
*
|
|
* We do both of 1. and 2. until we hit the steal limit.
|
|
*
|
|
* The steal limit prevents all RMIDs ending up on the
|
|
* limbo list. This can happen if every RMID has a
|
|
* non-zero occupancy above threshold_limit, and the
|
|
* occupancy values aren't dropping fast enough.
|
|
*
|
|
* Note that there is prioritisation at work here - we'd
|
|
* rather increase the number of RMIDs on the limbo list
|
|
* than increase the threshold, because increasing the
|
|
* threshold skews the event data (because we reuse
|
|
* dirty RMIDs) - threshold bumps are a last resort.
|
|
*/
|
|
if (nr_available < steal_limit)
|
|
goto again;
|
|
|
|
__intel_cqm_threshold++;
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&cache_mutex);
|
|
return rotated;
|
|
}
|
|
|
|
static void intel_cqm_rmid_rotate(struct work_struct *work);
|
|
|
|
static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
|
|
|
|
static struct pmu intel_cqm_pmu;
|
|
|
|
static void intel_cqm_rmid_rotate(struct work_struct *work)
|
|
{
|
|
unsigned long delay;
|
|
|
|
__intel_cqm_rmid_rotate();
|
|
|
|
delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
|
|
schedule_delayed_work(&intel_cqm_rmid_work, delay);
|
|
}
|
|
|
|
/*
|
|
* Find a group and setup RMID.
|
|
*
|
|
* If we're part of a group, we use the group's RMID.
|
|
*/
|
|
static void intel_cqm_setup_event(struct perf_event *event,
|
|
struct perf_event **group)
|
|
{
|
|
struct perf_event *iter;
|
|
bool conflict = false;
|
|
u32 rmid;
|
|
|
|
list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
|
|
rmid = iter->hw.cqm_rmid;
|
|
|
|
if (__match_event(iter, event)) {
|
|
/* All tasks in a group share an RMID */
|
|
event->hw.cqm_rmid = rmid;
|
|
*group = iter;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We only care about conflicts for events that are
|
|
* actually scheduled in (and hence have a valid RMID).
|
|
*/
|
|
if (__conflict_event(iter, event) && __rmid_valid(rmid))
|
|
conflict = true;
|
|
}
|
|
|
|
if (conflict)
|
|
rmid = INVALID_RMID;
|
|
else
|
|
rmid = __get_rmid();
|
|
|
|
event->hw.cqm_rmid = rmid;
|
|
}
|
|
|
|
static void intel_cqm_event_read(struct perf_event *event)
|
|
{
|
|
unsigned long flags;
|
|
u32 rmid;
|
|
u64 val;
|
|
|
|
/*
|
|
* Task events are handled by intel_cqm_event_count().
|
|
*/
|
|
if (event->cpu == -1)
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&cache_lock, flags);
|
|
rmid = event->hw.cqm_rmid;
|
|
|
|
if (!__rmid_valid(rmid))
|
|
goto out;
|
|
|
|
val = __rmid_read(rmid);
|
|
|
|
/*
|
|
* Ignore this reading on error states and do not update the value.
|
|
*/
|
|
if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
|
|
goto out;
|
|
|
|
local64_set(&event->count, val);
|
|
out:
|
|
raw_spin_unlock_irqrestore(&cache_lock, flags);
|
|
}
|
|
|
|
static void __intel_cqm_event_count(void *info)
|
|
{
|
|
struct rmid_read *rr = info;
|
|
u64 val;
|
|
|
|
val = __rmid_read(rr->rmid);
|
|
|
|
if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
|
|
return;
|
|
|
|
atomic64_add(val, &rr->value);
|
|
}
|
|
|
|
static inline bool cqm_group_leader(struct perf_event *event)
|
|
{
|
|
return !list_empty(&event->hw.cqm_groups_entry);
|
|
}
|
|
|
|
static u64 intel_cqm_event_count(struct perf_event *event)
|
|
{
|
|
unsigned long flags;
|
|
struct rmid_read rr = {
|
|
.value = ATOMIC64_INIT(0),
|
|
};
|
|
|
|
/*
|
|
* We only need to worry about task events. System-wide events
|
|
* are handled like usual, i.e. entirely with
|
|
* intel_cqm_event_read().
|
|
*/
|
|
if (event->cpu != -1)
|
|
return __perf_event_count(event);
|
|
|
|
/*
|
|
* Only the group leader gets to report values. This stops us
|
|
* reporting duplicate values to userspace, and gives us a clear
|
|
* rule for which task gets to report the values.
|
|
*
|
|
* Note that it is impossible to attribute these values to
|
|
* specific packages - we forfeit that ability when we create
|
|
* task events.
|
|
*/
|
|
if (!cqm_group_leader(event))
|
|
return 0;
|
|
|
|
/*
|
|
* Getting up-to-date values requires an SMP IPI which is not
|
|
* possible if we're being called in interrupt context. Return
|
|
* the cached values instead.
|
|
*/
|
|
if (unlikely(in_interrupt()))
|
|
goto out;
|
|
|
|
/*
|
|
* Notice that we don't perform the reading of an RMID
|
|
* atomically, because we can't hold a spin lock across the
|
|
* IPIs.
|
|
*
|
|
* Speculatively perform the read, since @event might be
|
|
* assigned a different (possibly invalid) RMID while we're
|
|
* busying performing the IPI calls. It's therefore necessary to
|
|
* check @event's RMID afterwards, and if it has changed,
|
|
* discard the result of the read.
|
|
*/
|
|
rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
|
|
|
|
if (!__rmid_valid(rr.rmid))
|
|
goto out;
|
|
|
|
on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
|
|
|
|
raw_spin_lock_irqsave(&cache_lock, flags);
|
|
if (event->hw.cqm_rmid == rr.rmid)
|
|
local64_set(&event->count, atomic64_read(&rr.value));
|
|
raw_spin_unlock_irqrestore(&cache_lock, flags);
|
|
out:
|
|
return __perf_event_count(event);
|
|
}
|
|
|
|
static void intel_cqm_event_start(struct perf_event *event, int mode)
|
|
{
|
|
struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
|
|
u32 rmid = event->hw.cqm_rmid;
|
|
|
|
if (!(event->hw.cqm_state & PERF_HES_STOPPED))
|
|
return;
|
|
|
|
event->hw.cqm_state &= ~PERF_HES_STOPPED;
|
|
|
|
if (state->rmid_usecnt++) {
|
|
if (!WARN_ON_ONCE(state->rmid != rmid))
|
|
return;
|
|
} else {
|
|
WARN_ON_ONCE(state->rmid);
|
|
}
|
|
|
|
state->rmid = rmid;
|
|
wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid);
|
|
}
|
|
|
|
static void intel_cqm_event_stop(struct perf_event *event, int mode)
|
|
{
|
|
struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
|
|
|
|
if (event->hw.cqm_state & PERF_HES_STOPPED)
|
|
return;
|
|
|
|
event->hw.cqm_state |= PERF_HES_STOPPED;
|
|
|
|
intel_cqm_event_read(event);
|
|
|
|
if (!--state->rmid_usecnt) {
|
|
state->rmid = 0;
|
|
wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid);
|
|
} else {
|
|
WARN_ON_ONCE(!state->rmid);
|
|
}
|
|
}
|
|
|
|
static int intel_cqm_event_add(struct perf_event *event, int mode)
|
|
{
|
|
unsigned long flags;
|
|
u32 rmid;
|
|
|
|
raw_spin_lock_irqsave(&cache_lock, flags);
|
|
|
|
event->hw.cqm_state = PERF_HES_STOPPED;
|
|
rmid = event->hw.cqm_rmid;
|
|
|
|
if (__rmid_valid(rmid) && (mode & PERF_EF_START))
|
|
intel_cqm_event_start(event, mode);
|
|
|
|
raw_spin_unlock_irqrestore(&cache_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_cqm_event_destroy(struct perf_event *event)
|
|
{
|
|
struct perf_event *group_other = NULL;
|
|
|
|
mutex_lock(&cache_mutex);
|
|
|
|
/*
|
|
* If there's another event in this group...
|
|
*/
|
|
if (!list_empty(&event->hw.cqm_group_entry)) {
|
|
group_other = list_first_entry(&event->hw.cqm_group_entry,
|
|
struct perf_event,
|
|
hw.cqm_group_entry);
|
|
list_del(&event->hw.cqm_group_entry);
|
|
}
|
|
|
|
/*
|
|
* And we're the group leader..
|
|
*/
|
|
if (cqm_group_leader(event)) {
|
|
/*
|
|
* If there was a group_other, make that leader, otherwise
|
|
* destroy the group and return the RMID.
|
|
*/
|
|
if (group_other) {
|
|
list_replace(&event->hw.cqm_groups_entry,
|
|
&group_other->hw.cqm_groups_entry);
|
|
} else {
|
|
u32 rmid = event->hw.cqm_rmid;
|
|
|
|
if (__rmid_valid(rmid))
|
|
__put_rmid(rmid);
|
|
list_del(&event->hw.cqm_groups_entry);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&cache_mutex);
|
|
}
|
|
|
|
static int intel_cqm_event_init(struct perf_event *event)
|
|
{
|
|
struct perf_event *group = NULL;
|
|
bool rotate = false;
|
|
|
|
if (event->attr.type != intel_cqm_pmu.type)
|
|
return -ENOENT;
|
|
|
|
if (event->attr.config & ~QOS_EVENT_MASK)
|
|
return -EINVAL;
|
|
|
|
/* unsupported modes and filters */
|
|
if (event->attr.exclude_user ||
|
|
event->attr.exclude_kernel ||
|
|
event->attr.exclude_hv ||
|
|
event->attr.exclude_idle ||
|
|
event->attr.exclude_host ||
|
|
event->attr.exclude_guest ||
|
|
event->attr.sample_period) /* no sampling */
|
|
return -EINVAL;
|
|
|
|
INIT_LIST_HEAD(&event->hw.cqm_group_entry);
|
|
INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
|
|
|
|
event->destroy = intel_cqm_event_destroy;
|
|
|
|
mutex_lock(&cache_mutex);
|
|
|
|
/* Will also set rmid */
|
|
intel_cqm_setup_event(event, &group);
|
|
|
|
if (group) {
|
|
list_add_tail(&event->hw.cqm_group_entry,
|
|
&group->hw.cqm_group_entry);
|
|
} else {
|
|
list_add_tail(&event->hw.cqm_groups_entry,
|
|
&cache_groups);
|
|
|
|
/*
|
|
* All RMIDs are either in use or have recently been
|
|
* used. Kick the rotation worker to clean/free some.
|
|
*
|
|
* We only do this for the group leader, rather than for
|
|
* every event in a group to save on needless work.
|
|
*/
|
|
if (!__rmid_valid(event->hw.cqm_rmid))
|
|
rotate = true;
|
|
}
|
|
|
|
mutex_unlock(&cache_mutex);
|
|
|
|
if (rotate)
|
|
schedule_delayed_work(&intel_cqm_rmid_work, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
|
|
EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
|
|
EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
|
|
EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
|
|
EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
|
|
|
|
static struct attribute *intel_cqm_events_attr[] = {
|
|
EVENT_PTR(intel_cqm_llc),
|
|
EVENT_PTR(intel_cqm_llc_pkg),
|
|
EVENT_PTR(intel_cqm_llc_unit),
|
|
EVENT_PTR(intel_cqm_llc_scale),
|
|
EVENT_PTR(intel_cqm_llc_snapshot),
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group intel_cqm_events_group = {
|
|
.name = "events",
|
|
.attrs = intel_cqm_events_attr,
|
|
};
|
|
|
|
PMU_FORMAT_ATTR(event, "config:0-7");
|
|
static struct attribute *intel_cqm_formats_attr[] = {
|
|
&format_attr_event.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group intel_cqm_format_group = {
|
|
.name = "format",
|
|
.attrs = intel_cqm_formats_attr,
|
|
};
|
|
|
|
static ssize_t
|
|
max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
|
|
char *page)
|
|
{
|
|
ssize_t rv;
|
|
|
|
mutex_lock(&cache_mutex);
|
|
rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
|
|
mutex_unlock(&cache_mutex);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static ssize_t
|
|
max_recycle_threshold_store(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int bytes, cachelines;
|
|
int ret;
|
|
|
|
ret = kstrtouint(buf, 0, &bytes);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&cache_mutex);
|
|
|
|
__intel_cqm_max_threshold = bytes;
|
|
cachelines = bytes / cqm_l3_scale;
|
|
|
|
/*
|
|
* The new maximum takes effect immediately.
|
|
*/
|
|
if (__intel_cqm_threshold > cachelines)
|
|
__intel_cqm_threshold = cachelines;
|
|
|
|
mutex_unlock(&cache_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static DEVICE_ATTR_RW(max_recycle_threshold);
|
|
|
|
static struct attribute *intel_cqm_attrs[] = {
|
|
&dev_attr_max_recycle_threshold.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group intel_cqm_group = {
|
|
.attrs = intel_cqm_attrs,
|
|
};
|
|
|
|
static const struct attribute_group *intel_cqm_attr_groups[] = {
|
|
&intel_cqm_events_group,
|
|
&intel_cqm_format_group,
|
|
&intel_cqm_group,
|
|
NULL,
|
|
};
|
|
|
|
static struct pmu intel_cqm_pmu = {
|
|
.hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
|
|
.attr_groups = intel_cqm_attr_groups,
|
|
.task_ctx_nr = perf_sw_context,
|
|
.event_init = intel_cqm_event_init,
|
|
.add = intel_cqm_event_add,
|
|
.del = intel_cqm_event_stop,
|
|
.start = intel_cqm_event_start,
|
|
.stop = intel_cqm_event_stop,
|
|
.read = intel_cqm_event_read,
|
|
.count = intel_cqm_event_count,
|
|
};
|
|
|
|
static inline void cqm_pick_event_reader(int cpu)
|
|
{
|
|
int phys_id = topology_physical_package_id(cpu);
|
|
int i;
|
|
|
|
for_each_cpu(i, &cqm_cpumask) {
|
|
if (phys_id == topology_physical_package_id(i))
|
|
return; /* already got reader for this socket */
|
|
}
|
|
|
|
cpumask_set_cpu(cpu, &cqm_cpumask);
|
|
}
|
|
|
|
static void intel_cqm_cpu_starting(unsigned int cpu)
|
|
{
|
|
struct intel_pqr_state *state = &per_cpu(pqr_state, cpu);
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
|
|
state->rmid = 0;
|
|
state->closid = 0;
|
|
state->rmid_usecnt = 0;
|
|
|
|
WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
|
|
WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
|
|
}
|
|
|
|
static void intel_cqm_cpu_exit(unsigned int cpu)
|
|
{
|
|
int phys_id = topology_physical_package_id(cpu);
|
|
int i;
|
|
|
|
/*
|
|
* Is @cpu a designated cqm reader?
|
|
*/
|
|
if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
|
|
return;
|
|
|
|
for_each_online_cpu(i) {
|
|
if (i == cpu)
|
|
continue;
|
|
|
|
if (phys_id == topology_physical_package_id(i)) {
|
|
cpumask_set_cpu(i, &cqm_cpumask);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int intel_cqm_cpu_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (unsigned long)hcpu;
|
|
|
|
switch (action & ~CPU_TASKS_FROZEN) {
|
|
case CPU_DOWN_PREPARE:
|
|
intel_cqm_cpu_exit(cpu);
|
|
break;
|
|
case CPU_STARTING:
|
|
intel_cqm_cpu_starting(cpu);
|
|
cqm_pick_event_reader(cpu);
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static const struct x86_cpu_id intel_cqm_match[] = {
|
|
{ .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
|
|
{}
|
|
};
|
|
|
|
static int __init intel_cqm_init(void)
|
|
{
|
|
char *str, scale[20];
|
|
int i, cpu, ret;
|
|
|
|
if (!x86_match_cpu(intel_cqm_match))
|
|
return -ENODEV;
|
|
|
|
cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
|
|
|
|
/*
|
|
* It's possible that not all resources support the same number
|
|
* of RMIDs. Instead of making scheduling much more complicated
|
|
* (where we have to match a task's RMID to a cpu that supports
|
|
* that many RMIDs) just find the minimum RMIDs supported across
|
|
* all cpus.
|
|
*
|
|
* Also, check that the scales match on all cpus.
|
|
*/
|
|
cpu_notifier_register_begin();
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
|
|
if (c->x86_cache_max_rmid < cqm_max_rmid)
|
|
cqm_max_rmid = c->x86_cache_max_rmid;
|
|
|
|
if (c->x86_cache_occ_scale != cqm_l3_scale) {
|
|
pr_err("Multiple LLC scale values, disabling\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A reasonable upper limit on the max threshold is the number
|
|
* of lines tagged per RMID if all RMIDs have the same number of
|
|
* lines tagged in the LLC.
|
|
*
|
|
* For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
|
|
*/
|
|
__intel_cqm_max_threshold =
|
|
boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
|
|
|
|
snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
|
|
str = kstrdup(scale, GFP_KERNEL);
|
|
if (!str) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
event_attr_intel_cqm_llc_scale.event_str = str;
|
|
|
|
ret = intel_cqm_setup_rmid_cache();
|
|
if (ret)
|
|
goto out;
|
|
|
|
for_each_online_cpu(i) {
|
|
intel_cqm_cpu_starting(i);
|
|
cqm_pick_event_reader(i);
|
|
}
|
|
|
|
__perf_cpu_notifier(intel_cqm_cpu_notifier);
|
|
|
|
ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
|
|
if (ret)
|
|
pr_err("Intel CQM perf registration failed: %d\n", ret);
|
|
else
|
|
pr_info("Intel CQM monitoring enabled\n");
|
|
|
|
out:
|
|
cpu_notifier_register_done();
|
|
|
|
return ret;
|
|
}
|
|
device_initcall(intel_cqm_init);
|