Currently there is a deadlock in driver in scenarios where MMU cache invalidation fails. The issue is basically device reset being performed without releasing the MMU mutex. The solution is to skip device reset as it is not necessary. In addition we introduce a slight code refactor that prints the invalidation error from a single location. Signed-off-by: Ofir Bitton <obitton@habana.ai> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Signed-off-by: Oded Gabbay <ogabbay@kernel.org>
733 lines
16 KiB
C
733 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Copyright 2016-2019 HabanaLabs, Ltd.
|
|
* All Rights Reserved.
|
|
*/
|
|
|
|
#include <uapi/misc/habanalabs.h>
|
|
#include "habanalabs.h"
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
static int cb_map_mem(struct hl_ctx *ctx, struct hl_cb *cb)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct hl_vm_va_block *va_block, *tmp;
|
|
dma_addr_t bus_addr;
|
|
u64 virt_addr;
|
|
u32 page_size = prop->pmmu.page_size;
|
|
s32 offset;
|
|
int rc;
|
|
|
|
if (!hdev->supports_cb_mapping) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"Cannot map CB because no VA range is allocated for CB mapping\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!hdev->mmu_enable) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"Cannot map CB because MMU is disabled\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&cb->va_block_list);
|
|
|
|
for (bus_addr = cb->bus_address;
|
|
bus_addr < cb->bus_address + cb->size;
|
|
bus_addr += page_size) {
|
|
|
|
virt_addr = (u64) gen_pool_alloc(ctx->cb_va_pool, page_size);
|
|
if (!virt_addr) {
|
|
dev_err(hdev->dev,
|
|
"Failed to allocate device virtual address for CB\n");
|
|
rc = -ENOMEM;
|
|
goto err_va_pool_free;
|
|
}
|
|
|
|
va_block = kzalloc(sizeof(*va_block), GFP_KERNEL);
|
|
if (!va_block) {
|
|
rc = -ENOMEM;
|
|
gen_pool_free(ctx->cb_va_pool, virt_addr, page_size);
|
|
goto err_va_pool_free;
|
|
}
|
|
|
|
va_block->start = virt_addr;
|
|
va_block->end = virt_addr + page_size - 1;
|
|
va_block->size = page_size;
|
|
list_add_tail(&va_block->node, &cb->va_block_list);
|
|
}
|
|
|
|
mutex_lock(&ctx->mmu_lock);
|
|
|
|
bus_addr = cb->bus_address;
|
|
offset = 0;
|
|
list_for_each_entry(va_block, &cb->va_block_list, node) {
|
|
rc = hl_mmu_map_page(ctx, va_block->start, bus_addr,
|
|
va_block->size, list_is_last(&va_block->node,
|
|
&cb->va_block_list));
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to map VA %#llx to CB\n",
|
|
va_block->start);
|
|
goto err_va_umap;
|
|
}
|
|
|
|
bus_addr += va_block->size;
|
|
offset += va_block->size;
|
|
}
|
|
|
|
rc = hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR | MMU_OP_SKIP_LOW_CACHE_INV);
|
|
|
|
mutex_unlock(&ctx->mmu_lock);
|
|
|
|
cb->is_mmu_mapped = true;
|
|
|
|
return rc;
|
|
|
|
err_va_umap:
|
|
list_for_each_entry(va_block, &cb->va_block_list, node) {
|
|
if (offset <= 0)
|
|
break;
|
|
hl_mmu_unmap_page(ctx, va_block->start, va_block->size,
|
|
offset <= va_block->size);
|
|
offset -= va_block->size;
|
|
}
|
|
|
|
rc = hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
|
|
|
|
mutex_unlock(&ctx->mmu_lock);
|
|
|
|
err_va_pool_free:
|
|
list_for_each_entry_safe(va_block, tmp, &cb->va_block_list, node) {
|
|
gen_pool_free(ctx->cb_va_pool, va_block->start, va_block->size);
|
|
list_del(&va_block->node);
|
|
kfree(va_block);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void cb_unmap_mem(struct hl_ctx *ctx, struct hl_cb *cb)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct hl_vm_va_block *va_block, *tmp;
|
|
|
|
mutex_lock(&ctx->mmu_lock);
|
|
|
|
list_for_each_entry(va_block, &cb->va_block_list, node)
|
|
if (hl_mmu_unmap_page(ctx, va_block->start, va_block->size,
|
|
list_is_last(&va_block->node,
|
|
&cb->va_block_list)))
|
|
dev_warn_ratelimited(hdev->dev,
|
|
"Failed to unmap CB's va 0x%llx\n",
|
|
va_block->start);
|
|
|
|
hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
|
|
|
|
mutex_unlock(&ctx->mmu_lock);
|
|
|
|
list_for_each_entry_safe(va_block, tmp, &cb->va_block_list, node) {
|
|
gen_pool_free(ctx->cb_va_pool, va_block->start, va_block->size);
|
|
list_del(&va_block->node);
|
|
kfree(va_block);
|
|
}
|
|
}
|
|
|
|
static void cb_fini(struct hl_device *hdev, struct hl_cb *cb)
|
|
{
|
|
if (cb->is_internal)
|
|
gen_pool_free(hdev->internal_cb_pool,
|
|
(uintptr_t)cb->kernel_address, cb->size);
|
|
else
|
|
hdev->asic_funcs->asic_dma_free_coherent(hdev, cb->size,
|
|
cb->kernel_address, cb->bus_address);
|
|
|
|
kfree(cb);
|
|
}
|
|
|
|
static void cb_do_release(struct hl_device *hdev, struct hl_cb *cb)
|
|
{
|
|
if (cb->is_pool) {
|
|
spin_lock(&hdev->cb_pool_lock);
|
|
list_add(&cb->pool_list, &hdev->cb_pool);
|
|
spin_unlock(&hdev->cb_pool_lock);
|
|
} else {
|
|
cb_fini(hdev, cb);
|
|
}
|
|
}
|
|
|
|
static void cb_release(struct kref *ref)
|
|
{
|
|
struct hl_device *hdev;
|
|
struct hl_cb *cb;
|
|
|
|
cb = container_of(ref, struct hl_cb, refcount);
|
|
hdev = cb->hdev;
|
|
|
|
hl_debugfs_remove_cb(cb);
|
|
|
|
if (cb->is_mmu_mapped)
|
|
cb_unmap_mem(cb->ctx, cb);
|
|
|
|
hl_ctx_put(cb->ctx);
|
|
|
|
cb_do_release(hdev, cb);
|
|
}
|
|
|
|
static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size,
|
|
int ctx_id, bool internal_cb)
|
|
{
|
|
struct hl_cb *cb = NULL;
|
|
u32 cb_offset;
|
|
void *p;
|
|
|
|
/*
|
|
* We use of GFP_ATOMIC here because this function can be called from
|
|
* the latency-sensitive code path for command submission. Due to H/W
|
|
* limitations in some of the ASICs, the kernel must copy the user CB
|
|
* that is designated for an external queue and actually enqueue
|
|
* the kernel's copy. Hence, we must never sleep in this code section
|
|
* and must use GFP_ATOMIC for all memory allocations.
|
|
*/
|
|
if (ctx_id == HL_KERNEL_ASID_ID && !hdev->disabled)
|
|
cb = kzalloc(sizeof(*cb), GFP_ATOMIC);
|
|
|
|
if (!cb)
|
|
cb = kzalloc(sizeof(*cb), GFP_KERNEL);
|
|
|
|
if (!cb)
|
|
return NULL;
|
|
|
|
if (internal_cb) {
|
|
p = (void *) gen_pool_alloc(hdev->internal_cb_pool, cb_size);
|
|
if (!p) {
|
|
kfree(cb);
|
|
return NULL;
|
|
}
|
|
|
|
cb_offset = p - hdev->internal_cb_pool_virt_addr;
|
|
cb->is_internal = true;
|
|
cb->bus_address = hdev->internal_cb_va_base + cb_offset;
|
|
} else if (ctx_id == HL_KERNEL_ASID_ID) {
|
|
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size,
|
|
&cb->bus_address, GFP_ATOMIC);
|
|
if (!p)
|
|
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
|
|
cb_size, &cb->bus_address, GFP_KERNEL);
|
|
} else {
|
|
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size,
|
|
&cb->bus_address,
|
|
GFP_USER | __GFP_ZERO);
|
|
}
|
|
|
|
if (!p) {
|
|
dev_err(hdev->dev,
|
|
"failed to allocate %d of dma memory for CB\n",
|
|
cb_size);
|
|
kfree(cb);
|
|
return NULL;
|
|
}
|
|
|
|
cb->kernel_address = p;
|
|
cb->size = cb_size;
|
|
|
|
return cb;
|
|
}
|
|
|
|
int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
|
|
struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
|
|
bool map_cb, u64 *handle)
|
|
{
|
|
struct hl_cb *cb;
|
|
bool alloc_new_cb = true;
|
|
int rc, ctx_id = ctx->asid;
|
|
|
|
/*
|
|
* Can't use generic function to check this because of special case
|
|
* where we create a CB as part of the reset process
|
|
*/
|
|
if ((hdev->disabled) || ((atomic_read(&hdev->in_reset)) &&
|
|
(ctx_id != HL_KERNEL_ASID_ID))) {
|
|
dev_warn_ratelimited(hdev->dev,
|
|
"Device is disabled or in reset. Can't create new CBs\n");
|
|
rc = -EBUSY;
|
|
goto out_err;
|
|
}
|
|
|
|
if (cb_size > SZ_2M) {
|
|
dev_err(hdev->dev, "CB size %d must be less than %d\n",
|
|
cb_size, SZ_2M);
|
|
rc = -EINVAL;
|
|
goto out_err;
|
|
}
|
|
|
|
if (!internal_cb) {
|
|
/* Minimum allocation must be PAGE SIZE */
|
|
if (cb_size < PAGE_SIZE)
|
|
cb_size = PAGE_SIZE;
|
|
|
|
if (ctx_id == HL_KERNEL_ASID_ID &&
|
|
cb_size <= hdev->asic_prop.cb_pool_cb_size) {
|
|
|
|
spin_lock(&hdev->cb_pool_lock);
|
|
if (!list_empty(&hdev->cb_pool)) {
|
|
cb = list_first_entry(&hdev->cb_pool,
|
|
typeof(*cb), pool_list);
|
|
list_del(&cb->pool_list);
|
|
spin_unlock(&hdev->cb_pool_lock);
|
|
alloc_new_cb = false;
|
|
} else {
|
|
spin_unlock(&hdev->cb_pool_lock);
|
|
dev_dbg(hdev->dev, "CB pool is empty\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (alloc_new_cb) {
|
|
cb = hl_cb_alloc(hdev, cb_size, ctx_id, internal_cb);
|
|
if (!cb) {
|
|
rc = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
cb->hdev = hdev;
|
|
cb->ctx = ctx;
|
|
hl_ctx_get(hdev, cb->ctx);
|
|
|
|
if (map_cb) {
|
|
if (ctx_id == HL_KERNEL_ASID_ID) {
|
|
dev_err(hdev->dev,
|
|
"CB mapping is not supported for kernel context\n");
|
|
rc = -EINVAL;
|
|
goto release_cb;
|
|
}
|
|
|
|
rc = cb_map_mem(ctx, cb);
|
|
if (rc)
|
|
goto release_cb;
|
|
}
|
|
|
|
spin_lock(&mgr->cb_lock);
|
|
rc = idr_alloc(&mgr->cb_handles, cb, 1, 0, GFP_ATOMIC);
|
|
spin_unlock(&mgr->cb_lock);
|
|
|
|
if (rc < 0) {
|
|
dev_err(hdev->dev, "Failed to allocate IDR for a new CB\n");
|
|
goto unmap_mem;
|
|
}
|
|
|
|
cb->id = (u64) rc;
|
|
|
|
kref_init(&cb->refcount);
|
|
spin_lock_init(&cb->lock);
|
|
|
|
/*
|
|
* idr is 32-bit so we can safely OR it with a mask that is above
|
|
* 32 bit
|
|
*/
|
|
*handle = cb->id | HL_MMAP_TYPE_CB;
|
|
*handle <<= PAGE_SHIFT;
|
|
|
|
hl_debugfs_add_cb(cb);
|
|
|
|
return 0;
|
|
|
|
unmap_mem:
|
|
if (cb->is_mmu_mapped)
|
|
cb_unmap_mem(cb->ctx, cb);
|
|
release_cb:
|
|
hl_ctx_put(cb->ctx);
|
|
cb_do_release(hdev, cb);
|
|
out_err:
|
|
*handle = 0;
|
|
|
|
return rc;
|
|
}
|
|
|
|
int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle)
|
|
{
|
|
struct hl_cb *cb;
|
|
u32 handle;
|
|
int rc = 0;
|
|
|
|
/*
|
|
* handle was given to user to do mmap, I need to shift it back to
|
|
* how the idr module gave it to me
|
|
*/
|
|
cb_handle >>= PAGE_SHIFT;
|
|
handle = (u32) cb_handle;
|
|
|
|
spin_lock(&mgr->cb_lock);
|
|
|
|
cb = idr_find(&mgr->cb_handles, handle);
|
|
if (cb) {
|
|
idr_remove(&mgr->cb_handles, handle);
|
|
spin_unlock(&mgr->cb_lock);
|
|
kref_put(&cb->refcount, cb_release);
|
|
} else {
|
|
spin_unlock(&mgr->cb_lock);
|
|
dev_err(hdev->dev,
|
|
"CB destroy failed, no match to handle 0x%x\n", handle);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int hl_cb_info(struct hl_device *hdev, struct hl_cb_mgr *mgr,
|
|
u64 cb_handle, u32 *usage_cnt)
|
|
{
|
|
struct hl_cb *cb;
|
|
u32 handle;
|
|
int rc = 0;
|
|
|
|
/* The CB handle was given to user to do mmap, so need to shift it back
|
|
* to the value which was allocated by the IDR module.
|
|
*/
|
|
cb_handle >>= PAGE_SHIFT;
|
|
handle = (u32) cb_handle;
|
|
|
|
spin_lock(&mgr->cb_lock);
|
|
|
|
cb = idr_find(&mgr->cb_handles, handle);
|
|
if (!cb) {
|
|
dev_err(hdev->dev,
|
|
"CB info failed, no match to handle 0x%x\n", handle);
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
*usage_cnt = atomic_read(&cb->cs_cnt);
|
|
|
|
out:
|
|
spin_unlock(&mgr->cb_lock);
|
|
return rc;
|
|
}
|
|
|
|
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data)
|
|
{
|
|
union hl_cb_args *args = data;
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
enum hl_device_status status;
|
|
u64 handle = 0;
|
|
u32 usage_cnt = 0;
|
|
int rc;
|
|
|
|
if (!hl_device_operational(hdev, &status)) {
|
|
dev_warn_ratelimited(hdev->dev,
|
|
"Device is %s. Can't execute CB IOCTL\n",
|
|
hdev->status[status]);
|
|
return -EBUSY;
|
|
}
|
|
|
|
switch (args->in.op) {
|
|
case HL_CB_OP_CREATE:
|
|
if (args->in.cb_size > HL_MAX_CB_SIZE) {
|
|
dev_err(hdev->dev,
|
|
"User requested CB size %d must be less than %d\n",
|
|
args->in.cb_size, HL_MAX_CB_SIZE);
|
|
rc = -EINVAL;
|
|
} else {
|
|
rc = hl_cb_create(hdev, &hpriv->cb_mgr, hpriv->ctx,
|
|
args->in.cb_size, false,
|
|
!!(args->in.flags & HL_CB_FLAGS_MAP),
|
|
&handle);
|
|
}
|
|
|
|
memset(args, 0, sizeof(*args));
|
|
args->out.cb_handle = handle;
|
|
break;
|
|
|
|
case HL_CB_OP_DESTROY:
|
|
rc = hl_cb_destroy(hdev, &hpriv->cb_mgr,
|
|
args->in.cb_handle);
|
|
break;
|
|
|
|
case HL_CB_OP_INFO:
|
|
rc = hl_cb_info(hdev, &hpriv->cb_mgr, args->in.cb_handle,
|
|
&usage_cnt);
|
|
memset(args, 0, sizeof(*args));
|
|
args->out.usage_cnt = usage_cnt;
|
|
break;
|
|
|
|
default:
|
|
rc = -ENOTTY;
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void cb_vm_close(struct vm_area_struct *vma)
|
|
{
|
|
struct hl_cb *cb = (struct hl_cb *) vma->vm_private_data;
|
|
long new_mmap_size;
|
|
|
|
new_mmap_size = cb->mmap_size - (vma->vm_end - vma->vm_start);
|
|
|
|
if (new_mmap_size > 0) {
|
|
cb->mmap_size = new_mmap_size;
|
|
return;
|
|
}
|
|
|
|
spin_lock(&cb->lock);
|
|
cb->mmap = false;
|
|
spin_unlock(&cb->lock);
|
|
|
|
hl_cb_put(cb);
|
|
vma->vm_private_data = NULL;
|
|
}
|
|
|
|
static const struct vm_operations_struct cb_vm_ops = {
|
|
.close = cb_vm_close
|
|
};
|
|
|
|
int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
|
|
{
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_cb *cb;
|
|
u32 handle, user_cb_size;
|
|
int rc;
|
|
|
|
/* We use the page offset to hold the idr and thus we need to clear
|
|
* it before doing the mmap itself
|
|
*/
|
|
handle = vma->vm_pgoff;
|
|
vma->vm_pgoff = 0;
|
|
|
|
/* reference was taken here */
|
|
cb = hl_cb_get(hdev, &hpriv->cb_mgr, handle);
|
|
if (!cb) {
|
|
dev_err(hdev->dev,
|
|
"CB mmap failed, no match to handle 0x%x\n", handle);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Validation check */
|
|
user_cb_size = vma->vm_end - vma->vm_start;
|
|
if (user_cb_size != ALIGN(cb->size, PAGE_SIZE)) {
|
|
dev_err(hdev->dev,
|
|
"CB mmap failed, mmap size 0x%lx != 0x%x cb size\n",
|
|
vma->vm_end - vma->vm_start, cb->size);
|
|
rc = -EINVAL;
|
|
goto put_cb;
|
|
}
|
|
|
|
if (!access_ok((void __user *) (uintptr_t) vma->vm_start,
|
|
user_cb_size)) {
|
|
dev_err(hdev->dev,
|
|
"user pointer is invalid - 0x%lx\n",
|
|
vma->vm_start);
|
|
|
|
rc = -EINVAL;
|
|
goto put_cb;
|
|
}
|
|
|
|
spin_lock(&cb->lock);
|
|
|
|
if (cb->mmap) {
|
|
dev_err(hdev->dev,
|
|
"CB mmap failed, CB already mmaped to user\n");
|
|
rc = -EINVAL;
|
|
goto release_lock;
|
|
}
|
|
|
|
cb->mmap = true;
|
|
|
|
spin_unlock(&cb->lock);
|
|
|
|
vma->vm_ops = &cb_vm_ops;
|
|
|
|
/*
|
|
* Note: We're transferring the cb reference to
|
|
* vma->vm_private_data here.
|
|
*/
|
|
|
|
vma->vm_private_data = cb;
|
|
|
|
rc = hdev->asic_funcs->mmap(hdev, vma, cb->kernel_address,
|
|
cb->bus_address, cb->size);
|
|
if (rc) {
|
|
spin_lock(&cb->lock);
|
|
cb->mmap = false;
|
|
goto release_lock;
|
|
}
|
|
|
|
cb->mmap_size = cb->size;
|
|
vma->vm_pgoff = handle;
|
|
|
|
return 0;
|
|
|
|
release_lock:
|
|
spin_unlock(&cb->lock);
|
|
put_cb:
|
|
hl_cb_put(cb);
|
|
return rc;
|
|
}
|
|
|
|
struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr,
|
|
u32 handle)
|
|
{
|
|
struct hl_cb *cb;
|
|
|
|
spin_lock(&mgr->cb_lock);
|
|
cb = idr_find(&mgr->cb_handles, handle);
|
|
|
|
if (!cb) {
|
|
spin_unlock(&mgr->cb_lock);
|
|
dev_warn(hdev->dev,
|
|
"CB get failed, no match to handle 0x%x\n", handle);
|
|
return NULL;
|
|
}
|
|
|
|
kref_get(&cb->refcount);
|
|
|
|
spin_unlock(&mgr->cb_lock);
|
|
|
|
return cb;
|
|
|
|
}
|
|
|
|
void hl_cb_put(struct hl_cb *cb)
|
|
{
|
|
kref_put(&cb->refcount, cb_release);
|
|
}
|
|
|
|
void hl_cb_mgr_init(struct hl_cb_mgr *mgr)
|
|
{
|
|
spin_lock_init(&mgr->cb_lock);
|
|
idr_init(&mgr->cb_handles);
|
|
}
|
|
|
|
void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr)
|
|
{
|
|
struct hl_cb *cb;
|
|
struct idr *idp;
|
|
u32 id;
|
|
|
|
idp = &mgr->cb_handles;
|
|
|
|
idr_for_each_entry(idp, cb, id) {
|
|
if (kref_put(&cb->refcount, cb_release) != 1)
|
|
dev_err(hdev->dev,
|
|
"CB %d for CTX ID %d is still alive\n",
|
|
id, cb->ctx->asid);
|
|
}
|
|
|
|
idr_destroy(&mgr->cb_handles);
|
|
}
|
|
|
|
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
|
|
bool internal_cb)
|
|
{
|
|
u64 cb_handle;
|
|
struct hl_cb *cb;
|
|
int rc;
|
|
|
|
rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, hdev->kernel_ctx, cb_size,
|
|
internal_cb, false, &cb_handle);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to allocate CB for the kernel driver %d\n", rc);
|
|
return NULL;
|
|
}
|
|
|
|
cb_handle >>= PAGE_SHIFT;
|
|
cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr, (u32) cb_handle);
|
|
/* hl_cb_get should never fail here */
|
|
if (!cb) {
|
|
dev_crit(hdev->dev, "Kernel CB handle invalid 0x%x\n",
|
|
(u32) cb_handle);
|
|
goto destroy_cb;
|
|
}
|
|
|
|
return cb;
|
|
|
|
destroy_cb:
|
|
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb_handle << PAGE_SHIFT);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int hl_cb_pool_init(struct hl_device *hdev)
|
|
{
|
|
struct hl_cb *cb;
|
|
int i;
|
|
|
|
INIT_LIST_HEAD(&hdev->cb_pool);
|
|
spin_lock_init(&hdev->cb_pool_lock);
|
|
|
|
for (i = 0 ; i < hdev->asic_prop.cb_pool_cb_cnt ; i++) {
|
|
cb = hl_cb_alloc(hdev, hdev->asic_prop.cb_pool_cb_size,
|
|
HL_KERNEL_ASID_ID, false);
|
|
if (cb) {
|
|
cb->is_pool = true;
|
|
list_add(&cb->pool_list, &hdev->cb_pool);
|
|
} else {
|
|
hl_cb_pool_fini(hdev);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hl_cb_pool_fini(struct hl_device *hdev)
|
|
{
|
|
struct hl_cb *cb, *tmp;
|
|
|
|
list_for_each_entry_safe(cb, tmp, &hdev->cb_pool, pool_list) {
|
|
list_del(&cb->pool_list);
|
|
cb_fini(hdev, cb);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hl_cb_va_pool_init(struct hl_ctx *ctx)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
int rc;
|
|
|
|
if (!hdev->supports_cb_mapping)
|
|
return 0;
|
|
|
|
ctx->cb_va_pool = gen_pool_create(__ffs(prop->pmmu.page_size), -1);
|
|
if (!ctx->cb_va_pool) {
|
|
dev_err(hdev->dev,
|
|
"Failed to create VA gen pool for CB mapping\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rc = gen_pool_add(ctx->cb_va_pool, prop->cb_va_start_addr,
|
|
prop->cb_va_end_addr - prop->cb_va_start_addr, -1);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to add memory to VA gen pool for CB mapping\n");
|
|
goto err_pool_destroy;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_pool_destroy:
|
|
gen_pool_destroy(ctx->cb_va_pool);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void hl_cb_va_pool_fini(struct hl_ctx *ctx)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
|
|
if (!hdev->supports_cb_mapping)
|
|
return;
|
|
|
|
gen_pool_destroy(ctx->cb_va_pool);
|
|
}
|