linux/arch/x86/include/asm/kvm_host.h
Radim Krčmář b1394e745b KVM: x86: fix APIC page invalidation
Implementation of the unpinned APIC page didn't update the VMCS address
cache when invalidation was done through range mmu notifiers.
This became a problem when the page notifier was removed.

Re-introduce the arch-specific helper and call it from ...range_start.

Reported-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Fixes: 38b9917350 ("kvm: vmx: Implement set_apic_access_page_addr")
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Cc: <stable@vger.kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Tested-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-06 16:10:34 +01:00

1455 lines
42 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This header defines architecture specific interfaces, x86 version
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#ifndef _ASM_X86_KVM_HOST_H
#define _ASM_X86_KVM_HOST_H
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/mmu_notifier.h>
#include <linux/tracepoint.h>
#include <linux/cpumask.h>
#include <linux/irq_work.h>
#include <linux/kvm.h>
#include <linux/kvm_para.h>
#include <linux/kvm_types.h>
#include <linux/perf_event.h>
#include <linux/pvclock_gtod.h>
#include <linux/clocksource.h>
#include <linux/irqbypass.h>
#include <linux/hyperv.h>
#include <asm/apic.h>
#include <asm/pvclock-abi.h>
#include <asm/desc.h>
#include <asm/mtrr.h>
#include <asm/msr-index.h>
#include <asm/asm.h>
#include <asm/kvm_page_track.h>
#define KVM_MAX_VCPUS 288
#define KVM_SOFT_MAX_VCPUS 240
#define KVM_MAX_VCPU_ID 1023
#define KVM_USER_MEM_SLOTS 509
/* memory slots that are not exposed to userspace */
#define KVM_PRIVATE_MEM_SLOTS 3
#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
#define KVM_HALT_POLL_NS_DEFAULT 200000
#define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
/* x86-specific vcpu->requests bit members */
#define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
#define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
#define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
#define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
#define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
#define KVM_REQ_EVENT KVM_ARCH_REQ(6)
#define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
#define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
#define KVM_REQ_NMI KVM_ARCH_REQ(9)
#define KVM_REQ_PMU KVM_ARCH_REQ(10)
#define KVM_REQ_PMI KVM_ARCH_REQ(11)
#define KVM_REQ_SMI KVM_ARCH_REQ(12)
#define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
#define KVM_REQ_MCLOCK_INPROGRESS \
KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_SCAN_IOAPIC \
KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
#define KVM_REQ_APIC_PAGE_RELOAD \
KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
#define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
#define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
#define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
#define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
#define CR0_RESERVED_BITS \
(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
| X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
| X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR3_PCID_INVD BIT_64(63)
#define CR4_RESERVED_BITS \
(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
| X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
| X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
| X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
| X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
| X86_CR4_SMAP | X86_CR4_PKE))
#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
#define INVALID_PAGE (~(hpa_t)0)
#define VALID_PAGE(x) ((x) != INVALID_PAGE)
#define UNMAPPED_GVA (~(gpa_t)0)
/* KVM Hugepage definitions for x86 */
#define KVM_NR_PAGE_SIZES 3
#define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
#define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
#define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
#define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
#define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
{
/* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */
return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
}
#define KVM_PERMILLE_MMU_PAGES 20
#define KVM_MIN_ALLOC_MMU_PAGES 64
#define KVM_MMU_HASH_SHIFT 12
#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
#define KVM_MIN_FREE_MMU_PAGES 5
#define KVM_REFILL_PAGES 25
#define KVM_MAX_CPUID_ENTRIES 80
#define KVM_NR_FIXED_MTRR_REGION 88
#define KVM_NR_VAR_MTRR 8
#define ASYNC_PF_PER_VCPU 64
enum kvm_reg {
VCPU_REGS_RAX = 0,
VCPU_REGS_RCX = 1,
VCPU_REGS_RDX = 2,
VCPU_REGS_RBX = 3,
VCPU_REGS_RSP = 4,
VCPU_REGS_RBP = 5,
VCPU_REGS_RSI = 6,
VCPU_REGS_RDI = 7,
#ifdef CONFIG_X86_64
VCPU_REGS_R8 = 8,
VCPU_REGS_R9 = 9,
VCPU_REGS_R10 = 10,
VCPU_REGS_R11 = 11,
VCPU_REGS_R12 = 12,
VCPU_REGS_R13 = 13,
VCPU_REGS_R14 = 14,
VCPU_REGS_R15 = 15,
#endif
VCPU_REGS_RIP,
NR_VCPU_REGS
};
enum kvm_reg_ex {
VCPU_EXREG_PDPTR = NR_VCPU_REGS,
VCPU_EXREG_CR3,
VCPU_EXREG_RFLAGS,
VCPU_EXREG_SEGMENTS,
};
enum {
VCPU_SREG_ES,
VCPU_SREG_CS,
VCPU_SREG_SS,
VCPU_SREG_DS,
VCPU_SREG_FS,
VCPU_SREG_GS,
VCPU_SREG_TR,
VCPU_SREG_LDTR,
};
#include <asm/kvm_emulate.h>
#define KVM_NR_MEM_OBJS 40
#define KVM_NR_DB_REGS 4
#define DR6_BD (1 << 13)
#define DR6_BS (1 << 14)
#define DR6_RTM (1 << 16)
#define DR6_FIXED_1 0xfffe0ff0
#define DR6_INIT 0xffff0ff0
#define DR6_VOLATILE 0x0001e00f
#define DR7_BP_EN_MASK 0x000000ff
#define DR7_GE (1 << 9)
#define DR7_GD (1 << 13)
#define DR7_FIXED_1 0x00000400
#define DR7_VOLATILE 0xffff2bff
#define PFERR_PRESENT_BIT 0
#define PFERR_WRITE_BIT 1
#define PFERR_USER_BIT 2
#define PFERR_RSVD_BIT 3
#define PFERR_FETCH_BIT 4
#define PFERR_PK_BIT 5
#define PFERR_GUEST_FINAL_BIT 32
#define PFERR_GUEST_PAGE_BIT 33
#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
#define PFERR_USER_MASK (1U << PFERR_USER_BIT)
#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
#define PFERR_PK_MASK (1U << PFERR_PK_BIT)
#define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
#define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
PFERR_WRITE_MASK | \
PFERR_PRESENT_MASK)
/*
* The mask used to denote special SPTEs, which can be either MMIO SPTEs or
* Access Tracking SPTEs. We use bit 62 instead of bit 63 to avoid conflicting
* with the SVE bit in EPT PTEs.
*/
#define SPTE_SPECIAL_MASK (1ULL << 62)
/* apic attention bits */
#define KVM_APIC_CHECK_VAPIC 0
/*
* The following bit is set with PV-EOI, unset on EOI.
* We detect PV-EOI changes by guest by comparing
* this bit with PV-EOI in guest memory.
* See the implementation in apic_update_pv_eoi.
*/
#define KVM_APIC_PV_EOI_PENDING 1
struct kvm_kernel_irq_routing_entry;
/*
* We don't want allocation failures within the mmu code, so we preallocate
* enough memory for a single page fault in a cache.
*/
struct kvm_mmu_memory_cache {
int nobjs;
void *objects[KVM_NR_MEM_OBJS];
};
/*
* the pages used as guest page table on soft mmu are tracked by
* kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used
* by indirect shadow page can not be more than 15 bits.
*
* Currently, we used 14 bits that are @level, @cr4_pae, @quadrant, @access,
* @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp.
*/
union kvm_mmu_page_role {
unsigned word;
struct {
unsigned level:4;
unsigned cr4_pae:1;
unsigned quadrant:2;
unsigned direct:1;
unsigned access:3;
unsigned invalid:1;
unsigned nxe:1;
unsigned cr0_wp:1;
unsigned smep_andnot_wp:1;
unsigned smap_andnot_wp:1;
unsigned ad_disabled:1;
unsigned :7;
/*
* This is left at the top of the word so that
* kvm_memslots_for_spte_role can extract it with a
* simple shift. While there is room, give it a whole
* byte so it is also faster to load it from memory.
*/
unsigned smm:8;
};
};
struct kvm_rmap_head {
unsigned long val;
};
struct kvm_mmu_page {
struct list_head link;
struct hlist_node hash_link;
/*
* The following two entries are used to key the shadow page in the
* hash table.
*/
gfn_t gfn;
union kvm_mmu_page_role role;
u64 *spt;
/* hold the gfn of each spte inside spt */
gfn_t *gfns;
bool unsync;
int root_count; /* Currently serving as active root */
unsigned int unsync_children;
struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
/* The page is obsolete if mmu_valid_gen != kvm->arch.mmu_valid_gen. */
unsigned long mmu_valid_gen;
DECLARE_BITMAP(unsync_child_bitmap, 512);
#ifdef CONFIG_X86_32
/*
* Used out of the mmu-lock to avoid reading spte values while an
* update is in progress; see the comments in __get_spte_lockless().
*/
int clear_spte_count;
#endif
/* Number of writes since the last time traversal visited this page. */
atomic_t write_flooding_count;
};
struct kvm_pio_request {
unsigned long count;
int in;
int port;
int size;
};
#define PT64_ROOT_MAX_LEVEL 5
struct rsvd_bits_validate {
u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
u64 bad_mt_xwr;
};
/*
* x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
* and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
* current mmu mode.
*/
struct kvm_mmu {
void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root);
unsigned long (*get_cr3)(struct kvm_vcpu *vcpu);
u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err,
bool prefault);
void (*inject_page_fault)(struct kvm_vcpu *vcpu,
struct x86_exception *fault);
gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access,
struct x86_exception *exception);
gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
struct x86_exception *exception);
int (*sync_page)(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp);
void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva);
void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
u64 *spte, const void *pte);
hpa_t root_hpa;
union kvm_mmu_page_role base_role;
u8 root_level;
u8 shadow_root_level;
u8 ept_ad;
bool direct_map;
/*
* Bitmap; bit set = permission fault
* Byte index: page fault error code [4:1]
* Bit index: pte permissions in ACC_* format
*/
u8 permissions[16];
/*
* The pkru_mask indicates if protection key checks are needed. It
* consists of 16 domains indexed by page fault error code bits [4:1],
* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
*/
u32 pkru_mask;
u64 *pae_root;
u64 *lm_root;
/*
* check zero bits on shadow page table entries, these
* bits include not only hardware reserved bits but also
* the bits spte never used.
*/
struct rsvd_bits_validate shadow_zero_check;
struct rsvd_bits_validate guest_rsvd_check;
/* Can have large pages at levels 2..last_nonleaf_level-1. */
u8 last_nonleaf_level;
bool nx;
u64 pdptrs[4]; /* pae */
};
enum pmc_type {
KVM_PMC_GP = 0,
KVM_PMC_FIXED,
};
struct kvm_pmc {
enum pmc_type type;
u8 idx;
u64 counter;
u64 eventsel;
struct perf_event *perf_event;
struct kvm_vcpu *vcpu;
};
struct kvm_pmu {
unsigned nr_arch_gp_counters;
unsigned nr_arch_fixed_counters;
unsigned available_event_types;
u64 fixed_ctr_ctrl;
u64 global_ctrl;
u64 global_status;
u64 global_ovf_ctrl;
u64 counter_bitmask[2];
u64 global_ctrl_mask;
u64 reserved_bits;
u8 version;
struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
struct irq_work irq_work;
u64 reprogram_pmi;
};
struct kvm_pmu_ops;
enum {
KVM_DEBUGREG_BP_ENABLED = 1,
KVM_DEBUGREG_WONT_EXIT = 2,
KVM_DEBUGREG_RELOAD = 4,
};
struct kvm_mtrr_range {
u64 base;
u64 mask;
struct list_head node;
};
struct kvm_mtrr {
struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
u64 deftype;
struct list_head head;
};
/* Hyper-V SynIC timer */
struct kvm_vcpu_hv_stimer {
struct hrtimer timer;
int index;
u64 config;
u64 count;
u64 exp_time;
struct hv_message msg;
bool msg_pending;
};
/* Hyper-V synthetic interrupt controller (SynIC)*/
struct kvm_vcpu_hv_synic {
u64 version;
u64 control;
u64 msg_page;
u64 evt_page;
atomic64_t sint[HV_SYNIC_SINT_COUNT];
atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
DECLARE_BITMAP(auto_eoi_bitmap, 256);
DECLARE_BITMAP(vec_bitmap, 256);
bool active;
bool dont_zero_synic_pages;
};
/* Hyper-V per vcpu emulation context */
struct kvm_vcpu_hv {
u32 vp_index;
u64 hv_vapic;
s64 runtime_offset;
struct kvm_vcpu_hv_synic synic;
struct kvm_hyperv_exit exit;
struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
};
struct kvm_vcpu_arch {
/*
* rip and regs accesses must go through
* kvm_{register,rip}_{read,write} functions.
*/
unsigned long regs[NR_VCPU_REGS];
u32 regs_avail;
u32 regs_dirty;
unsigned long cr0;
unsigned long cr0_guest_owned_bits;
unsigned long cr2;
unsigned long cr3;
unsigned long cr4;
unsigned long cr4_guest_owned_bits;
unsigned long cr8;
u32 pkru;
u32 hflags;
u64 efer;
u64 apic_base;
struct kvm_lapic *apic; /* kernel irqchip context */
bool apicv_active;
DECLARE_BITMAP(ioapic_handled_vectors, 256);
unsigned long apic_attention;
int32_t apic_arb_prio;
int mp_state;
u64 ia32_misc_enable_msr;
u64 smbase;
bool tpr_access_reporting;
u64 ia32_xss;
/*
* Paging state of the vcpu
*
* If the vcpu runs in guest mode with two level paging this still saves
* the paging mode of the l1 guest. This context is always used to
* handle faults.
*/
struct kvm_mmu mmu;
/*
* Paging state of an L2 guest (used for nested npt)
*
* This context will save all necessary information to walk page tables
* of the an L2 guest. This context is only initialized for page table
* walking and not for faulting since we never handle l2 page faults on
* the host.
*/
struct kvm_mmu nested_mmu;
/*
* Pointer to the mmu context currently used for
* gva_to_gpa translations.
*/
struct kvm_mmu *walk_mmu;
struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
struct kvm_mmu_memory_cache mmu_page_cache;
struct kvm_mmu_memory_cache mmu_page_header_cache;
/*
* QEMU userspace and the guest each have their own FPU state.
* In vcpu_run, we switch between the user and guest FPU contexts.
* While running a VCPU, the VCPU thread will have the guest FPU
* context.
*
* Note that while the PKRU state lives inside the fpu registers,
* it is switched out separately at VMENTER and VMEXIT time. The
* "guest_fpu" state here contains the guest FPU context, with the
* host PRKU bits.
*/
struct fpu user_fpu;
struct fpu guest_fpu;
u64 xcr0;
u64 guest_supported_xcr0;
u32 guest_xstate_size;
struct kvm_pio_request pio;
void *pio_data;
u8 event_exit_inst_len;
struct kvm_queued_exception {
bool pending;
bool injected;
bool has_error_code;
u8 nr;
u32 error_code;
u8 nested_apf;
} exception;
struct kvm_queued_interrupt {
bool pending;
bool soft;
u8 nr;
} interrupt;
int halt_request; /* real mode on Intel only */
int cpuid_nent;
struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES];
int maxphyaddr;
/* emulate context */
struct x86_emulate_ctxt emulate_ctxt;
bool emulate_regs_need_sync_to_vcpu;
bool emulate_regs_need_sync_from_vcpu;
int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
gpa_t time;
struct pvclock_vcpu_time_info hv_clock;
unsigned int hw_tsc_khz;
struct gfn_to_hva_cache pv_time;
bool pv_time_enabled;
/* set guest stopped flag in pvclock flags field */
bool pvclock_set_guest_stopped_request;
struct {
u64 msr_val;
u64 last_steal;
struct gfn_to_hva_cache stime;
struct kvm_steal_time steal;
} st;
u64 tsc_offset;
u64 last_guest_tsc;
u64 last_host_tsc;
u64 tsc_offset_adjustment;
u64 this_tsc_nsec;
u64 this_tsc_write;
u64 this_tsc_generation;
bool tsc_catchup;
bool tsc_always_catchup;
s8 virtual_tsc_shift;
u32 virtual_tsc_mult;
u32 virtual_tsc_khz;
s64 ia32_tsc_adjust_msr;
u64 tsc_scaling_ratio;
atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
unsigned nmi_pending; /* NMI queued after currently running handler */
bool nmi_injected; /* Trying to inject an NMI this entry */
bool smi_pending; /* SMI queued after currently running handler */
struct kvm_mtrr mtrr_state;
u64 pat;
unsigned switch_db_regs;
unsigned long db[KVM_NR_DB_REGS];
unsigned long dr6;
unsigned long dr7;
unsigned long eff_db[KVM_NR_DB_REGS];
unsigned long guest_debug_dr7;
u64 msr_platform_info;
u64 msr_misc_features_enables;
u64 mcg_cap;
u64 mcg_status;
u64 mcg_ctl;
u64 mcg_ext_ctl;
u64 *mce_banks;
/* Cache MMIO info */
u64 mmio_gva;
unsigned access;
gfn_t mmio_gfn;
u64 mmio_gen;
struct kvm_pmu pmu;
/* used for guest single stepping over the given code position */
unsigned long singlestep_rip;
struct kvm_vcpu_hv hyperv;
cpumask_var_t wbinvd_dirty_mask;
unsigned long last_retry_eip;
unsigned long last_retry_addr;
struct {
bool halted;
gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)];
struct gfn_to_hva_cache data;
u64 msr_val;
u32 id;
bool send_user_only;
u32 host_apf_reason;
unsigned long nested_apf_token;
bool delivery_as_pf_vmexit;
} apf;
/* OSVW MSRs (AMD only) */
struct {
u64 length;
u64 status;
} osvw;
struct {
u64 msr_val;
struct gfn_to_hva_cache data;
} pv_eoi;
/*
* Indicate whether the access faults on its page table in guest
* which is set when fix page fault and used to detect unhandeable
* instruction.
*/
bool write_fault_to_shadow_pgtable;
/* set at EPT violation at this point */
unsigned long exit_qualification;
/* pv related host specific info */
struct {
bool pv_unhalted;
} pv;
int pending_ioapic_eoi;
int pending_external_vector;
/* GPA available */
bool gpa_available;
gpa_t gpa_val;
/* be preempted when it's in kernel-mode(cpl=0) */
bool preempted_in_kernel;
};
struct kvm_lpage_info {
int disallow_lpage;
};
struct kvm_arch_memory_slot {
struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
};
/*
* We use as the mode the number of bits allocated in the LDR for the
* logical processor ID. It happens that these are all powers of two.
* This makes it is very easy to detect cases where the APICs are
* configured for multiple modes; in that case, we cannot use the map and
* hence cannot use kvm_irq_delivery_to_apic_fast either.
*/
#define KVM_APIC_MODE_XAPIC_CLUSTER 4
#define KVM_APIC_MODE_XAPIC_FLAT 8
#define KVM_APIC_MODE_X2APIC 16
struct kvm_apic_map {
struct rcu_head rcu;
u8 mode;
u32 max_apic_id;
union {
struct kvm_lapic *xapic_flat_map[8];
struct kvm_lapic *xapic_cluster_map[16][4];
};
struct kvm_lapic *phys_map[];
};
/* Hyper-V emulation context */
struct kvm_hv {
struct mutex hv_lock;
u64 hv_guest_os_id;
u64 hv_hypercall;
u64 hv_tsc_page;
/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
u64 hv_crash_ctl;
HV_REFERENCE_TSC_PAGE tsc_ref;
};
enum kvm_irqchip_mode {
KVM_IRQCHIP_NONE,
KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
};
struct kvm_arch {
unsigned int n_used_mmu_pages;
unsigned int n_requested_mmu_pages;
unsigned int n_max_mmu_pages;
unsigned int indirect_shadow_pages;
unsigned long mmu_valid_gen;
struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
/*
* Hash table of struct kvm_mmu_page.
*/
struct list_head active_mmu_pages;
struct list_head zapped_obsolete_pages;
struct kvm_page_track_notifier_node mmu_sp_tracker;
struct kvm_page_track_notifier_head track_notifier_head;
struct list_head assigned_dev_head;
struct iommu_domain *iommu_domain;
bool iommu_noncoherent;
#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
atomic_t noncoherent_dma_count;
#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
atomic_t assigned_device_count;
struct kvm_pic *vpic;
struct kvm_ioapic *vioapic;
struct kvm_pit *vpit;
atomic_t vapics_in_nmi_mode;
struct mutex apic_map_lock;
struct kvm_apic_map *apic_map;
unsigned int tss_addr;
bool apic_access_page_done;
gpa_t wall_clock;
bool ept_identity_pagetable_done;
gpa_t ept_identity_map_addr;
unsigned long irq_sources_bitmap;
s64 kvmclock_offset;
raw_spinlock_t tsc_write_lock;
u64 last_tsc_nsec;
u64 last_tsc_write;
u32 last_tsc_khz;
u64 cur_tsc_nsec;
u64 cur_tsc_write;
u64 cur_tsc_offset;
u64 cur_tsc_generation;
int nr_vcpus_matched_tsc;
spinlock_t pvclock_gtod_sync_lock;
bool use_master_clock;
u64 master_kernel_ns;
u64 master_cycle_now;
struct delayed_work kvmclock_update_work;
struct delayed_work kvmclock_sync_work;
struct kvm_xen_hvm_config xen_hvm_config;
/* reads protected by irq_srcu, writes by irq_lock */
struct hlist_head mask_notifier_list;
struct kvm_hv hyperv;
#ifdef CONFIG_KVM_MMU_AUDIT
int audit_point;
#endif
bool backwards_tsc_observed;
bool boot_vcpu_runs_old_kvmclock;
u32 bsp_vcpu_id;
u64 disabled_quirks;
enum kvm_irqchip_mode irqchip_mode;
u8 nr_reserved_ioapic_pins;
bool disabled_lapic_found;
/* Struct members for AVIC */
u32 avic_vm_id;
u32 ldr_mode;
struct page *avic_logical_id_table_page;
struct page *avic_physical_id_table_page;
struct hlist_node hnode;
bool x2apic_format;
bool x2apic_broadcast_quirk_disabled;
};
struct kvm_vm_stat {
ulong mmu_shadow_zapped;
ulong mmu_pte_write;
ulong mmu_pte_updated;
ulong mmu_pde_zapped;
ulong mmu_flooded;
ulong mmu_recycled;
ulong mmu_cache_miss;
ulong mmu_unsync;
ulong remote_tlb_flush;
ulong lpages;
ulong max_mmu_page_hash_collisions;
};
struct kvm_vcpu_stat {
u64 pf_fixed;
u64 pf_guest;
u64 tlb_flush;
u64 invlpg;
u64 exits;
u64 io_exits;
u64 mmio_exits;
u64 signal_exits;
u64 irq_window_exits;
u64 nmi_window_exits;
u64 halt_exits;
u64 halt_successful_poll;
u64 halt_attempted_poll;
u64 halt_poll_invalid;
u64 halt_wakeup;
u64 request_irq_exits;
u64 irq_exits;
u64 host_state_reload;
u64 efer_reload;
u64 fpu_reload;
u64 insn_emulation;
u64 insn_emulation_fail;
u64 hypercalls;
u64 irq_injections;
u64 nmi_injections;
u64 req_event;
};
struct x86_instruction_info;
struct msr_data {
bool host_initiated;
u32 index;
u64 data;
};
struct kvm_lapic_irq {
u32 vector;
u16 delivery_mode;
u16 dest_mode;
bool level;
u16 trig_mode;
u32 shorthand;
u32 dest_id;
bool msi_redir_hint;
};
struct kvm_x86_ops {
int (*cpu_has_kvm_support)(void); /* __init */
int (*disabled_by_bios)(void); /* __init */
int (*hardware_enable)(void);
void (*hardware_disable)(void);
void (*check_processor_compatibility)(void *rtn);
int (*hardware_setup)(void); /* __init */
void (*hardware_unsetup)(void); /* __exit */
bool (*cpu_has_accelerated_tpr)(void);
bool (*cpu_has_high_real_mode_segbase)(void);
void (*cpuid_update)(struct kvm_vcpu *vcpu);
int (*vm_init)(struct kvm *kvm);
void (*vm_destroy)(struct kvm *kvm);
/* Create, but do not attach this VCPU */
struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id);
void (*vcpu_free)(struct kvm_vcpu *vcpu);
void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
void (*vcpu_put)(struct kvm_vcpu *vcpu);
void (*update_bp_intercept)(struct kvm_vcpu *vcpu);
int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
void (*get_segment)(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
int (*get_cpl)(struct kvm_vcpu *vcpu);
void (*set_segment)(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu);
void (*decache_cr3)(struct kvm_vcpu *vcpu);
void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu);
void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
u64 (*get_dr6)(struct kvm_vcpu *vcpu);
void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
void (*tlb_flush)(struct kvm_vcpu *vcpu);
void (*run)(struct kvm_vcpu *vcpu);
int (*handle_exit)(struct kvm_vcpu *vcpu);
void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
void (*patch_hypercall)(struct kvm_vcpu *vcpu,
unsigned char *hypercall_addr);
void (*set_irq)(struct kvm_vcpu *vcpu);
void (*set_nmi)(struct kvm_vcpu *vcpu);
void (*queue_exception)(struct kvm_vcpu *vcpu);
void (*cancel_injection)(struct kvm_vcpu *vcpu);
int (*interrupt_allowed)(struct kvm_vcpu *vcpu);
int (*nmi_allowed)(struct kvm_vcpu *vcpu);
bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
void (*enable_irq_window)(struct kvm_vcpu *vcpu);
void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
bool (*get_enable_apicv)(struct kvm_vcpu *vcpu);
void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
void (*set_virtual_x2apic_mode)(struct kvm_vcpu *vcpu, bool set);
void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa);
void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
int (*get_tdp_level)(struct kvm_vcpu *vcpu);
u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
int (*get_lpage_level)(void);
bool (*rdtscp_supported)(void);
bool (*invpcid_supported)(void);
void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry);
bool (*has_wbinvd_exit)(void);
void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2);
int (*check_intercept)(struct kvm_vcpu *vcpu,
struct x86_instruction_info *info,
enum x86_intercept_stage stage);
void (*handle_external_intr)(struct kvm_vcpu *vcpu);
bool (*mpx_supported)(void);
bool (*xsaves_supported)(void);
int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr);
void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
/*
* Arch-specific dirty logging hooks. These hooks are only supposed to
* be valid if the specific arch has hardware-accelerated dirty logging
* mechanism. Currently only for PML on VMX.
*
* - slot_enable_log_dirty:
* called when enabling log dirty mode for the slot.
* - slot_disable_log_dirty:
* called when disabling log dirty mode for the slot.
* also called when slot is created with log dirty disabled.
* - flush_log_dirty:
* called before reporting dirty_bitmap to userspace.
* - enable_log_dirty_pt_masked:
* called when reenabling log dirty for the GFNs in the mask after
* corresponding bits are cleared in slot->dirty_bitmap.
*/
void (*slot_enable_log_dirty)(struct kvm *kvm,
struct kvm_memory_slot *slot);
void (*slot_disable_log_dirty)(struct kvm *kvm,
struct kvm_memory_slot *slot);
void (*flush_log_dirty)(struct kvm *kvm);
void (*enable_log_dirty_pt_masked)(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t offset, unsigned long mask);
int (*write_log_dirty)(struct kvm_vcpu *vcpu);
/* pmu operations of sub-arch */
const struct kvm_pmu_ops *pmu_ops;
/*
* Architecture specific hooks for vCPU blocking due to
* HLT instruction.
* Returns for .pre_block():
* - 0 means continue to block the vCPU.
* - 1 means we cannot block the vCPU since some event
* happens during this period, such as, 'ON' bit in
* posted-interrupts descriptor is set.
*/
int (*pre_block)(struct kvm_vcpu *vcpu);
void (*post_block)(struct kvm_vcpu *vcpu);
void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set);
void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc);
void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
void (*setup_mce)(struct kvm_vcpu *vcpu);
int (*smi_allowed)(struct kvm_vcpu *vcpu);
int (*pre_enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
int (*pre_leave_smm)(struct kvm_vcpu *vcpu, u64 smbase);
int (*enable_smi_window)(struct kvm_vcpu *vcpu);
};
struct kvm_arch_async_pf {
u32 token;
gfn_t gfn;
unsigned long cr3;
bool direct_map;
};
extern struct kvm_x86_ops *kvm_x86_ops;
int kvm_mmu_module_init(void);
void kvm_mmu_module_exit(void);
void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
int kvm_mmu_create(struct kvm_vcpu *vcpu);
void kvm_mmu_setup(struct kvm_vcpu *vcpu);
void kvm_mmu_init_vm(struct kvm *kvm);
void kvm_mmu_uninit_vm(struct kvm *kvm);
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
u64 acc_track_mask, u64 me_mask);
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
struct kvm_memory_slot *memslot);
void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
const struct kvm_memory_slot *memslot);
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
struct kvm_memory_slot *memslot);
void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
struct kvm_memory_slot *memslot);
void kvm_mmu_slot_set_dirty(struct kvm *kvm,
struct kvm_memory_slot *memslot);
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask);
void kvm_mmu_zap_all(struct kvm *kvm);
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots);
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm);
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages);
int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
bool pdptrs_changed(struct kvm_vcpu *vcpu);
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
const void *val, int bytes);
struct kvm_irq_mask_notifier {
void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
int irq;
struct hlist_node link;
};
void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
struct kvm_irq_mask_notifier *kimn);
void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
struct kvm_irq_mask_notifier *kimn);
void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
bool mask);
extern bool tdp_enabled;
u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
/* control of guest tsc rate supported? */
extern bool kvm_has_tsc_control;
/* maximum supported tsc_khz for guests */
extern u32 kvm_max_guest_tsc_khz;
/* number of bits of the fractional part of the TSC scaling ratio */
extern u8 kvm_tsc_scaling_ratio_frac_bits;
/* maximum allowed value of TSC scaling ratio */
extern u64 kvm_max_tsc_scaling_ratio;
/* 1ull << kvm_tsc_scaling_ratio_frac_bits */
extern u64 kvm_default_tsc_scaling_ratio;
extern u64 kvm_mce_cap_supported;
enum emulation_result {
EMULATE_DONE, /* no further processing */
EMULATE_USER_EXIT, /* kvm_run ready for userspace exit */
EMULATE_FAIL, /* can't emulate this instruction */
};
#define EMULTYPE_NO_DECODE (1 << 0)
#define EMULTYPE_TRAP_UD (1 << 1)
#define EMULTYPE_SKIP (1 << 2)
#define EMULTYPE_RETRY (1 << 3)
#define EMULTYPE_NO_REEXECUTE (1 << 4)
int x86_emulate_instruction(struct kvm_vcpu *vcpu, unsigned long cr2,
int emulation_type, void *insn, int insn_len);
static inline int emulate_instruction(struct kvm_vcpu *vcpu,
int emulation_type)
{
return x86_emulate_instruction(vcpu, 0,
emulation_type | EMULTYPE_NO_REEXECUTE, NULL, 0);
}
void kvm_enable_efer_bits(u64);
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
struct x86_emulate_ctxt;
int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port);
int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port);
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
int kvm_emulate_halt(struct kvm_vcpu *vcpu);
int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
int reason, bool has_error_code, u32 error_code);
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);
int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
bool kvm_rdpmc(struct kvm_vcpu *vcpu);
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
gfn_t gfn, void *data, int offset, int len,
u32 access);
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
static inline int __kvm_irq_line_state(unsigned long *irq_state,
int irq_source_id, int level)
{
/* Logical OR for level trig interrupt */
if (level)
__set_bit(irq_source_id, irq_state);
else
__clear_bit(irq_source_id, irq_state);
return !!(*irq_state);
}
int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
void kvm_inject_nmi(struct kvm_vcpu *vcpu);
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva);
void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
int kvm_mmu_load(struct kvm_vcpu *vcpu);
void kvm_mmu_unload(struct kvm_vcpu *vcpu);
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception);
void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu);
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u64 error_code,
void *insn, int insn_len);
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu);
void kvm_enable_tdp(void);
void kvm_disable_tdp(void);
static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
struct x86_exception *exception)
{
return gpa;
}
static inline struct kvm_mmu_page *page_header(hpa_t shadow_page)
{
struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
return (struct kvm_mmu_page *)page_private(page);
}
static inline u16 kvm_read_ldt(void)
{
u16 ldt;
asm("sldt %0" : "=g"(ldt));
return ldt;
}
static inline void kvm_load_ldt(u16 sel)
{
asm("lldt %0" : : "rm"(sel));
}
#ifdef CONFIG_X86_64
static inline unsigned long read_msr(unsigned long msr)
{
u64 value;
rdmsrl(msr, value);
return value;
}
#endif
static inline u32 get_rdx_init_val(void)
{
return 0x600; /* P6 family */
}
static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
{
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
}
#define TSS_IOPB_BASE_OFFSET 0x66
#define TSS_BASE_SIZE 0x68
#define TSS_IOPB_SIZE (65536 / 8)
#define TSS_REDIRECTION_SIZE (256 / 8)
#define RMODE_TSS_SIZE \
(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
enum {
TASK_SWITCH_CALL = 0,
TASK_SWITCH_IRET = 1,
TASK_SWITCH_JMP = 2,
TASK_SWITCH_GATE = 3,
};
#define HF_GIF_MASK (1 << 0)
#define HF_HIF_MASK (1 << 1)
#define HF_VINTR_MASK (1 << 2)
#define HF_NMI_MASK (1 << 3)
#define HF_IRET_MASK (1 << 4)
#define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
#define HF_SMM_MASK (1 << 6)
#define HF_SMM_INSIDE_NMI_MASK (1 << 7)
#define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
#define KVM_ADDRESS_SPACE_NUM 2
#define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
#define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
/*
* Hardware virtualization extension instructions may fault if a
* reboot turns off virtualization while processes are running.
* Trap the fault and ignore the instruction if that happens.
*/
asmlinkage void kvm_spurious_fault(void);
#define ____kvm_handle_fault_on_reboot(insn, cleanup_insn) \
"666: " insn "\n\t" \
"668: \n\t" \
".pushsection .fixup, \"ax\" \n" \
"667: \n\t" \
cleanup_insn "\n\t" \
"cmpb $0, kvm_rebooting \n\t" \
"jne 668b \n\t" \
__ASM_SIZE(push) " $666b \n\t" \
"call kvm_spurious_fault \n\t" \
".popsection \n\t" \
_ASM_EXTABLE(666b, 667b)
#define __kvm_handle_fault_on_reboot(insn) \
____kvm_handle_fault_on_reboot(insn, "")
#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
void kvm_define_shared_msr(unsigned index, u32 msr);
int kvm_set_shared_msr(unsigned index, u64 val, u64 mask);
u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc);
u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
void kvm_make_mclock_inprogress_request(struct kvm *kvm);
void kvm_make_scan_ioapic_request(struct kvm *kvm);
void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work);
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work);
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work);
bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu);
extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
int kvm_is_in_guest(void);
int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
struct kvm_vcpu **dest_vcpu);
void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
struct kvm_lapic_irq *irq);
static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
if (kvm_x86_ops->vcpu_blocking)
kvm_x86_ops->vcpu_blocking(vcpu);
}
static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
if (kvm_x86_ops->vcpu_unblocking)
kvm_x86_ops->vcpu_unblocking(vcpu);
}
static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
static inline int kvm_cpu_get_apicid(int mps_cpu)
{
#ifdef CONFIG_X86_LOCAL_APIC
return default_cpu_present_to_apicid(mps_cpu);
#else
WARN_ON_ONCE(1);
return BAD_APICID;
#endif
}
#define put_smstate(type, buf, offset, val) \
*(type *)((buf) + (offset) - 0x7e00) = val
void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
unsigned long start, unsigned long end);
#endif /* _ASM_X86_KVM_HOST_H */