linux/drivers/char/pcmcia/cm4000_cs.c
Mauro Carvalho Chehab 8c27ceff36 docs: fix locations of several documents that got moved
The previous patch renamed several files that are cross-referenced
along the Kernel documentation. Adjust the links to point to
the right places.

Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2016-10-24 08:12:35 -02:00

1925 lines
48 KiB
C

/*
* A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000"
*
* cm4000_cs.c support.linux@omnikey.com
*
* Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files
* Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files
* Thu Nov 14 16:34:11 GMT 2002 mh - added PPS functionality
* Tue Nov 19 16:36:27 GMT 2002 mh - added SUSPEND/RESUME functionailty
* Wed Jul 28 12:55:01 CEST 2004 mh - kernel 2.6 adjustments
*
* current version: 2.4.0gm4
*
* (C) 2000,2001,2002,2003,2004 Omnikey AG
*
* (C) 2005-2006 Harald Welte <laforge@gnumonks.org>
* - Adhere to Kernel process/coding-style.rst
* - Port to 2.6.13 "new" style PCMCIA
* - Check for copy_{from,to}_user return values
* - Use nonseekable_open()
* - add class interface for udev device creation
*
* All rights reserved. Licensed under dual BSD/GPL license.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/bitrev.h>
#include <linux/mutex.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/ciscode.h>
#include <pcmcia/ds.h>
#include <linux/cm4000_cs.h>
/* #define ATR_CSUM */
#define reader_to_dev(x) (&x->p_dev->dev)
/* n (debug level) is ignored */
/* additional debug output may be enabled by re-compiling with
* CM4000_DEBUG set */
/* #define CM4000_DEBUG */
#define DEBUGP(n, rdr, x, args...) do { \
dev_dbg(reader_to_dev(rdr), "%s:" x, \
__func__ , ## args); \
} while (0)
static DEFINE_MUTEX(cmm_mutex);
#define T_1SEC (HZ)
#define T_10MSEC msecs_to_jiffies(10)
#define T_20MSEC msecs_to_jiffies(20)
#define T_40MSEC msecs_to_jiffies(40)
#define T_50MSEC msecs_to_jiffies(50)
#define T_100MSEC msecs_to_jiffies(100)
#define T_500MSEC msecs_to_jiffies(500)
static void cm4000_release(struct pcmcia_device *link);
static int major; /* major number we get from the kernel */
/* note: the first state has to have number 0 always */
#define M_FETCH_ATR 0
#define M_TIMEOUT_WAIT 1
#define M_READ_ATR_LEN 2
#define M_READ_ATR 3
#define M_ATR_PRESENT 4
#define M_BAD_CARD 5
#define M_CARDOFF 6
#define LOCK_IO 0
#define LOCK_MONITOR 1
#define IS_AUTOPPS_ACT 6
#define IS_PROCBYTE_PRESENT 7
#define IS_INVREV 8
#define IS_ANY_T0 9
#define IS_ANY_T1 10
#define IS_ATR_PRESENT 11
#define IS_ATR_VALID 12
#define IS_CMM_ABSENT 13
#define IS_BAD_LENGTH 14
#define IS_BAD_CSUM 15
#define IS_BAD_CARD 16
#define REG_FLAGS0(x) (x + 0)
#define REG_FLAGS1(x) (x + 1)
#define REG_NUM_BYTES(x) (x + 2)
#define REG_BUF_ADDR(x) (x + 3)
#define REG_BUF_DATA(x) (x + 4)
#define REG_NUM_SEND(x) (x + 5)
#define REG_BAUDRATE(x) (x + 6)
#define REG_STOPBITS(x) (x + 7)
struct cm4000_dev {
struct pcmcia_device *p_dev;
unsigned char atr[MAX_ATR];
unsigned char rbuf[512];
unsigned char sbuf[512];
wait_queue_head_t devq; /* when removing cardman must not be
zeroed! */
wait_queue_head_t ioq; /* if IO is locked, wait on this Q */
wait_queue_head_t atrq; /* wait for ATR valid */
wait_queue_head_t readq; /* used by write to wake blk.read */
/* warning: do not move this fields.
* initialising to zero depends on it - see ZERO_DEV below. */
unsigned char atr_csum;
unsigned char atr_len_retry;
unsigned short atr_len;
unsigned short rlen; /* bytes avail. after write */
unsigned short rpos; /* latest read pos. write zeroes */
unsigned char procbyte; /* T=0 procedure byte */
unsigned char mstate; /* state of card monitor */
unsigned char cwarn; /* slow down warning */
unsigned char flags0; /* cardman IO-flags 0 */
unsigned char flags1; /* cardman IO-flags 1 */
unsigned int mdelay; /* variable monitor speeds, in jiffies */
unsigned int baudv; /* baud value for speed */
unsigned char ta1;
unsigned char proto; /* T=0, T=1, ... */
unsigned long flags; /* lock+flags (MONITOR,IO,ATR) * for concurrent
access */
unsigned char pts[4];
struct timer_list timer; /* used to keep monitor running */
int monitor_running;
};
#define ZERO_DEV(dev) \
memset(&dev->atr_csum,0, \
sizeof(struct cm4000_dev) - \
offsetof(struct cm4000_dev, atr_csum))
static struct pcmcia_device *dev_table[CM4000_MAX_DEV];
static struct class *cmm_class;
/* This table doesn't use spaces after the comma between fields and thus
* violates process/coding-style.rst. However, I don't really think wrapping it around will
* make it any clearer to read -HW */
static unsigned char fi_di_table[10][14] = {
/*FI 00 01 02 03 04 05 06 07 08 09 10 11 12 13 */
/*DI */
/* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
/* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11},
/* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11},
/* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3},
/* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4},
/* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5},
/* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6},
/* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11},
/* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8},
/* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9}
};
#ifndef CM4000_DEBUG
#define xoutb outb
#define xinb inb
#else
static inline void xoutb(unsigned char val, unsigned short port)
{
pr_debug("outb(val=%.2x,port=%.4x)\n", val, port);
outb(val, port);
}
static inline unsigned char xinb(unsigned short port)
{
unsigned char val;
val = inb(port);
pr_debug("%.2x=inb(%.4x)\n", val, port);
return val;
}
#endif
static inline unsigned char invert_revert(unsigned char ch)
{
return bitrev8(~ch);
}
static void str_invert_revert(unsigned char *b, int len)
{
int i;
for (i = 0; i < len; i++)
b[i] = invert_revert(b[i]);
}
#define ATRLENCK(dev,pos) \
if (pos>=dev->atr_len || pos>=MAX_ATR) \
goto return_0;
static unsigned int calc_baudv(unsigned char fidi)
{
unsigned int wcrcf, wbrcf, fi_rfu, di_rfu;
fi_rfu = 372;
di_rfu = 1;
/* FI */
switch ((fidi >> 4) & 0x0F) {
case 0x00:
wcrcf = 372;
break;
case 0x01:
wcrcf = 372;
break;
case 0x02:
wcrcf = 558;
break;
case 0x03:
wcrcf = 744;
break;
case 0x04:
wcrcf = 1116;
break;
case 0x05:
wcrcf = 1488;
break;
case 0x06:
wcrcf = 1860;
break;
case 0x07:
wcrcf = fi_rfu;
break;
case 0x08:
wcrcf = fi_rfu;
break;
case 0x09:
wcrcf = 512;
break;
case 0x0A:
wcrcf = 768;
break;
case 0x0B:
wcrcf = 1024;
break;
case 0x0C:
wcrcf = 1536;
break;
case 0x0D:
wcrcf = 2048;
break;
default:
wcrcf = fi_rfu;
break;
}
/* DI */
switch (fidi & 0x0F) {
case 0x00:
wbrcf = di_rfu;
break;
case 0x01:
wbrcf = 1;
break;
case 0x02:
wbrcf = 2;
break;
case 0x03:
wbrcf = 4;
break;
case 0x04:
wbrcf = 8;
break;
case 0x05:
wbrcf = 16;
break;
case 0x06:
wbrcf = 32;
break;
case 0x07:
wbrcf = di_rfu;
break;
case 0x08:
wbrcf = 12;
break;
case 0x09:
wbrcf = 20;
break;
default:
wbrcf = di_rfu;
break;
}
return (wcrcf / wbrcf);
}
static unsigned short io_read_num_rec_bytes(unsigned int iobase,
unsigned short *s)
{
unsigned short tmp;
tmp = *s = 0;
do {
*s = tmp;
tmp = inb(REG_NUM_BYTES(iobase)) |
(inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0);
} while (tmp != *s);
return *s;
}
static int parse_atr(struct cm4000_dev *dev)
{
unsigned char any_t1, any_t0;
unsigned char ch, ifno;
int ix, done;
DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len);
if (dev->atr_len < 3) {
DEBUGP(5, dev, "parse_atr: atr_len < 3\n");
return 0;
}
if (dev->atr[0] == 0x3f)
set_bit(IS_INVREV, &dev->flags);
else
clear_bit(IS_INVREV, &dev->flags);
ix = 1;
ifno = 1;
ch = dev->atr[1];
dev->proto = 0; /* XXX PROTO */
any_t1 = any_t0 = done = 0;
dev->ta1 = 0x11; /* defaults to 9600 baud */
do {
if (ifno == 1 && (ch & 0x10)) {
/* read first interface byte and TA1 is present */
dev->ta1 = dev->atr[2];
DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1);
ifno++;
} else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */
dev->ta1 = 0x11;
ifno++;
}
DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0);
ix += ((ch & 0x10) >> 4) /* no of int.face chars */
+((ch & 0x20) >> 5)
+ ((ch & 0x40) >> 6)
+ ((ch & 0x80) >> 7);
/* ATRLENCK(dev,ix); */
if (ch & 0x80) { /* TDi */
ch = dev->atr[ix];
if ((ch & 0x0f)) {
any_t1 = 1;
DEBUGP(5, dev, "card is capable of T=1\n");
} else {
any_t0 = 1;
DEBUGP(5, dev, "card is capable of T=0\n");
}
} else
done = 1;
} while (!done);
DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n",
ix, dev->atr[1] & 15, any_t1);
if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) {
DEBUGP(5, dev, "length error\n");
return 0;
}
if (any_t0)
set_bit(IS_ANY_T0, &dev->flags);
if (any_t1) { /* compute csum */
dev->atr_csum = 0;
#ifdef ATR_CSUM
for (i = 1; i < dev->atr_len; i++)
dev->atr_csum ^= dev->atr[i];
if (dev->atr_csum) {
set_bit(IS_BAD_CSUM, &dev->flags);
DEBUGP(5, dev, "bad checksum\n");
goto return_0;
}
#endif
if (any_t0 == 0)
dev->proto = 1; /* XXX PROTO */
set_bit(IS_ANY_T1, &dev->flags);
}
return 1;
}
struct card_fixup {
char atr[12];
u_int8_t atr_len;
u_int8_t stopbits;
};
static struct card_fixup card_fixups[] = {
{ /* ACOS */
.atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 },
.atr_len = 7,
.stopbits = 0x03,
},
{ /* Motorola */
.atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07,
0x41, 0x81, 0x81 },
.atr_len = 11,
.stopbits = 0x04,
},
};
static void set_cardparameter(struct cm4000_dev *dev)
{
int i;
unsigned int iobase = dev->p_dev->resource[0]->start;
u_int8_t stopbits = 0x02; /* ISO default */
DEBUGP(3, dev, "-> set_cardparameter\n");
dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8);
xoutb(dev->flags1, REG_FLAGS1(iobase));
DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1);
/* set baudrate */
xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase));
DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv,
((dev->baudv - 1) & 0xFF));
/* set stopbits */
for (i = 0; i < ARRAY_SIZE(card_fixups); i++) {
if (!memcmp(dev->atr, card_fixups[i].atr,
card_fixups[i].atr_len))
stopbits = card_fixups[i].stopbits;
}
xoutb(stopbits, REG_STOPBITS(iobase));
DEBUGP(3, dev, "<- set_cardparameter\n");
}
static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq)
{
unsigned long tmp, i;
unsigned short num_bytes_read;
unsigned char pts_reply[4];
ssize_t rc;
unsigned int iobase = dev->p_dev->resource[0]->start;
rc = 0;
DEBUGP(3, dev, "-> set_protocol\n");
DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, "
"ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, "
"ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol,
(unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2,
ptsreq->pts3);
/* Fill PTS structure */
dev->pts[0] = 0xff;
dev->pts[1] = 0x00;
tmp = ptsreq->protocol;
while ((tmp = (tmp >> 1)) > 0)
dev->pts[1]++;
dev->proto = dev->pts[1]; /* Set new protocol */
dev->pts[1] = (0x01 << 4) | (dev->pts[1]);
/* Correct Fi/Di according to CM4000 Fi/Di table */
DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1);
/* set Fi/Di according to ATR TA(1) */
dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F];
/* Calculate PCK character */
dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2];
DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n",
dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]);
/* check card convention */
if (test_bit(IS_INVREV, &dev->flags))
str_invert_revert(dev->pts, 4);
/* reset SM */
xoutb(0x80, REG_FLAGS0(iobase));
/* Enable access to the message buffer */
DEBUGP(5, dev, "Enable access to the messages buffer\n");
dev->flags1 = 0x20 /* T_Active */
| (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */
| ((dev->baudv >> 8) & 0x01); /* MSB-baud */
xoutb(dev->flags1, REG_FLAGS1(iobase));
DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n",
dev->flags1);
/* write challenge to the buffer */
DEBUGP(5, dev, "Write challenge to buffer: ");
for (i = 0; i < 4; i++) {
xoutb(i, REG_BUF_ADDR(iobase));
xoutb(dev->pts[i], REG_BUF_DATA(iobase)); /* buf data */
#ifdef CM4000_DEBUG
pr_debug("0x%.2x ", dev->pts[i]);
}
pr_debug("\n");
#else
}
#endif
/* set number of bytes to write */
DEBUGP(5, dev, "Set number of bytes to write\n");
xoutb(0x04, REG_NUM_SEND(iobase));
/* Trigger CARDMAN CONTROLLER */
xoutb(0x50, REG_FLAGS0(iobase));
/* Monitor progress */
/* wait for xmit done */
DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n");
for (i = 0; i < 100; i++) {
if (inb(REG_FLAGS0(iobase)) & 0x08) {
DEBUGP(5, dev, "NumRecBytes is valid\n");
break;
}
mdelay(10);
}
if (i == 100) {
DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting "
"valid\n");
rc = -EIO;
goto exit_setprotocol;
}
DEBUGP(5, dev, "Reading NumRecBytes\n");
for (i = 0; i < 100; i++) {
io_read_num_rec_bytes(iobase, &num_bytes_read);
if (num_bytes_read >= 4) {
DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read);
break;
}
mdelay(10);
}
/* check whether it is a short PTS reply? */
if (num_bytes_read == 3)
i = 0;
if (i == 100) {
DEBUGP(5, dev, "Timeout reading num_bytes_read\n");
rc = -EIO;
goto exit_setprotocol;
}
DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n");
xoutb(0x80, REG_FLAGS0(iobase));
/* Read PPS reply */
DEBUGP(5, dev, "Read PPS reply\n");
for (i = 0; i < num_bytes_read; i++) {
xoutb(i, REG_BUF_ADDR(iobase));
pts_reply[i] = inb(REG_BUF_DATA(iobase));
}
#ifdef CM4000_DEBUG
DEBUGP(2, dev, "PTSreply: ");
for (i = 0; i < num_bytes_read; i++) {
pr_debug("0x%.2x ", pts_reply[i]);
}
pr_debug("\n");
#endif /* CM4000_DEBUG */
DEBUGP(5, dev, "Clear Tactive in Flags1\n");
xoutb(0x20, REG_FLAGS1(iobase));
/* Compare ptsreq and ptsreply */
if ((dev->pts[0] == pts_reply[0]) &&
(dev->pts[1] == pts_reply[1]) &&
(dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) {
/* setcardparameter according to PPS */
dev->baudv = calc_baudv(dev->pts[2]);
set_cardparameter(dev);
} else if ((dev->pts[0] == pts_reply[0]) &&
((dev->pts[1] & 0xef) == pts_reply[1]) &&
((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) {
/* short PTS reply, set card parameter to default values */
dev->baudv = calc_baudv(0x11);
set_cardparameter(dev);
} else
rc = -EIO;
exit_setprotocol:
DEBUGP(3, dev, "<- set_protocol\n");
return rc;
}
static int io_detect_cm4000(unsigned int iobase, struct cm4000_dev *dev)
{
/* note: statemachine is assumed to be reset */
if (inb(REG_FLAGS0(iobase)) & 8) {
clear_bit(IS_ATR_VALID, &dev->flags);
set_bit(IS_CMM_ABSENT, &dev->flags);
return 0; /* detect CMM = 1 -> failure */
}
/* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */
xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase));
if ((inb(REG_FLAGS0(iobase)) & 8) == 0) {
clear_bit(IS_ATR_VALID, &dev->flags);
set_bit(IS_CMM_ABSENT, &dev->flags);
return 0; /* detect CMM=0 -> failure */
}
/* clear detectCMM again by restoring original flags1 */
xoutb(dev->flags1, REG_FLAGS1(iobase));
return 1;
}
static void terminate_monitor(struct cm4000_dev *dev)
{
/* tell the monitor to stop and wait until
* it terminates.
*/
DEBUGP(3, dev, "-> terminate_monitor\n");
wait_event_interruptible(dev->devq,
test_and_set_bit(LOCK_MONITOR,
(void *)&dev->flags));
/* now, LOCK_MONITOR has been set.
* allow a last cycle in the monitor.
* the monitor will indicate that it has
* finished by clearing this bit.
*/
DEBUGP(5, dev, "Now allow last cycle of monitor!\n");
while (test_bit(LOCK_MONITOR, (void *)&dev->flags))
msleep(25);
DEBUGP(5, dev, "Delete timer\n");
del_timer_sync(&dev->timer);
#ifdef CM4000_DEBUG
dev->monitor_running = 0;
#endif
DEBUGP(3, dev, "<- terminate_monitor\n");
}
/*
* monitor the card every 50msec. as a side-effect, retrieve the
* atr once a card is inserted. another side-effect of retrieving the
* atr is that the card will be powered on, so there is no need to
* power on the card explictely from the application: the driver
* is already doing that for you.
*/
static void monitor_card(unsigned long p)
{
struct cm4000_dev *dev = (struct cm4000_dev *) p;
unsigned int iobase = dev->p_dev->resource[0]->start;
unsigned short s;
struct ptsreq ptsreq;
int i, atrc;
DEBUGP(7, dev, "-> monitor_card\n");
/* if someone has set the lock for us: we're done! */
if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) {
DEBUGP(4, dev, "About to stop monitor\n");
/* no */
dev->rlen =
dev->rpos =
dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
dev->mstate = M_FETCH_ATR;
clear_bit(LOCK_MONITOR, &dev->flags);
/* close et al. are sleeping on devq, so wake it */
wake_up_interruptible(&dev->devq);
DEBUGP(2, dev, "<- monitor_card (we are done now)\n");
return;
}
/* try to lock io: if it is already locked, just add another timer */
if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) {
DEBUGP(4, dev, "Couldn't get IO lock\n");
goto return_with_timer;
}
/* is a card/a reader inserted at all ? */
dev->flags0 = xinb(REG_FLAGS0(iobase));
DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0);
DEBUGP(7, dev, "smartcard present: %s\n",
dev->flags0 & 1 ? "yes" : "no");
DEBUGP(7, dev, "cardman present: %s\n",
dev->flags0 == 0xff ? "no" : "yes");
if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
|| dev->flags0 == 0xff) { /* no cardman inserted */
/* no */
dev->rlen =
dev->rpos =
dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0;
dev->mstate = M_FETCH_ATR;
dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */
if (dev->flags0 == 0xff) {
DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n");
set_bit(IS_CMM_ABSENT, &dev->flags);
} else if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
DEBUGP(4, dev, "clear IS_CMM_ABSENT bit "
"(card is removed)\n");
clear_bit(IS_CMM_ABSENT, &dev->flags);
}
goto release_io;
} else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) {
/* cardman and card present but cardman was absent before
* (after suspend with inserted card) */
DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n");
clear_bit(IS_CMM_ABSENT, &dev->flags);
}
if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n");
goto release_io;
}
switch (dev->mstate) {
unsigned char flags0;
case M_CARDOFF:
DEBUGP(4, dev, "M_CARDOFF\n");
flags0 = inb(REG_FLAGS0(iobase));
if (flags0 & 0x02) {
/* wait until Flags0 indicate power is off */
dev->mdelay = T_10MSEC;
} else {
/* Flags0 indicate power off and no card inserted now;
* Reset CARDMAN CONTROLLER */
xoutb(0x80, REG_FLAGS0(iobase));
/* prepare for fetching ATR again: after card off ATR
* is read again automatically */
dev->rlen =
dev->rpos =
dev->atr_csum =
dev->atr_len_retry = dev->cwarn = 0;
dev->mstate = M_FETCH_ATR;
/* minimal gap between CARDOFF and read ATR is 50msec */
dev->mdelay = T_50MSEC;
}
break;
case M_FETCH_ATR:
DEBUGP(4, dev, "M_FETCH_ATR\n");
xoutb(0x80, REG_FLAGS0(iobase));
DEBUGP(4, dev, "Reset BAUDV to 9600\n");
dev->baudv = 0x173; /* 9600 */
xoutb(0x02, REG_STOPBITS(iobase)); /* stopbits=2 */
xoutb(0x73, REG_BAUDRATE(iobase)); /* baud value */
xoutb(0x21, REG_FLAGS1(iobase)); /* T_Active=1, baud
value */
/* warm start vs. power on: */
xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase));
dev->mdelay = T_40MSEC;
dev->mstate = M_TIMEOUT_WAIT;
break;
case M_TIMEOUT_WAIT:
DEBUGP(4, dev, "M_TIMEOUT_WAIT\n");
/* numRecBytes */
io_read_num_rec_bytes(iobase, &dev->atr_len);
dev->mdelay = T_10MSEC;
dev->mstate = M_READ_ATR_LEN;
break;
case M_READ_ATR_LEN:
DEBUGP(4, dev, "M_READ_ATR_LEN\n");
/* infinite loop possible, since there is no timeout */
#define MAX_ATR_LEN_RETRY 100
if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) {
if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) { /* + XX msec */
dev->mdelay = T_10MSEC;
dev->mstate = M_READ_ATR;
}
} else {
dev->atr_len = s;
dev->atr_len_retry = 0; /* set new timeout */
}
DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len);
break;
case M_READ_ATR:
DEBUGP(4, dev, "M_READ_ATR\n");
xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
for (i = 0; i < dev->atr_len; i++) {
xoutb(i, REG_BUF_ADDR(iobase));
dev->atr[i] = inb(REG_BUF_DATA(iobase));
}
/* Deactivate T_Active flags */
DEBUGP(4, dev, "Deactivate T_Active flags\n");
dev->flags1 = 0x01;
xoutb(dev->flags1, REG_FLAGS1(iobase));
/* atr is present (which doesn't mean it's valid) */
set_bit(IS_ATR_PRESENT, &dev->flags);
if (dev->atr[0] == 0x03)
str_invert_revert(dev->atr, dev->atr_len);
atrc = parse_atr(dev);
if (atrc == 0) { /* atr invalid */
dev->mdelay = 0;
dev->mstate = M_BAD_CARD;
} else {
dev->mdelay = T_50MSEC;
dev->mstate = M_ATR_PRESENT;
set_bit(IS_ATR_VALID, &dev->flags);
}
if (test_bit(IS_ATR_VALID, &dev->flags) == 1) {
DEBUGP(4, dev, "monitor_card: ATR valid\n");
/* if ta1 == 0x11, no PPS necessary (default values) */
/* do not do PPS with multi protocol cards */
if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) &&
(dev->ta1 != 0x11) &&
!(test_bit(IS_ANY_T0, &dev->flags) &&
test_bit(IS_ANY_T1, &dev->flags))) {
DEBUGP(4, dev, "Perform AUTOPPS\n");
set_bit(IS_AUTOPPS_ACT, &dev->flags);
ptsreq.protocol = (0x01 << dev->proto);
ptsreq.flags = 0x01;
ptsreq.pts1 = 0x00;
ptsreq.pts2 = 0x00;
ptsreq.pts3 = 0x00;
if (set_protocol(dev, &ptsreq) == 0) {
DEBUGP(4, dev, "AUTOPPS ret SUCC\n");
clear_bit(IS_AUTOPPS_ACT, &dev->flags);
wake_up_interruptible(&dev->atrq);
} else {
DEBUGP(4, dev, "AUTOPPS failed: "
"repower using defaults\n");
/* prepare for repowering */
clear_bit(IS_ATR_PRESENT, &dev->flags);
clear_bit(IS_ATR_VALID, &dev->flags);
dev->rlen =
dev->rpos =
dev->atr_csum =
dev->atr_len_retry = dev->cwarn = 0;
dev->mstate = M_FETCH_ATR;
dev->mdelay = T_50MSEC;
}
} else {
/* for cards which use slightly different
* params (extra guard time) */
set_cardparameter(dev);
if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1)
DEBUGP(4, dev, "AUTOPPS already active "
"2nd try:use default values\n");
if (dev->ta1 == 0x11)
DEBUGP(4, dev, "No AUTOPPS necessary "
"TA(1)==0x11\n");
if (test_bit(IS_ANY_T0, &dev->flags)
&& test_bit(IS_ANY_T1, &dev->flags))
DEBUGP(4, dev, "Do NOT perform AUTOPPS "
"with multiprotocol cards\n");
clear_bit(IS_AUTOPPS_ACT, &dev->flags);
wake_up_interruptible(&dev->atrq);
}
} else {
DEBUGP(4, dev, "ATR invalid\n");
wake_up_interruptible(&dev->atrq);
}
break;
case M_BAD_CARD:
DEBUGP(4, dev, "M_BAD_CARD\n");
/* slow down warning, but prompt immediately after insertion */
if (dev->cwarn == 0 || dev->cwarn == 10) {
set_bit(IS_BAD_CARD, &dev->flags);
dev_warn(&dev->p_dev->dev, MODULE_NAME ": ");
if (test_bit(IS_BAD_CSUM, &dev->flags)) {
DEBUGP(4, dev, "ATR checksum (0x%.2x, should "
"be zero) failed\n", dev->atr_csum);
}
#ifdef CM4000_DEBUG
else if (test_bit(IS_BAD_LENGTH, &dev->flags)) {
DEBUGP(4, dev, "ATR length error\n");
} else {
DEBUGP(4, dev, "card damaged or wrong way "
"inserted\n");
}
#endif
dev->cwarn = 0;
wake_up_interruptible(&dev->atrq); /* wake open */
}
dev->cwarn++;
dev->mdelay = T_100MSEC;
dev->mstate = M_FETCH_ATR;
break;
default:
DEBUGP(7, dev, "Unknown action\n");
break; /* nothing */
}
release_io:
DEBUGP(7, dev, "release_io\n");
clear_bit(LOCK_IO, &dev->flags);
wake_up_interruptible(&dev->ioq); /* whoever needs IO */
return_with_timer:
DEBUGP(7, dev, "<- monitor_card (returns with timer)\n");
mod_timer(&dev->timer, jiffies + dev->mdelay);
clear_bit(LOCK_MONITOR, &dev->flags);
}
/* Interface to userland (file_operations) */
static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count,
loff_t *ppos)
{
struct cm4000_dev *dev = filp->private_data;
unsigned int iobase = dev->p_dev->resource[0]->start;
ssize_t rc;
int i, j, k;
DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid);
if (count == 0) /* according to manpage */
return 0;
if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
test_bit(IS_CMM_ABSENT, &dev->flags))
return -ENODEV;
if (test_bit(IS_BAD_CSUM, &dev->flags))
return -EIO;
/* also see the note about this in cmm_write */
if (wait_event_interruptible
(dev->atrq,
((filp->f_flags & O_NONBLOCK)
|| (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
return -ERESTARTSYS;
}
if (test_bit(IS_ATR_VALID, &dev->flags) == 0)
return -EIO;
/* this one implements blocking IO */
if (wait_event_interruptible
(dev->readq,
((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
return -ERESTARTSYS;
}
/* lock io */
if (wait_event_interruptible
(dev->ioq,
((filp->f_flags & O_NONBLOCK)
|| (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
return -ERESTARTSYS;
}
rc = 0;
dev->flags0 = inb(REG_FLAGS0(iobase));
if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
|| dev->flags0 == 0xff) { /* no cardman inserted */
clear_bit(IS_ATR_VALID, &dev->flags);
if (dev->flags0 & 1) {
set_bit(IS_CMM_ABSENT, &dev->flags);
rc = -ENODEV;
} else {
rc = -EIO;
}
goto release_io;
}
DEBUGP(4, dev, "begin read answer\n");
j = min(count, (size_t)(dev->rlen - dev->rpos));
k = dev->rpos;
if (k + j > 255)
j = 256 - k;
DEBUGP(4, dev, "read1 j=%d\n", j);
for (i = 0; i < j; i++) {
xoutb(k++, REG_BUF_ADDR(iobase));
dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
}
j = min(count, (size_t)(dev->rlen - dev->rpos));
if (k + j > 255) {
DEBUGP(4, dev, "read2 j=%d\n", j);
dev->flags1 |= 0x10; /* MSB buf addr set */
xoutb(dev->flags1, REG_FLAGS1(iobase));
for (; i < j; i++) {
xoutb(k++, REG_BUF_ADDR(iobase));
dev->rbuf[i] = xinb(REG_BUF_DATA(iobase));
}
}
if (dev->proto == 0 && count > dev->rlen - dev->rpos && i) {
DEBUGP(4, dev, "T=0 and count > buffer\n");
dev->rbuf[i] = dev->rbuf[i - 1];
dev->rbuf[i - 1] = dev->procbyte;
j++;
}
count = j;
dev->rpos = dev->rlen + 1;
/* Clear T1Active */
DEBUGP(4, dev, "Clear T1Active\n");
dev->flags1 &= 0xdf;
xoutb(dev->flags1, REG_FLAGS1(iobase));
xoutb(0, REG_FLAGS1(iobase)); /* clear detectCMM */
/* last check before exit */
if (!io_detect_cm4000(iobase, dev)) {
rc = -ENODEV;
goto release_io;
}
if (test_bit(IS_INVREV, &dev->flags) && count > 0)
str_invert_revert(dev->rbuf, count);
if (copy_to_user(buf, dev->rbuf, count))
rc = -EFAULT;
release_io:
clear_bit(LOCK_IO, &dev->flags);
wake_up_interruptible(&dev->ioq);
DEBUGP(2, dev, "<- cmm_read returns: rc = %Zi\n",
(rc < 0 ? rc : count));
return rc < 0 ? rc : count;
}
static ssize_t cmm_write(struct file *filp, const char __user *buf,
size_t count, loff_t *ppos)
{
struct cm4000_dev *dev = filp->private_data;
unsigned int iobase = dev->p_dev->resource[0]->start;
unsigned short s;
unsigned char tmp;
unsigned char infolen;
unsigned char sendT0;
unsigned short nsend;
unsigned short nr;
ssize_t rc;
int i;
DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid);
if (count == 0) /* according to manpage */
return 0;
if (dev->proto == 0 && count < 4) {
/* T0 must have at least 4 bytes */
DEBUGP(4, dev, "T0 short write\n");
return -EIO;
}
nr = count & 0x1ff; /* max bytes to write */
sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0;
if (!pcmcia_dev_present(dev->p_dev) || /* device removed */
test_bit(IS_CMM_ABSENT, &dev->flags))
return -ENODEV;
if (test_bit(IS_BAD_CSUM, &dev->flags)) {
DEBUGP(4, dev, "bad csum\n");
return -EIO;
}
/*
* wait for atr to become valid.
* note: it is important to lock this code. if we dont, the monitor
* could be run between test_bit and the call to sleep on the
* atr-queue. if *then* the monitor detects atr valid, it will wake up
* any process on the atr-queue, *but* since we have been interrupted,
* we do not yet sleep on this queue. this would result in a missed
* wake_up and the calling process would sleep forever (until
* interrupted). also, do *not* restore_flags before sleep_on, because
* this could result in the same situation!
*/
if (wait_event_interruptible
(dev->atrq,
((filp->f_flags & O_NONBLOCK)
|| (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
return -ERESTARTSYS;
}
if (test_bit(IS_ATR_VALID, &dev->flags) == 0) { /* invalid atr */
DEBUGP(4, dev, "invalid ATR\n");
return -EIO;
}
/* lock io */
if (wait_event_interruptible
(dev->ioq,
((filp->f_flags & O_NONBLOCK)
|| (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
return -ERESTARTSYS;
}
if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count)))
return -EFAULT;
rc = 0;
dev->flags0 = inb(REG_FLAGS0(iobase));
if ((dev->flags0 & 1) == 0 /* no smartcard inserted */
|| dev->flags0 == 0xff) { /* no cardman inserted */
clear_bit(IS_ATR_VALID, &dev->flags);
if (dev->flags0 & 1) {
set_bit(IS_CMM_ABSENT, &dev->flags);
rc = -ENODEV;
} else {
DEBUGP(4, dev, "IO error\n");
rc = -EIO;
}
goto release_io;
}
xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
if (!io_detect_cm4000(iobase, dev)) {
rc = -ENODEV;
goto release_io;
}
/* reflect T=0 send/read mode in flags1 */
dev->flags1 |= (sendT0);
set_cardparameter(dev);
/* dummy read, reset flag procedure received */
tmp = inb(REG_FLAGS1(iobase));
dev->flags1 = 0x20 /* T_Active */
| (sendT0)
| (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity */
| (((dev->baudv - 1) & 0x0100) >> 8); /* MSB-Baud */
DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1);
xoutb(dev->flags1, REG_FLAGS1(iobase));
/* xmit data */
DEBUGP(4, dev, "Xmit data\n");
for (i = 0; i < nr; i++) {
if (i >= 256) {
dev->flags1 = 0x20 /* T_Active */
| (sendT0) /* SendT0 */
/* inverse parity: */
| (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)
| (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */
| 0x10; /* set address high */
DEBUGP(4, dev, "dev->flags = 0x%.2x - set address "
"high\n", dev->flags1);
xoutb(dev->flags1, REG_FLAGS1(iobase));
}
if (test_bit(IS_INVREV, &dev->flags)) {
DEBUGP(4, dev, "Apply inverse convention for 0x%.2x "
"-> 0x%.2x\n", (unsigned char)dev->sbuf[i],
invert_revert(dev->sbuf[i]));
xoutb(i, REG_BUF_ADDR(iobase));
xoutb(invert_revert(dev->sbuf[i]),
REG_BUF_DATA(iobase));
} else {
xoutb(i, REG_BUF_ADDR(iobase));
xoutb(dev->sbuf[i], REG_BUF_DATA(iobase));
}
}
DEBUGP(4, dev, "Xmit done\n");
if (dev->proto == 0) {
/* T=0 proto: 0 byte reply */
if (nr == 4) {
DEBUGP(4, dev, "T=0 assumes 0 byte reply\n");
xoutb(i, REG_BUF_ADDR(iobase));
if (test_bit(IS_INVREV, &dev->flags))
xoutb(0xff, REG_BUF_DATA(iobase));
else
xoutb(0x00, REG_BUF_DATA(iobase));
}
/* numSendBytes */
if (sendT0)
nsend = nr;
else {
if (nr == 4)
nsend = 5;
else {
nsend = 5 + (unsigned char)dev->sbuf[4];
if (dev->sbuf[4] == 0)
nsend += 0x100;
}
}
} else
nsend = nr;
/* T0: output procedure byte */
if (test_bit(IS_INVREV, &dev->flags)) {
DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) "
"0x%.2x\n", invert_revert(dev->sbuf[1]));
xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase));
} else {
DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]);
xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase));
}
DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n",
(unsigned char)(nsend & 0xff));
xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase));
DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n",
0x40 /* SM_Active */
| (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
|(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
|(nsend & 0x100) >> 8 /* MSB numSendBytes */ );
xoutb(0x40 /* SM_Active */
| (dev->flags0 & 2 ? 0 : 4) /* power on if needed */
|(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */
|(nsend & 0x100) >> 8, /* MSB numSendBytes */
REG_FLAGS0(iobase));
/* wait for xmit done */
if (dev->proto == 1) {
DEBUGP(4, dev, "Wait for xmit done\n");
for (i = 0; i < 1000; i++) {
if (inb(REG_FLAGS0(iobase)) & 0x08)
break;
msleep_interruptible(10);
}
if (i == 1000) {
DEBUGP(4, dev, "timeout waiting for xmit done\n");
rc = -EIO;
goto release_io;
}
}
/* T=1: wait for infoLen */
infolen = 0;
if (dev->proto) {
/* wait until infoLen is valid */
for (i = 0; i < 6000; i++) { /* max waiting time of 1 min */
io_read_num_rec_bytes(iobase, &s);
if (s >= 3) {
infolen = inb(REG_FLAGS1(iobase));
DEBUGP(4, dev, "infolen=%d\n", infolen);
break;
}
msleep_interruptible(10);
}
if (i == 6000) {
DEBUGP(4, dev, "timeout waiting for infoLen\n");
rc = -EIO;
goto release_io;
}
} else
clear_bit(IS_PROCBYTE_PRESENT, &dev->flags);
/* numRecBytes | bit9 of numRecytes */
io_read_num_rec_bytes(iobase, &dev->rlen);
for (i = 0; i < 600; i++) { /* max waiting time of 2 sec */
if (dev->proto) {
if (dev->rlen >= infolen + 4)
break;
}
msleep_interruptible(10);
/* numRecBytes | bit9 of numRecytes */
io_read_num_rec_bytes(iobase, &s);
if (s > dev->rlen) {
DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n");
i = 0; /* reset timeout */
dev->rlen = s;
}
/* T=0: we are done when numRecBytes doesn't
* increment any more and NoProcedureByte
* is set and numRecBytes == bytes sent + 6
* (header bytes + data + 1 for sw2)
* except when the card replies an error
* which means, no data will be sent back.
*/
else if (dev->proto == 0) {
if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) {
/* no procedure byte received since last read */
DEBUGP(1, dev, "NoProcedure byte set\n");
/* i=0; */
} else {
/* procedure byte received since last read */
DEBUGP(1, dev, "NoProcedure byte unset "
"(reset timeout)\n");
dev->procbyte = inb(REG_FLAGS1(iobase));
DEBUGP(1, dev, "Read procedure byte 0x%.2x\n",
dev->procbyte);
i = 0; /* resettimeout */
}
if (inb(REG_FLAGS0(iobase)) & 0x08) {
DEBUGP(1, dev, "T0Done flag (read reply)\n");
break;
}
}
if (dev->proto)
infolen = inb(REG_FLAGS1(iobase));
}
if (i == 600) {
DEBUGP(1, dev, "timeout waiting for numRecBytes\n");
rc = -EIO;
goto release_io;
} else {
if (dev->proto == 0) {
DEBUGP(1, dev, "Wait for T0Done bit to be set\n");
for (i = 0; i < 1000; i++) {
if (inb(REG_FLAGS0(iobase)) & 0x08)
break;
msleep_interruptible(10);
}
if (i == 1000) {
DEBUGP(1, dev, "timeout waiting for T0Done\n");
rc = -EIO;
goto release_io;
}
dev->procbyte = inb(REG_FLAGS1(iobase));
DEBUGP(4, dev, "Read procedure byte 0x%.2x\n",
dev->procbyte);
io_read_num_rec_bytes(iobase, &dev->rlen);
DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen);
}
}
/* T=1: read offset=zero, T=0: read offset=after challenge */
dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr;
DEBUGP(4, dev, "dev->rlen = %i, dev->rpos = %i, nr = %i\n",
dev->rlen, dev->rpos, nr);
release_io:
DEBUGP(4, dev, "Reset SM\n");
xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */
if (rc < 0) {
DEBUGP(4, dev, "Write failed but clear T_Active\n");
dev->flags1 &= 0xdf;
xoutb(dev->flags1, REG_FLAGS1(iobase));
}
clear_bit(LOCK_IO, &dev->flags);
wake_up_interruptible(&dev->ioq);
wake_up_interruptible(&dev->readq); /* tell read we have data */
/* ITSEC E2: clear write buffer */
memset((char *)dev->sbuf, 0, 512);
/* return error or actually written bytes */
DEBUGP(2, dev, "<- cmm_write\n");
return rc < 0 ? rc : nr;
}
static void start_monitor(struct cm4000_dev *dev)
{
DEBUGP(3, dev, "-> start_monitor\n");
if (!dev->monitor_running) {
DEBUGP(5, dev, "create, init and add timer\n");
setup_timer(&dev->timer, monitor_card, (unsigned long)dev);
dev->monitor_running = 1;
mod_timer(&dev->timer, jiffies);
} else
DEBUGP(5, dev, "monitor already running\n");
DEBUGP(3, dev, "<- start_monitor\n");
}
static void stop_monitor(struct cm4000_dev *dev)
{
DEBUGP(3, dev, "-> stop_monitor\n");
if (dev->monitor_running) {
DEBUGP(5, dev, "stopping monitor\n");
terminate_monitor(dev);
/* reset monitor SM */
clear_bit(IS_ATR_VALID, &dev->flags);
clear_bit(IS_ATR_PRESENT, &dev->flags);
} else
DEBUGP(5, dev, "monitor already stopped\n");
DEBUGP(3, dev, "<- stop_monitor\n");
}
static long cmm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct cm4000_dev *dev = filp->private_data;
unsigned int iobase = dev->p_dev->resource[0]->start;
struct inode *inode = file_inode(filp);
struct pcmcia_device *link;
int size;
int rc;
void __user *argp = (void __user *)arg;
#ifdef CM4000_DEBUG
char *ioctl_names[CM_IOC_MAXNR + 1] = {
[_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS",
[_IOC_NR(CM_IOCGATR)] "CM_IOCGATR",
[_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF",
[_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS",
[_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL",
};
DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode),
iminor(inode), ioctl_names[_IOC_NR(cmd)]);
#endif
mutex_lock(&cmm_mutex);
rc = -ENODEV;
link = dev_table[iminor(inode)];
if (!pcmcia_dev_present(link)) {
DEBUGP(4, dev, "DEV_OK false\n");
goto out;
}
if (test_bit(IS_CMM_ABSENT, &dev->flags)) {
DEBUGP(4, dev, "CMM_ABSENT flag set\n");
goto out;
}
rc = -EINVAL;
if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) {
DEBUGP(4, dev, "ioctype mismatch\n");
goto out;
}
if (_IOC_NR(cmd) > CM_IOC_MAXNR) {
DEBUGP(4, dev, "iocnr mismatch\n");
goto out;
}
size = _IOC_SIZE(cmd);
rc = -EFAULT;
DEBUGP(4, dev, "iocdir=%.4x iocr=%.4x iocw=%.4x iocsize=%d cmd=%.4x\n",
_IOC_DIR(cmd), _IOC_READ, _IOC_WRITE, size, cmd);
if (_IOC_DIR(cmd) & _IOC_READ) {
if (!access_ok(VERIFY_WRITE, argp, size))
goto out;
}
if (_IOC_DIR(cmd) & _IOC_WRITE) {
if (!access_ok(VERIFY_READ, argp, size))
goto out;
}
rc = 0;
switch (cmd) {
case CM_IOCGSTATUS:
DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n");
{
int status;
/* clear other bits, but leave inserted & powered as
* they are */
status = dev->flags0 & 3;
if (test_bit(IS_ATR_PRESENT, &dev->flags))
status |= CM_ATR_PRESENT;
if (test_bit(IS_ATR_VALID, &dev->flags))
status |= CM_ATR_VALID;
if (test_bit(IS_CMM_ABSENT, &dev->flags))
status |= CM_NO_READER;
if (test_bit(IS_BAD_CARD, &dev->flags))
status |= CM_BAD_CARD;
if (copy_to_user(argp, &status, sizeof(int)))
rc = -EFAULT;
}
break;
case CM_IOCGATR:
DEBUGP(4, dev, "... in CM_IOCGATR\n");
{
struct atreq __user *atreq = argp;
int tmp;
/* allow nonblocking io and being interrupted */
if (wait_event_interruptible
(dev->atrq,
((filp->f_flags & O_NONBLOCK)
|| (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
!= 0)))) {
if (filp->f_flags & O_NONBLOCK)
rc = -EAGAIN;
else
rc = -ERESTARTSYS;
break;
}
rc = -EFAULT;
if (test_bit(IS_ATR_VALID, &dev->flags) == 0) {
tmp = -1;
if (copy_to_user(&(atreq->atr_len), &tmp,
sizeof(int)))
break;
} else {
if (copy_to_user(atreq->atr, dev->atr,
dev->atr_len))
break;
tmp = dev->atr_len;
if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int)))
break;
}
rc = 0;
break;
}
case CM_IOCARDOFF:
#ifdef CM4000_DEBUG
DEBUGP(4, dev, "... in CM_IOCARDOFF\n");
if (dev->flags0 & 0x01) {
DEBUGP(4, dev, " Card inserted\n");
} else {
DEBUGP(2, dev, " No card inserted\n");
}
if (dev->flags0 & 0x02) {
DEBUGP(4, dev, " Card powered\n");
} else {
DEBUGP(2, dev, " Card not powered\n");
}
#endif
/* is a card inserted and powered? */
if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) {
/* get IO lock */
if (wait_event_interruptible
(dev->ioq,
((filp->f_flags & O_NONBLOCK)
|| (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
== 0)))) {
if (filp->f_flags & O_NONBLOCK)
rc = -EAGAIN;
else
rc = -ERESTARTSYS;
break;
}
/* Set Flags0 = 0x42 */
DEBUGP(4, dev, "Set Flags0=0x42 \n");
xoutb(0x42, REG_FLAGS0(iobase));
clear_bit(IS_ATR_PRESENT, &dev->flags);
clear_bit(IS_ATR_VALID, &dev->flags);
dev->mstate = M_CARDOFF;
clear_bit(LOCK_IO, &dev->flags);
if (wait_event_interruptible
(dev->atrq,
((filp->f_flags & O_NONBLOCK)
|| (test_bit(IS_ATR_VALID, (void *)&dev->flags) !=
0)))) {
if (filp->f_flags & O_NONBLOCK)
rc = -EAGAIN;
else
rc = -ERESTARTSYS;
break;
}
}
/* release lock */
clear_bit(LOCK_IO, &dev->flags);
wake_up_interruptible(&dev->ioq);
rc = 0;
break;
case CM_IOCSPTS:
{
struct ptsreq krnptsreq;
if (copy_from_user(&krnptsreq, argp,
sizeof(struct ptsreq))) {
rc = -EFAULT;
break;
}
rc = 0;
DEBUGP(4, dev, "... in CM_IOCSPTS\n");
/* wait for ATR to get valid */
if (wait_event_interruptible
(dev->atrq,
((filp->f_flags & O_NONBLOCK)
|| (test_bit(IS_ATR_PRESENT, (void *)&dev->flags)
!= 0)))) {
if (filp->f_flags & O_NONBLOCK)
rc = -EAGAIN;
else
rc = -ERESTARTSYS;
break;
}
/* get IO lock */
if (wait_event_interruptible
(dev->ioq,
((filp->f_flags & O_NONBLOCK)
|| (test_and_set_bit(LOCK_IO, (void *)&dev->flags)
== 0)))) {
if (filp->f_flags & O_NONBLOCK)
rc = -EAGAIN;
else
rc = -ERESTARTSYS;
break;
}
if ((rc = set_protocol(dev, &krnptsreq)) != 0) {
/* auto power_on again */
dev->mstate = M_FETCH_ATR;
clear_bit(IS_ATR_VALID, &dev->flags);
}
/* release lock */
clear_bit(LOCK_IO, &dev->flags);
wake_up_interruptible(&dev->ioq);
}
break;
#ifdef CM4000_DEBUG
case CM_IOSDBGLVL:
rc = -ENOTTY;
break;
#endif
default:
DEBUGP(4, dev, "... in default (unknown IOCTL code)\n");
rc = -ENOTTY;
}
out:
mutex_unlock(&cmm_mutex);
return rc;
}
static int cmm_open(struct inode *inode, struct file *filp)
{
struct cm4000_dev *dev;
struct pcmcia_device *link;
int minor = iminor(inode);
int ret;
if (minor >= CM4000_MAX_DEV)
return -ENODEV;
mutex_lock(&cmm_mutex);
link = dev_table[minor];
if (link == NULL || !pcmcia_dev_present(link)) {
ret = -ENODEV;
goto out;
}
if (link->open) {
ret = -EBUSY;
goto out;
}
dev = link->priv;
filp->private_data = dev;
DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n",
imajor(inode), minor, current->comm, current->pid);
/* init device variables, they may be "polluted" after close
* or, the device may never have been closed (i.e. open failed)
*/
ZERO_DEV(dev);
/* opening will always block since the
* monitor will be started by open, which
* means we have to wait for ATR becoming
* valid = block until valid (or card
* inserted)
*/
if (filp->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
goto out;
}
dev->mdelay = T_50MSEC;
/* start monitoring the cardstatus */
start_monitor(dev);
link->open = 1; /* only one open per device */
DEBUGP(2, dev, "<- cmm_open\n");
ret = nonseekable_open(inode, filp);
out:
mutex_unlock(&cmm_mutex);
return ret;
}
static int cmm_close(struct inode *inode, struct file *filp)
{
struct cm4000_dev *dev;
struct pcmcia_device *link;
int minor = iminor(inode);
if (minor >= CM4000_MAX_DEV)
return -ENODEV;
link = dev_table[minor];
if (link == NULL)
return -ENODEV;
dev = link->priv;
DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n",
imajor(inode), minor);
stop_monitor(dev);
ZERO_DEV(dev);
link->open = 0; /* only one open per device */
wake_up(&dev->devq); /* socket removed? */
DEBUGP(2, dev, "cmm_close\n");
return 0;
}
static void cmm_cm4000_release(struct pcmcia_device * link)
{
struct cm4000_dev *dev = link->priv;
/* dont terminate the monitor, rather rely on
* close doing that for us.
*/
DEBUGP(3, dev, "-> cmm_cm4000_release\n");
while (link->open) {
printk(KERN_INFO MODULE_NAME ": delaying release until "
"process has terminated\n");
/* note: don't interrupt us:
* close the applications which own
* the devices _first_ !
*/
wait_event(dev->devq, (link->open == 0));
}
/* dev->devq=NULL; this cannot be zeroed earlier */
DEBUGP(3, dev, "<- cmm_cm4000_release\n");
return;
}
/*==== Interface to PCMCIA Layer =======================================*/
static int cm4000_config_check(struct pcmcia_device *p_dev, void *priv_data)
{
return pcmcia_request_io(p_dev);
}
static int cm4000_config(struct pcmcia_device * link, int devno)
{
struct cm4000_dev *dev;
link->config_flags |= CONF_AUTO_SET_IO;
/* read the config-tuples */
if (pcmcia_loop_config(link, cm4000_config_check, NULL))
goto cs_release;
if (pcmcia_enable_device(link))
goto cs_release;
dev = link->priv;
return 0;
cs_release:
cm4000_release(link);
return -ENODEV;
}
static int cm4000_suspend(struct pcmcia_device *link)
{
struct cm4000_dev *dev;
dev = link->priv;
stop_monitor(dev);
return 0;
}
static int cm4000_resume(struct pcmcia_device *link)
{
struct cm4000_dev *dev;
dev = link->priv;
if (link->open)
start_monitor(dev);
return 0;
}
static void cm4000_release(struct pcmcia_device *link)
{
cmm_cm4000_release(link); /* delay release until device closed */
pcmcia_disable_device(link);
}
static int cm4000_probe(struct pcmcia_device *link)
{
struct cm4000_dev *dev;
int i, ret;
for (i = 0; i < CM4000_MAX_DEV; i++)
if (dev_table[i] == NULL)
break;
if (i == CM4000_MAX_DEV) {
printk(KERN_NOTICE MODULE_NAME ": all devices in use\n");
return -ENODEV;
}
/* create a new cm4000_cs device */
dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL);
if (dev == NULL)
return -ENOMEM;
dev->p_dev = link;
link->priv = dev;
dev_table[i] = link;
init_waitqueue_head(&dev->devq);
init_waitqueue_head(&dev->ioq);
init_waitqueue_head(&dev->atrq);
init_waitqueue_head(&dev->readq);
ret = cm4000_config(link, i);
if (ret) {
dev_table[i] = NULL;
kfree(dev);
return ret;
}
device_create(cmm_class, NULL, MKDEV(major, i), NULL, "cmm%d", i);
return 0;
}
static void cm4000_detach(struct pcmcia_device *link)
{
struct cm4000_dev *dev = link->priv;
int devno;
/* find device */
for (devno = 0; devno < CM4000_MAX_DEV; devno++)
if (dev_table[devno] == link)
break;
if (devno == CM4000_MAX_DEV)
return;
stop_monitor(dev);
cm4000_release(link);
dev_table[devno] = NULL;
kfree(dev);
device_destroy(cmm_class, MKDEV(major, devno));
return;
}
static const struct file_operations cm4000_fops = {
.owner = THIS_MODULE,
.read = cmm_read,
.write = cmm_write,
.unlocked_ioctl = cmm_ioctl,
.open = cmm_open,
.release= cmm_close,
.llseek = no_llseek,
};
static const struct pcmcia_device_id cm4000_ids[] = {
PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002),
PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39),
PCMCIA_DEVICE_NULL,
};
MODULE_DEVICE_TABLE(pcmcia, cm4000_ids);
static struct pcmcia_driver cm4000_driver = {
.owner = THIS_MODULE,
.name = "cm4000_cs",
.probe = cm4000_probe,
.remove = cm4000_detach,
.suspend = cm4000_suspend,
.resume = cm4000_resume,
.id_table = cm4000_ids,
};
static int __init cmm_init(void)
{
int rc;
cmm_class = class_create(THIS_MODULE, "cardman_4000");
if (IS_ERR(cmm_class))
return PTR_ERR(cmm_class);
major = register_chrdev(0, DEVICE_NAME, &cm4000_fops);
if (major < 0) {
printk(KERN_WARNING MODULE_NAME
": could not get major number\n");
class_destroy(cmm_class);
return major;
}
rc = pcmcia_register_driver(&cm4000_driver);
if (rc < 0) {
unregister_chrdev(major, DEVICE_NAME);
class_destroy(cmm_class);
return rc;
}
return 0;
}
static void __exit cmm_exit(void)
{
pcmcia_unregister_driver(&cm4000_driver);
unregister_chrdev(major, DEVICE_NAME);
class_destroy(cmm_class);
};
module_init(cmm_init);
module_exit(cmm_exit);
MODULE_LICENSE("Dual BSD/GPL");