Currently ice_vsi_manage_pvid() calls ice_vsi_[set|kill]_pvid_fill_ctxt() when enabling/disabling a port VLAN on a VSI respectively. These two functions have some duplication so just move their unique pieces inline in ice_vsi_manage_pvid() and then the duplicate code can be reused for both the enabling/disabling paths. Before this patch the info.pvid field was not being written correctly via ice_vsi_kill_pvid_fill_ctxt() so it was being hard coded to 0 in ice_set_vf_port_vlan(). Fix this by setting the info.pvid field to 0 before calling ice_vsi_update() in ice_vsi_manage_pvid(). We currently use vf->port_vlan_id to keep track of the port VLAN ID and QoS, which is a bit misleading. Fix this by renaming it to vf->port_vlan_info. Also change the name of the argument for ice_vsi_manage_pvid() from vid to pvid_info. In ice_vsi_manage_pvid() only save the fields that were modified in the VSI properties structure on success instead of the entire thing. Signed-off-by: Brett Creeley <brett.creeley@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
		
			
				
	
	
		
			3417 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3417 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* Copyright (c) 2018, Intel Corporation. */
 | |
| 
 | |
| #include "ice.h"
 | |
| #include "ice_base.h"
 | |
| #include "ice_lib.h"
 | |
| 
 | |
| /**
 | |
|  * ice_validate_vf_id - helper to check if VF ID is valid
 | |
|  * @pf: pointer to the PF structure
 | |
|  * @vf_id: the ID of the VF to check
 | |
|  */
 | |
| static int ice_validate_vf_id(struct ice_pf *pf, int vf_id)
 | |
| {
 | |
| 	if (vf_id >= pf->num_alloc_vfs) {
 | |
| 		dev_err(ice_pf_to_dev(pf), "Invalid VF ID: %d\n", vf_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_check_vf_init - helper to check if VF init complete
 | |
|  * @pf: pointer to the PF structure
 | |
|  * @vf: the pointer to the VF to check
 | |
|  */
 | |
| static int ice_check_vf_init(struct ice_pf *pf, struct ice_vf *vf)
 | |
| {
 | |
| 	if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
 | |
| 		dev_err(ice_pf_to_dev(pf), "VF ID: %d in reset. Try again.\n",
 | |
| 			vf->vf_id);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
 | |
|  * @pf: pointer to the PF structure
 | |
|  * @v_opcode: operation code
 | |
|  * @v_retval: return value
 | |
|  * @msg: pointer to the msg buffer
 | |
|  * @msglen: msg length
 | |
|  */
 | |
| static void
 | |
| ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
 | |
| 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
 | |
| {
 | |
| 	struct ice_hw *hw = &pf->hw;
 | |
| 	int i;
 | |
| 
 | |
| 	ice_for_each_vf(pf, i) {
 | |
| 		struct ice_vf *vf = &pf->vf[i];
 | |
| 
 | |
| 		/* Not all vfs are enabled so skip the ones that are not */
 | |
| 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
 | |
| 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Ignore return value on purpose - a given VF may fail, but
 | |
| 		 * we need to keep going and send to all of them
 | |
| 		 */
 | |
| 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
 | |
| 				      msglen, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
 | |
|  * @vf: pointer to the VF structure
 | |
|  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
 | |
|  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
 | |
|  * @link_up: whether or not to set the link up/down
 | |
|  */
 | |
| static void
 | |
| ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
 | |
| 		 int ice_link_speed, bool link_up)
 | |
| {
 | |
| 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
 | |
| 		pfe->event_data.link_event_adv.link_status = link_up;
 | |
| 		/* Speed in Mbps */
 | |
| 		pfe->event_data.link_event_adv.link_speed =
 | |
| 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
 | |
| 	} else {
 | |
| 		pfe->event_data.link_event.link_status = link_up;
 | |
| 		/* Legacy method for virtchnl link speeds */
 | |
| 		pfe->event_data.link_event.link_speed =
 | |
| 			(enum virtchnl_link_speed)
 | |
| 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_notify_vf_link_state - Inform a VF of link status
 | |
|  * @vf: pointer to the VF structure
 | |
|  *
 | |
|  * send a link status message to a single VF
 | |
|  */
 | |
| static void ice_vc_notify_vf_link_state(struct ice_vf *vf)
 | |
| {
 | |
| 	struct virtchnl_pf_event pfe = { 0 };
 | |
| 	struct ice_link_status *ls;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_hw *hw;
 | |
| 
 | |
| 	hw = &pf->hw;
 | |
| 	ls = &hw->port_info->phy.link_info;
 | |
| 
 | |
| 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
 | |
| 	pfe.severity = PF_EVENT_SEVERITY_INFO;
 | |
| 
 | |
| 	/* Always report link is down if the VF queues aren't enabled */
 | |
| 	if (!vf->num_qs_ena) {
 | |
| 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
 | |
| 	} else if (vf->link_forced) {
 | |
| 		u16 link_speed = vf->link_up ?
 | |
| 			ls->link_speed : ICE_AQ_LINK_SPEED_UNKNOWN;
 | |
| 
 | |
| 		ice_set_pfe_link(vf, &pfe, link_speed, vf->link_up);
 | |
| 	} else {
 | |
| 		ice_set_pfe_link(vf, &pfe, ls->link_speed,
 | |
| 				 ls->link_info & ICE_AQ_LINK_UP);
 | |
| 	}
 | |
| 
 | |
| 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
 | |
| 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
 | |
| 			      sizeof(pfe), NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_free_vf_res - Free a VF's resources
 | |
|  * @vf: pointer to the VF info
 | |
|  */
 | |
| static void ice_free_vf_res(struct ice_vf *vf)
 | |
| {
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	int i, last_vector_idx;
 | |
| 
 | |
| 	/* First, disable VF's configuration API to prevent OS from
 | |
| 	 * accessing the VF's VSI after it's freed or invalidated.
 | |
| 	 */
 | |
| 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
 | |
| 
 | |
| 	/* free VSI and disconnect it from the parent uplink */
 | |
| 	if (vf->lan_vsi_idx) {
 | |
| 		ice_vsi_release(pf->vsi[vf->lan_vsi_idx]);
 | |
| 		vf->lan_vsi_idx = 0;
 | |
| 		vf->lan_vsi_num = 0;
 | |
| 		vf->num_mac = 0;
 | |
| 	}
 | |
| 
 | |
| 	last_vector_idx = vf->first_vector_idx + pf->num_vf_msix - 1;
 | |
| 	/* Disable interrupts so that VF starts in a known state */
 | |
| 	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
 | |
| 		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
 | |
| 		ice_flush(&pf->hw);
 | |
| 	}
 | |
| 	/* reset some of the state variables keeping track of the resources */
 | |
| 	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
 | |
| 	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_dis_vf_mappings
 | |
|  * @vf: pointer to the VF structure
 | |
|  */
 | |
| static void ice_dis_vf_mappings(struct ice_vf *vf)
 | |
| {
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 	struct device *dev;
 | |
| 	int first, last, v;
 | |
| 	struct ice_hw *hw;
 | |
| 
 | |
| 	hw = &pf->hw;
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 
 | |
| 	dev = ice_pf_to_dev(pf);
 | |
| 	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
 | |
| 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
 | |
| 
 | |
| 	first = vf->first_vector_idx;
 | |
| 	last = first + pf->num_vf_msix - 1;
 | |
| 	for (v = first; v <= last; v++) {
 | |
| 		u32 reg;
 | |
| 
 | |
| 		reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
 | |
| 			GLINT_VECT2FUNC_IS_PF_M) |
 | |
| 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
 | |
| 			GLINT_VECT2FUNC_PF_NUM_M));
 | |
| 		wr32(hw, GLINT_VECT2FUNC(v), reg);
 | |
| 	}
 | |
| 
 | |
| 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
 | |
| 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
 | |
| 	else
 | |
| 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
 | |
| 
 | |
| 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
 | |
| 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
 | |
| 	else
 | |
| 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_sriov_free_msix_res - Reset/free any used MSIX resources
 | |
|  * @pf: pointer to the PF structure
 | |
|  *
 | |
|  * If MSIX entries from the pf->irq_tracker were needed then we need to
 | |
|  * reset the irq_tracker->end and give back the entries we needed to
 | |
|  * num_avail_sw_msix.
 | |
|  *
 | |
|  * If no MSIX entries were taken from the pf->irq_tracker then just clear
 | |
|  * the pf->sriov_base_vector.
 | |
|  *
 | |
|  * Returns 0 on success, and -EINVAL on error.
 | |
|  */
 | |
| static int ice_sriov_free_msix_res(struct ice_pf *pf)
 | |
| {
 | |
| 	struct ice_res_tracker *res;
 | |
| 
 | |
| 	if (!pf)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	res = pf->irq_tracker;
 | |
| 	if (!res)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* give back irq_tracker resources used */
 | |
| 	if (pf->sriov_base_vector < res->num_entries) {
 | |
| 		res->end = res->num_entries;
 | |
| 		pf->num_avail_sw_msix +=
 | |
| 			res->num_entries - pf->sriov_base_vector;
 | |
| 	}
 | |
| 
 | |
| 	pf->sriov_base_vector = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_set_vf_state_qs_dis - Set VF queues state to disabled
 | |
|  * @vf: pointer to the VF structure
 | |
|  */
 | |
| void ice_set_vf_state_qs_dis(struct ice_vf *vf)
 | |
| {
 | |
| 	/* Clear Rx/Tx enabled queues flag */
 | |
| 	bitmap_zero(vf->txq_ena, ICE_MAX_BASE_QS_PER_VF);
 | |
| 	bitmap_zero(vf->rxq_ena, ICE_MAX_BASE_QS_PER_VF);
 | |
| 	vf->num_qs_ena = 0;
 | |
| 	clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_dis_vf_qs - Disable the VF queues
 | |
|  * @vf: pointer to the VF structure
 | |
|  */
 | |
| static void ice_dis_vf_qs(struct ice_vf *vf)
 | |
| {
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 
 | |
| 	ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id);
 | |
| 	ice_vsi_stop_rx_rings(vsi);
 | |
| 	ice_set_vf_state_qs_dis(vf);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_free_vfs - Free all VFs
 | |
|  * @pf: pointer to the PF structure
 | |
|  */
 | |
| void ice_free_vfs(struct ice_pf *pf)
 | |
| {
 | |
| 	struct device *dev = ice_pf_to_dev(pf);
 | |
| 	struct ice_hw *hw = &pf->hw;
 | |
| 	int tmp, i;
 | |
| 
 | |
| 	if (!pf->vf)
 | |
| 		return;
 | |
| 
 | |
| 	while (test_and_set_bit(__ICE_VF_DIS, pf->state))
 | |
| 		usleep_range(1000, 2000);
 | |
| 
 | |
| 	/* Avoid wait time by stopping all VFs at the same time */
 | |
| 	ice_for_each_vf(pf, i)
 | |
| 		if (test_bit(ICE_VF_STATE_QS_ENA, pf->vf[i].vf_states))
 | |
| 			ice_dis_vf_qs(&pf->vf[i]);
 | |
| 
 | |
| 	/* Disable IOV before freeing resources. This lets any VF drivers
 | |
| 	 * running in the host get themselves cleaned up before we yank
 | |
| 	 * the carpet out from underneath their feet.
 | |
| 	 */
 | |
| 	if (!pci_vfs_assigned(pf->pdev))
 | |
| 		pci_disable_sriov(pf->pdev);
 | |
| 	else
 | |
| 		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
 | |
| 
 | |
| 	tmp = pf->num_alloc_vfs;
 | |
| 	pf->num_vf_qps = 0;
 | |
| 	pf->num_alloc_vfs = 0;
 | |
| 	for (i = 0; i < tmp; i++) {
 | |
| 		if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) {
 | |
| 			/* disable VF qp mappings and set VF disable state */
 | |
| 			ice_dis_vf_mappings(&pf->vf[i]);
 | |
| 			set_bit(ICE_VF_STATE_DIS, pf->vf[i].vf_states);
 | |
| 			ice_free_vf_res(&pf->vf[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ice_sriov_free_msix_res(pf))
 | |
| 		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
 | |
| 
 | |
| 	devm_kfree(dev, pf->vf);
 | |
| 	pf->vf = NULL;
 | |
| 
 | |
| 	/* This check is for when the driver is unloaded while VFs are
 | |
| 	 * assigned. Setting the number of VFs to 0 through sysfs is caught
 | |
| 	 * before this function ever gets called.
 | |
| 	 */
 | |
| 	if (!pci_vfs_assigned(pf->pdev)) {
 | |
| 		int vf_id;
 | |
| 
 | |
| 		/* Acknowledge VFLR for all VFs. Without this, VFs will fail to
 | |
| 		 * work correctly when SR-IOV gets re-enabled.
 | |
| 		 */
 | |
| 		for (vf_id = 0; vf_id < tmp; vf_id++) {
 | |
| 			u32 reg_idx, bit_idx;
 | |
| 
 | |
| 			reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
 | |
| 			bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
 | |
| 			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
 | |
| 		}
 | |
| 	}
 | |
| 	clear_bit(__ICE_VF_DIS, pf->state);
 | |
| 	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_trigger_vf_reset - Reset a VF on HW
 | |
|  * @vf: pointer to the VF structure
 | |
|  * @is_vflr: true if VFLR was issued, false if not
 | |
|  * @is_pfr: true if the reset was triggered due to a previous PFR
 | |
|  *
 | |
|  * Trigger hardware to start a reset for a particular VF. Expects the caller
 | |
|  * to wait the proper amount of time to allow hardware to reset the VF before
 | |
|  * it cleans up and restores VF functionality.
 | |
|  */
 | |
| static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr)
 | |
| {
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	u32 reg, reg_idx, bit_idx;
 | |
| 	struct device *dev;
 | |
| 	struct ice_hw *hw;
 | |
| 	int vf_abs_id, i;
 | |
| 
 | |
| 	dev = ice_pf_to_dev(pf);
 | |
| 	hw = &pf->hw;
 | |
| 	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
 | |
| 
 | |
| 	/* Inform VF that it is no longer active, as a warning */
 | |
| 	clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
 | |
| 
 | |
| 	/* Disable VF's configuration API during reset. The flag is re-enabled
 | |
| 	 * in ice_alloc_vf_res(), when it's safe again to access VF's VSI.
 | |
| 	 * It's normally disabled in ice_free_vf_res(), but it's safer
 | |
| 	 * to do it earlier to give some time to finish to any VF config
 | |
| 	 * functions that may still be running at this point.
 | |
| 	 */
 | |
| 	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
 | |
| 
 | |
| 	/* VF_MBX_ARQLEN is cleared by PFR, so the driver needs to clear it
 | |
| 	 * in the case of VFR. If this is done for PFR, it can mess up VF
 | |
| 	 * resets because the VF driver may already have started cleanup
 | |
| 	 * by the time we get here.
 | |
| 	 */
 | |
| 	if (!is_pfr)
 | |
| 		wr32(hw, VF_MBX_ARQLEN(vf->vf_id), 0);
 | |
| 
 | |
| 	/* In the case of a VFLR, the HW has already reset the VF and we
 | |
| 	 * just need to clean up, so don't hit the VFRTRIG register.
 | |
| 	 */
 | |
| 	if (!is_vflr) {
 | |
| 		/* reset VF using VPGEN_VFRTRIG reg */
 | |
| 		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
 | |
| 		reg |= VPGEN_VFRTRIG_VFSWR_M;
 | |
| 		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
 | |
| 	}
 | |
| 	/* clear the VFLR bit in GLGEN_VFLRSTAT */
 | |
| 	reg_idx = (vf_abs_id) / 32;
 | |
| 	bit_idx = (vf_abs_id) % 32;
 | |
| 	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
 | |
| 	ice_flush(hw);
 | |
| 
 | |
| 	wr32(hw, PF_PCI_CIAA,
 | |
| 	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
 | |
| 	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
 | |
| 		reg = rd32(hw, PF_PCI_CIAD);
 | |
| 		/* no transactions pending so stop polling */
 | |
| 		if ((reg & VF_TRANS_PENDING_M) == 0)
 | |
| 			break;
 | |
| 
 | |
| 		dev_err(dev, "VF %d PCI transactions stuck\n", vf->vf_id);
 | |
| 		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vsi_manage_pvid - Enable or disable port VLAN for VSI
 | |
|  * @vsi: the VSI to update
 | |
|  * @pvid_info: VLAN ID and QoS used to set the PVID VSI context field
 | |
|  * @enable: true for enable PVID false for disable
 | |
|  */
 | |
| static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 pvid_info, bool enable)
 | |
| {
 | |
| 	struct ice_hw *hw = &vsi->back->hw;
 | |
| 	struct ice_aqc_vsi_props *info;
 | |
| 	struct ice_vsi_ctx *ctxt;
 | |
| 	enum ice_status status;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 | |
| 	if (!ctxt)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctxt->info = vsi->info;
 | |
| 	info = &ctxt->info;
 | |
| 	if (enable) {
 | |
| 		info->vlan_flags = ICE_AQ_VSI_VLAN_MODE_UNTAGGED |
 | |
| 			ICE_AQ_VSI_PVLAN_INSERT_PVID |
 | |
| 			ICE_AQ_VSI_VLAN_EMOD_STR;
 | |
| 		info->sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
 | |
| 	} else {
 | |
| 		info->vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING |
 | |
| 			ICE_AQ_VSI_VLAN_MODE_ALL;
 | |
| 		info->sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
 | |
| 	}
 | |
| 
 | |
| 	info->pvid = cpu_to_le16(pvid_info);
 | |
| 	info->valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
 | |
| 					   ICE_AQ_VSI_PROP_SW_VALID);
 | |
| 
 | |
| 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
 | |
| 	if (status) {
 | |
| 		dev_info(ice_hw_to_dev(hw), "update VSI for port VLAN failed, err %d aq_err %d\n",
 | |
| 			 status, hw->adminq.sq_last_status);
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	vsi->info.vlan_flags = info->vlan_flags;
 | |
| 	vsi->info.sw_flags2 = info->sw_flags2;
 | |
| 	vsi->info.pvid = info->pvid;
 | |
| out:
 | |
| 	kfree(ctxt);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vf_vsi_setup - Set up a VF VSI
 | |
|  * @pf: board private structure
 | |
|  * @pi: pointer to the port_info instance
 | |
|  * @vf_id: defines VF ID to which this VSI connects.
 | |
|  *
 | |
|  * Returns pointer to the successfully allocated VSI struct on success,
 | |
|  * otherwise returns NULL on failure.
 | |
|  */
 | |
| static struct ice_vsi *
 | |
| ice_vf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, u16 vf_id)
 | |
| {
 | |
| 	return ice_vsi_setup(pf, pi, ICE_VSI_VF, vf_id);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
 | |
|  * @pf: pointer to PF structure
 | |
|  * @vf: pointer to VF that the first MSIX vector index is being calculated for
 | |
|  *
 | |
|  * This returns the first MSIX vector index in PF space that is used by this VF.
 | |
|  * This index is used when accessing PF relative registers such as
 | |
|  * GLINT_VECT2FUNC and GLINT_DYN_CTL.
 | |
|  * This will always be the OICR index in the AVF driver so any functionality
 | |
|  * using vf->first_vector_idx for queue configuration will have to increment by
 | |
|  * 1 to avoid meddling with the OICR index.
 | |
|  */
 | |
| static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
 | |
| {
 | |
| 	return pf->sriov_base_vector + vf->vf_id * pf->num_vf_msix;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_alloc_vsi_res - Setup VF VSI and its resources
 | |
|  * @vf: pointer to the VF structure
 | |
|  *
 | |
|  * Returns 0 on success, negative value on failure
 | |
|  */
 | |
| static int ice_alloc_vsi_res(struct ice_vf *vf)
 | |
| {
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	LIST_HEAD(tmp_add_list);
 | |
| 	u8 broadcast[ETH_ALEN];
 | |
| 	struct ice_vsi *vsi;
 | |
| 	struct device *dev;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	dev = ice_pf_to_dev(pf);
 | |
| 	/* first vector index is the VFs OICR index */
 | |
| 	vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
 | |
| 
 | |
| 	vsi = ice_vf_vsi_setup(pf, pf->hw.port_info, vf->vf_id);
 | |
| 	if (!vsi) {
 | |
| 		dev_err(dev, "Failed to create VF VSI\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	vf->lan_vsi_idx = vsi->idx;
 | |
| 	vf->lan_vsi_num = vsi->vsi_num;
 | |
| 
 | |
| 	/* Check if port VLAN exist before, and restore it accordingly */
 | |
| 	if (vf->port_vlan_info) {
 | |
| 		ice_vsi_manage_pvid(vsi, vf->port_vlan_info, true);
 | |
| 		ice_vsi_add_vlan(vsi, vf->port_vlan_info & ICE_VLAN_M);
 | |
| 	}
 | |
| 
 | |
| 	eth_broadcast_addr(broadcast);
 | |
| 
 | |
| 	status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
 | |
| 	if (status)
 | |
| 		goto ice_alloc_vsi_res_exit;
 | |
| 
 | |
| 	if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
 | |
| 		status = ice_add_mac_to_list(vsi, &tmp_add_list,
 | |
| 					     vf->dflt_lan_addr.addr);
 | |
| 		if (status)
 | |
| 			goto ice_alloc_vsi_res_exit;
 | |
| 	}
 | |
| 
 | |
| 	status = ice_add_mac(&pf->hw, &tmp_add_list);
 | |
| 	if (status)
 | |
| 		dev_err(dev, "could not add mac filters error %d\n", status);
 | |
| 	else
 | |
| 		vf->num_mac = 1;
 | |
| 
 | |
| 	/* Clear this bit after VF initialization since we shouldn't reclaim
 | |
| 	 * and reassign interrupts for synchronous or asynchronous VFR events.
 | |
| 	 * We don't want to reconfigure interrupts since AVF driver doesn't
 | |
| 	 * expect vector assignment to be changed unless there is a request for
 | |
| 	 * more vectors.
 | |
| 	 */
 | |
| ice_alloc_vsi_res_exit:
 | |
| 	ice_free_fltr_list(dev, &tmp_add_list);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_alloc_vf_res - Allocate VF resources
 | |
|  * @vf: pointer to the VF structure
 | |
|  */
 | |
| static int ice_alloc_vf_res(struct ice_vf *vf)
 | |
| {
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	int tx_rx_queue_left;
 | |
| 	int status;
 | |
| 
 | |
| 	/* Update number of VF queues, in case VF had requested for queue
 | |
| 	 * changes
 | |
| 	 */
 | |
| 	tx_rx_queue_left = min_t(int, ice_get_avail_txq_count(pf),
 | |
| 				 ice_get_avail_rxq_count(pf));
 | |
| 	tx_rx_queue_left += ICE_DFLT_QS_PER_VF;
 | |
| 	if (vf->num_req_qs && vf->num_req_qs <= tx_rx_queue_left &&
 | |
| 	    vf->num_req_qs != vf->num_vf_qs)
 | |
| 		vf->num_vf_qs = vf->num_req_qs;
 | |
| 
 | |
| 	/* setup VF VSI and necessary resources */
 | |
| 	status = ice_alloc_vsi_res(vf);
 | |
| 	if (status)
 | |
| 		goto ice_alloc_vf_res_exit;
 | |
| 
 | |
| 	if (vf->trusted)
 | |
| 		set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
 | |
| 	else
 | |
| 		clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
 | |
| 
 | |
| 	/* VF is now completely initialized */
 | |
| 	set_bit(ICE_VF_STATE_INIT, vf->vf_states);
 | |
| 
 | |
| 	return status;
 | |
| 
 | |
| ice_alloc_vf_res_exit:
 | |
| 	ice_free_vf_res(vf);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_ena_vf_mappings
 | |
|  * @vf: pointer to the VF structure
 | |
|  *
 | |
|  * Enable VF vectors and queues allocation by writing the details into
 | |
|  * respective registers.
 | |
|  */
 | |
| static void ice_ena_vf_mappings(struct ice_vf *vf)
 | |
| {
 | |
| 	int abs_vf_id, abs_first, abs_last;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 	struct device *dev;
 | |
| 	int first, last, v;
 | |
| 	struct ice_hw *hw;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	dev = ice_pf_to_dev(pf);
 | |
| 	hw = &pf->hw;
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	first = vf->first_vector_idx;
 | |
| 	last = (first + pf->num_vf_msix) - 1;
 | |
| 	abs_first = first + pf->hw.func_caps.common_cap.msix_vector_first_id;
 | |
| 	abs_last = (abs_first + pf->num_vf_msix) - 1;
 | |
| 	abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
 | |
| 
 | |
| 	/* VF Vector allocation */
 | |
| 	reg = (((abs_first << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) |
 | |
| 	       ((abs_last << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) |
 | |
| 	       VPINT_ALLOC_VALID_M);
 | |
| 	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
 | |
| 
 | |
| 	reg = (((abs_first << VPINT_ALLOC_PCI_FIRST_S)
 | |
| 		 & VPINT_ALLOC_PCI_FIRST_M) |
 | |
| 	       ((abs_last << VPINT_ALLOC_PCI_LAST_S) & VPINT_ALLOC_PCI_LAST_M) |
 | |
| 	       VPINT_ALLOC_PCI_VALID_M);
 | |
| 	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
 | |
| 	/* map the interrupts to its functions */
 | |
| 	for (v = first; v <= last; v++) {
 | |
| 		reg = (((abs_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
 | |
| 			GLINT_VECT2FUNC_VF_NUM_M) |
 | |
| 		       ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
 | |
| 			GLINT_VECT2FUNC_PF_NUM_M));
 | |
| 		wr32(hw, GLINT_VECT2FUNC(v), reg);
 | |
| 	}
 | |
| 
 | |
| 	/* Map mailbox interrupt. We put an explicit 0 here to remind us that
 | |
| 	 * VF admin queue interrupts will go to VF MSI-X vector 0.
 | |
| 	 */
 | |
| 	wr32(hw, VPINT_MBX_CTL(abs_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M | 0);
 | |
| 	/* set regardless of mapping mode */
 | |
| 	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
 | |
| 
 | |
| 	/* VF Tx queues allocation */
 | |
| 	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
 | |
| 		/* set the VF PF Tx queue range
 | |
| 		 * VFNUMQ value should be set to (number of queues - 1). A value
 | |
| 		 * of 0 means 1 queue and a value of 255 means 256 queues
 | |
| 		 */
 | |
| 		reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
 | |
| 			VPLAN_TX_QBASE_VFFIRSTQ_M) |
 | |
| 		       (((vsi->alloc_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
 | |
| 			VPLAN_TX_QBASE_VFNUMQ_M));
 | |
| 		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
 | |
| 	} else {
 | |
| 		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
 | |
| 	}
 | |
| 
 | |
| 	/* set regardless of mapping mode */
 | |
| 	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
 | |
| 
 | |
| 	/* VF Rx queues allocation */
 | |
| 	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
 | |
| 		/* set the VF PF Rx queue range
 | |
| 		 * VFNUMQ value should be set to (number of queues - 1). A value
 | |
| 		 * of 0 means 1 queue and a value of 255 means 256 queues
 | |
| 		 */
 | |
| 		reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
 | |
| 			VPLAN_RX_QBASE_VFFIRSTQ_M) |
 | |
| 		       (((vsi->alloc_txq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
 | |
| 			VPLAN_RX_QBASE_VFNUMQ_M));
 | |
| 		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
 | |
| 	} else {
 | |
| 		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_determine_res
 | |
|  * @pf: pointer to the PF structure
 | |
|  * @avail_res: available resources in the PF structure
 | |
|  * @max_res: maximum resources that can be given per VF
 | |
|  * @min_res: minimum resources that can be given per VF
 | |
|  *
 | |
|  * Returns non-zero value if resources (queues/vectors) are available or
 | |
|  * returns zero if PF cannot accommodate for all num_alloc_vfs.
 | |
|  */
 | |
| static int
 | |
| ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
 | |
| {
 | |
| 	bool checked_min_res = false;
 | |
| 	int res;
 | |
| 
 | |
| 	/* start by checking if PF can assign max number of resources for
 | |
| 	 * all num_alloc_vfs.
 | |
| 	 * if yes, return number per VF
 | |
| 	 * If no, divide by 2 and roundup, check again
 | |
| 	 * repeat the loop till we reach a point where even minimum resources
 | |
| 	 * are not available, in that case return 0
 | |
| 	 */
 | |
| 	res = max_res;
 | |
| 	while ((res >= min_res) && !checked_min_res) {
 | |
| 		int num_all_res;
 | |
| 
 | |
| 		num_all_res = pf->num_alloc_vfs * res;
 | |
| 		if (num_all_res <= avail_res)
 | |
| 			return res;
 | |
| 
 | |
| 		if (res == min_res)
 | |
| 			checked_min_res = true;
 | |
| 
 | |
| 		res = DIV_ROUND_UP(res, 2);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
 | |
|  * @vf: VF to calculate the register index for
 | |
|  * @q_vector: a q_vector associated to the VF
 | |
|  */
 | |
| int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
 | |
| {
 | |
| 	struct ice_pf *pf;
 | |
| 
 | |
| 	if (!vf || !q_vector)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pf = vf->pf;
 | |
| 
 | |
| 	/* always add one to account for the OICR being the first MSIX */
 | |
| 	return pf->sriov_base_vector + pf->num_vf_msix * vf->vf_id +
 | |
| 		q_vector->v_idx + 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_max_valid_res_idx - Get the max valid resource index
 | |
|  * @res: pointer to the resource to find the max valid index for
 | |
|  *
 | |
|  * Start from the end of the ice_res_tracker and return right when we find the
 | |
|  * first res->list entry with the ICE_RES_VALID_BIT set. This function is only
 | |
|  * valid for SR-IOV because it is the only consumer that manipulates the
 | |
|  * res->end and this is always called when res->end is set to res->num_entries.
 | |
|  */
 | |
| static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!res)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (i = res->num_entries - 1; i >= 0; i--)
 | |
| 		if (res->list[i] & ICE_RES_VALID_BIT)
 | |
| 			return i;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_sriov_set_msix_res - Set any used MSIX resources
 | |
|  * @pf: pointer to PF structure
 | |
|  * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
 | |
|  *
 | |
|  * This function allows SR-IOV resources to be taken from the end of the PF's
 | |
|  * allowed HW MSIX vectors so in many cases the irq_tracker will not
 | |
|  * be needed. In these cases we just set the pf->sriov_base_vector and return
 | |
|  * success.
 | |
|  *
 | |
|  * If SR-IOV needs to use any pf->irq_tracker entries it updates the
 | |
|  * irq_tracker->end based on the first entry needed for SR-IOV. This makes it
 | |
|  * so any calls to ice_get_res() using the irq_tracker will not try to use
 | |
|  * resources at or beyond the newly set value.
 | |
|  *
 | |
|  * Return 0 on success, and -EINVAL when there are not enough MSIX vectors in
 | |
|  * in the PF's space available for SR-IOV.
 | |
|  */
 | |
| static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
 | |
| {
 | |
| 	int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
 | |
| 	u16 pf_total_msix_vectors =
 | |
| 		pf->hw.func_caps.common_cap.num_msix_vectors;
 | |
| 	struct ice_res_tracker *res = pf->irq_tracker;
 | |
| 	int sriov_base_vector;
 | |
| 
 | |
| 	if (max_valid_res_idx < 0)
 | |
| 		return max_valid_res_idx;
 | |
| 
 | |
| 	sriov_base_vector = pf_total_msix_vectors - num_msix_needed;
 | |
| 
 | |
| 	/* make sure we only grab irq_tracker entries from the list end and
 | |
| 	 * that we have enough available MSIX vectors
 | |
| 	 */
 | |
| 	if (sriov_base_vector <= max_valid_res_idx)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pf->sriov_base_vector = sriov_base_vector;
 | |
| 
 | |
| 	/* dip into irq_tracker entries and update used resources */
 | |
| 	if (num_msix_needed > (pf_total_msix_vectors - res->num_entries)) {
 | |
| 		pf->num_avail_sw_msix -=
 | |
| 			res->num_entries - pf->sriov_base_vector;
 | |
| 		res->end = pf->sriov_base_vector;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_check_avail_res - check if vectors and queues are available
 | |
|  * @pf: pointer to the PF structure
 | |
|  *
 | |
|  * This function is where we calculate actual number of resources for VF VSIs,
 | |
|  * we don't reserve ahead of time during probe. Returns success if vectors and
 | |
|  * queues resources are available, otherwise returns error code
 | |
|  */
 | |
| static int ice_check_avail_res(struct ice_pf *pf)
 | |
| {
 | |
| 	int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
 | |
| 	u16 num_msix, num_txq, num_rxq, num_avail_msix;
 | |
| 	struct device *dev = ice_pf_to_dev(pf);
 | |
| 
 | |
| 	if (!pf->num_alloc_vfs || max_valid_res_idx < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* add 1 to max_valid_res_idx to account for it being 0-based */
 | |
| 	num_avail_msix = pf->hw.func_caps.common_cap.num_msix_vectors -
 | |
| 		(max_valid_res_idx + 1);
 | |
| 
 | |
| 	/* Grab from HW interrupts common pool
 | |
| 	 * Note: By the time the user decides it needs more vectors in a VF
 | |
| 	 * its already too late since one must decide this prior to creating the
 | |
| 	 * VF interface. So the best we can do is take a guess as to what the
 | |
| 	 * user might want.
 | |
| 	 *
 | |
| 	 * We have two policies for vector allocation:
 | |
| 	 * 1. if num_alloc_vfs is from 1 to 16, then we consider this as small
 | |
| 	 * number of NFV VFs used for NFV appliances, since this is a special
 | |
| 	 * case, we try to assign maximum vectors per VF (65) as much as
 | |
| 	 * possible, based on determine_resources algorithm.
 | |
| 	 * 2. if num_alloc_vfs is from 17 to 256, then its large number of
 | |
| 	 * regular VFs which are not used for any special purpose. Hence try to
 | |
| 	 * grab default interrupt vectors (5 as supported by AVF driver).
 | |
| 	 */
 | |
| 	if (pf->num_alloc_vfs <= 16) {
 | |
| 		num_msix = ice_determine_res(pf, num_avail_msix,
 | |
| 					     ICE_MAX_INTR_PER_VF,
 | |
| 					     ICE_MIN_INTR_PER_VF);
 | |
| 	} else if (pf->num_alloc_vfs <= ICE_MAX_VF_COUNT) {
 | |
| 		num_msix = ice_determine_res(pf, num_avail_msix,
 | |
| 					     ICE_DFLT_INTR_PER_VF,
 | |
| 					     ICE_MIN_INTR_PER_VF);
 | |
| 	} else {
 | |
| 		dev_err(dev, "Number of VFs %d exceeds max VF count %d\n",
 | |
| 			pf->num_alloc_vfs, ICE_MAX_VF_COUNT);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (!num_msix)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/* Grab from the common pool
 | |
| 	 * start by requesting Default queues (4 as supported by AVF driver),
 | |
| 	 * Note that, the main difference between queues and vectors is, latter
 | |
| 	 * can only be reserved at init time but queues can be requested by VF
 | |
| 	 * at runtime through Virtchnl, that is the reason we start by reserving
 | |
| 	 * few queues.
 | |
| 	 */
 | |
| 	num_txq = ice_determine_res(pf, ice_get_avail_txq_count(pf),
 | |
| 				    ICE_DFLT_QS_PER_VF, ICE_MIN_QS_PER_VF);
 | |
| 
 | |
| 	num_rxq = ice_determine_res(pf, ice_get_avail_rxq_count(pf),
 | |
| 				    ICE_DFLT_QS_PER_VF, ICE_MIN_QS_PER_VF);
 | |
| 
 | |
| 	if (!num_txq || !num_rxq)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (ice_sriov_set_msix_res(pf, num_msix * pf->num_alloc_vfs))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* since AVF driver works with only queue pairs which means, it expects
 | |
| 	 * to have equal number of Rx and Tx queues, so take the minimum of
 | |
| 	 * available Tx or Rx queues
 | |
| 	 */
 | |
| 	pf->num_vf_qps = min_t(int, num_txq, num_rxq);
 | |
| 	pf->num_vf_msix = num_msix;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset
 | |
|  * @vf: pointer to the VF structure
 | |
|  *
 | |
|  * Cleanup a VF after the hardware reset is finished. Expects the caller to
 | |
|  * have verified whether the reset is finished properly, and ensure the
 | |
|  * minimum amount of wait time has passed. Reallocate VF resources back to make
 | |
|  * VF state active
 | |
|  */
 | |
| static void ice_cleanup_and_realloc_vf(struct ice_vf *vf)
 | |
| {
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_hw *hw;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	hw = &pf->hw;
 | |
| 
 | |
| 	/* PF software completes the flow by notifying VF that reset flow is
 | |
| 	 * completed. This is done by enabling hardware by clearing the reset
 | |
| 	 * bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT
 | |
| 	 * register to VFR completed (done at the end of this function)
 | |
| 	 * By doing this we allow HW to access VF memory at any point. If we
 | |
| 	 * did it any sooner, HW could access memory while it was being freed
 | |
| 	 * in ice_free_vf_res(), causing an IOMMU fault.
 | |
| 	 *
 | |
| 	 * On the other hand, this needs to be done ASAP, because the VF driver
 | |
| 	 * is waiting for this to happen and may report a timeout. It's
 | |
| 	 * harmless, but it gets logged into Guest OS kernel log, so best avoid
 | |
| 	 * it.
 | |
| 	 */
 | |
| 	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
 | |
| 	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
 | |
| 	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
 | |
| 
 | |
| 	/* reallocate VF resources to finish resetting the VSI state */
 | |
| 	if (!ice_alloc_vf_res(vf)) {
 | |
| 		struct ice_vsi *vsi;
 | |
| 
 | |
| 		ice_ena_vf_mappings(vf);
 | |
| 		set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
 | |
| 		clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
 | |
| 
 | |
| 		vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 		if (ice_vsi_add_vlan(vsi, 0))
 | |
| 			dev_warn(ice_pf_to_dev(pf),
 | |
| 				 "Failed to add VLAN 0 filter for VF %d, MDD events will trigger. Reset the VF, disable spoofchk, or enable 8021q module on the guest",
 | |
| 				 vf->vf_id);
 | |
| 	}
 | |
| 
 | |
| 	/* Tell the VF driver the reset is done. This needs to be done only
 | |
| 	 * after VF has been fully initialized, because the VF driver may
 | |
| 	 * request resources immediately after setting this flag.
 | |
| 	 */
 | |
| 	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s)
 | |
|  * @vf: pointer to the VF info
 | |
|  * @vsi: the VSI being configured
 | |
|  * @promisc_m: mask of promiscuous config bits
 | |
|  * @rm_promisc: promisc flag request from the VF to remove or add filter
 | |
|  *
 | |
|  * This function configures VF VSI promiscuous mode, based on the VF requests,
 | |
|  * for Unicast, Multicast and VLAN
 | |
|  */
 | |
| static enum ice_status
 | |
| ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m,
 | |
| 		       bool rm_promisc)
 | |
| {
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	enum ice_status status = 0;
 | |
| 	struct ice_hw *hw;
 | |
| 
 | |
| 	hw = &pf->hw;
 | |
| 	if (vsi->num_vlan) {
 | |
| 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
 | |
| 						  rm_promisc);
 | |
| 	} else if (vf->port_vlan_info) {
 | |
| 		if (rm_promisc)
 | |
| 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
 | |
| 						       vf->port_vlan_info);
 | |
| 		else
 | |
| 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
 | |
| 						     vf->port_vlan_info);
 | |
| 	} else {
 | |
| 		if (rm_promisc)
 | |
| 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
 | |
| 						       0);
 | |
| 		else
 | |
| 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
 | |
| 						     0);
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_config_res_vfs - Finalize allocation of VFs resources in one go
 | |
|  * @pf: pointer to the PF structure
 | |
|  *
 | |
|  * This function is being called as last part of resetting all VFs, or when
 | |
|  * configuring VFs for the first time, where there is no resource to be freed
 | |
|  * Returns true if resources were properly allocated for all VFs, and false
 | |
|  * otherwise.
 | |
|  */
 | |
| static bool ice_config_res_vfs(struct ice_pf *pf)
 | |
| {
 | |
| 	struct device *dev = ice_pf_to_dev(pf);
 | |
| 	struct ice_hw *hw = &pf->hw;
 | |
| 	int v;
 | |
| 
 | |
| 	if (ice_check_avail_res(pf)) {
 | |
| 		dev_err(dev, "Cannot allocate VF resources, try with fewer number of VFs\n");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* rearm global interrupts */
 | |
| 	if (test_and_clear_bit(__ICE_OICR_INTR_DIS, pf->state))
 | |
| 		ice_irq_dynamic_ena(hw, NULL, NULL);
 | |
| 
 | |
| 	/* Finish resetting each VF and allocate resources */
 | |
| 	ice_for_each_vf(pf, v) {
 | |
| 		struct ice_vf *vf = &pf->vf[v];
 | |
| 
 | |
| 		vf->num_vf_qs = pf->num_vf_qps;
 | |
| 		dev_dbg(dev, "VF-id %d has %d queues configured\n", vf->vf_id,
 | |
| 			vf->num_vf_qs);
 | |
| 		ice_cleanup_and_realloc_vf(vf);
 | |
| 	}
 | |
| 
 | |
| 	ice_flush(hw);
 | |
| 	clear_bit(__ICE_VF_DIS, pf->state);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_reset_all_vfs - reset all allocated VFs in one go
 | |
|  * @pf: pointer to the PF structure
 | |
|  * @is_vflr: true if VFLR was issued, false if not
 | |
|  *
 | |
|  * First, tell the hardware to reset each VF, then do all the waiting in one
 | |
|  * chunk, and finally finish restoring each VF after the wait. This is useful
 | |
|  * during PF routines which need to reset all VFs, as otherwise it must perform
 | |
|  * these resets in a serialized fashion.
 | |
|  *
 | |
|  * Returns true if any VFs were reset, and false otherwise.
 | |
|  */
 | |
| bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
 | |
| {
 | |
| 	struct device *dev = ice_pf_to_dev(pf);
 | |
| 	struct ice_hw *hw = &pf->hw;
 | |
| 	struct ice_vf *vf;
 | |
| 	int v, i;
 | |
| 
 | |
| 	/* If we don't have any VFs, then there is nothing to reset */
 | |
| 	if (!pf->num_alloc_vfs)
 | |
| 		return false;
 | |
| 
 | |
| 	/* If VFs have been disabled, there is no need to reset */
 | |
| 	if (test_and_set_bit(__ICE_VF_DIS, pf->state))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Begin reset on all VFs at once */
 | |
| 	ice_for_each_vf(pf, v)
 | |
| 		ice_trigger_vf_reset(&pf->vf[v], is_vflr, true);
 | |
| 
 | |
| 	ice_for_each_vf(pf, v) {
 | |
| 		struct ice_vsi *vsi;
 | |
| 
 | |
| 		vf = &pf->vf[v];
 | |
| 		vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 		if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states))
 | |
| 			ice_dis_vf_qs(vf);
 | |
| 		ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
 | |
| 				NULL, ICE_VF_RESET, vf->vf_id, NULL);
 | |
| 	}
 | |
| 
 | |
| 	/* HW requires some time to make sure it can flush the FIFO for a VF
 | |
| 	 * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
 | |
| 	 * sequence to make sure that it has completed. We'll keep track of
 | |
| 	 * the VFs using a simple iterator that increments once that VF has
 | |
| 	 * finished resetting.
 | |
| 	 */
 | |
| 	for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {
 | |
| 		/* Check each VF in sequence */
 | |
| 		while (v < pf->num_alloc_vfs) {
 | |
| 			u32 reg;
 | |
| 
 | |
| 			vf = &pf->vf[v];
 | |
| 			reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
 | |
| 			if (!(reg & VPGEN_VFRSTAT_VFRD_M)) {
 | |
| 				/* only delay if the check failed */
 | |
| 				usleep_range(10, 20);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* If the current VF has finished resetting, move on
 | |
| 			 * to the next VF in sequence.
 | |
| 			 */
 | |
| 			v++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Display a warning if at least one VF didn't manage to reset in
 | |
| 	 * time, but continue on with the operation.
 | |
| 	 */
 | |
| 	if (v < pf->num_alloc_vfs)
 | |
| 		dev_warn(dev, "VF reset check timeout\n");
 | |
| 
 | |
| 	/* free VF resources to begin resetting the VSI state */
 | |
| 	ice_for_each_vf(pf, v) {
 | |
| 		vf = &pf->vf[v];
 | |
| 
 | |
| 		ice_free_vf_res(vf);
 | |
| 
 | |
| 		/* Free VF queues as well, and reallocate later.
 | |
| 		 * If a given VF has different number of queues
 | |
| 		 * configured, the request for update will come
 | |
| 		 * via mailbox communication.
 | |
| 		 */
 | |
| 		vf->num_vf_qs = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ice_sriov_free_msix_res(pf))
 | |
| 		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
 | |
| 
 | |
| 	if (!ice_config_res_vfs(pf))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_is_vf_disabled
 | |
|  * @vf: pointer to the VF info
 | |
|  *
 | |
|  * Returns true if the PF or VF is disabled, false otherwise.
 | |
|  */
 | |
| static bool ice_is_vf_disabled(struct ice_vf *vf)
 | |
| {
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 
 | |
| 	/* If the PF has been disabled, there is no need resetting VF until
 | |
| 	 * PF is active again. Similarly, if the VF has been disabled, this
 | |
| 	 * means something else is resetting the VF, so we shouldn't continue.
 | |
| 	 * Otherwise, set disable VF state bit for actual reset, and continue.
 | |
| 	 */
 | |
| 	return (test_bit(__ICE_VF_DIS, pf->state) ||
 | |
| 		test_bit(ICE_VF_STATE_DIS, vf->vf_states));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_reset_vf - Reset a particular VF
 | |
|  * @vf: pointer to the VF structure
 | |
|  * @is_vflr: true if VFLR was issued, false if not
 | |
|  *
 | |
|  * Returns true if the VF is reset, false otherwise.
 | |
|  */
 | |
| static bool ice_reset_vf(struct ice_vf *vf, bool is_vflr)
 | |
| {
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 	struct device *dev;
 | |
| 	struct ice_hw *hw;
 | |
| 	bool rsd = false;
 | |
| 	u8 promisc_m;
 | |
| 	u32 reg;
 | |
| 	int i;
 | |
| 
 | |
| 	dev = ice_pf_to_dev(pf);
 | |
| 
 | |
| 	if (ice_is_vf_disabled(vf)) {
 | |
| 		dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n",
 | |
| 			vf->vf_id);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* Set VF disable bit state here, before triggering reset */
 | |
| 	set_bit(ICE_VF_STATE_DIS, vf->vf_states);
 | |
| 	ice_trigger_vf_reset(vf, is_vflr, false);
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 
 | |
| 	if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states))
 | |
| 		ice_dis_vf_qs(vf);
 | |
| 
 | |
| 	/* Call Disable LAN Tx queue AQ whether or not queues are
 | |
| 	 * enabled. This is needed for successful completion of VFR.
 | |
| 	 */
 | |
| 	ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
 | |
| 			NULL, ICE_VF_RESET, vf->vf_id, NULL);
 | |
| 
 | |
| 	hw = &pf->hw;
 | |
| 	/* poll VPGEN_VFRSTAT reg to make sure
 | |
| 	 * that reset is complete
 | |
| 	 */
 | |
| 	for (i = 0; i < 10; i++) {
 | |
| 		/* VF reset requires driver to first reset the VF and then
 | |
| 		 * poll the status register to make sure that the reset
 | |
| 		 * completed successfully.
 | |
| 		 */
 | |
| 		reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
 | |
| 		if (reg & VPGEN_VFRSTAT_VFRD_M) {
 | |
| 			rsd = true;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* only sleep if the reset is not done */
 | |
| 		usleep_range(10, 20);
 | |
| 	}
 | |
| 
 | |
| 	/* Display a warning if VF didn't manage to reset in time, but need to
 | |
| 	 * continue on with the operation.
 | |
| 	 */
 | |
| 	if (!rsd)
 | |
| 		dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id);
 | |
| 
 | |
| 	/* disable promiscuous modes in case they were enabled
 | |
| 	 * ignore any error if disabling process failed
 | |
| 	 */
 | |
| 	if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
 | |
| 	    test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) {
 | |
| 		if (vf->port_vlan_info || vsi->num_vlan)
 | |
| 			promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
 | |
| 		else
 | |
| 			promisc_m = ICE_UCAST_PROMISC_BITS;
 | |
| 
 | |
| 		vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 		if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true))
 | |
| 			dev_err(dev, "disabling promiscuous mode failed\n");
 | |
| 	}
 | |
| 
 | |
| 	/* free VF resources to begin resetting the VSI state */
 | |
| 	ice_free_vf_res(vf);
 | |
| 
 | |
| 	ice_cleanup_and_realloc_vf(vf);
 | |
| 
 | |
| 	ice_flush(hw);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
 | |
|  * @pf: pointer to the PF structure
 | |
|  */
 | |
| void ice_vc_notify_link_state(struct ice_pf *pf)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	ice_for_each_vf(pf, i)
 | |
| 		ice_vc_notify_vf_link_state(&pf->vf[i]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_notify_reset - Send pending reset message to all VFs
 | |
|  * @pf: pointer to the PF structure
 | |
|  *
 | |
|  * indicate a pending reset to all VFs on a given PF
 | |
|  */
 | |
| void ice_vc_notify_reset(struct ice_pf *pf)
 | |
| {
 | |
| 	struct virtchnl_pf_event pfe;
 | |
| 
 | |
| 	if (!pf->num_alloc_vfs)
 | |
| 		return;
 | |
| 
 | |
| 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
 | |
| 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
 | |
| 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
 | |
| 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_notify_vf_reset - Notify VF of a reset event
 | |
|  * @vf: pointer to the VF structure
 | |
|  */
 | |
| static void ice_vc_notify_vf_reset(struct ice_vf *vf)
 | |
| {
 | |
| 	struct virtchnl_pf_event pfe;
 | |
| 	struct ice_pf *pf;
 | |
| 
 | |
| 	if (!vf)
 | |
| 		return;
 | |
| 
 | |
| 	pf = vf->pf;
 | |
| 	if (ice_validate_vf_id(pf, vf->vf_id))
 | |
| 		return;
 | |
| 
 | |
| 	/* Bail out if VF is in disabled state, neither initialized, nor active
 | |
| 	 * state - otherwise proceed with notifications
 | |
| 	 */
 | |
| 	if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
 | |
| 	     !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) ||
 | |
| 	    test_bit(ICE_VF_STATE_DIS, vf->vf_states))
 | |
| 		return;
 | |
| 
 | |
| 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
 | |
| 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
 | |
| 	ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT,
 | |
| 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe),
 | |
| 			      NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_alloc_vfs - Allocate and set up VFs resources
 | |
|  * @pf: pointer to the PF structure
 | |
|  * @num_alloc_vfs: number of VFs to allocate
 | |
|  */
 | |
| static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs)
 | |
| {
 | |
| 	struct device *dev = ice_pf_to_dev(pf);
 | |
| 	struct ice_hw *hw = &pf->hw;
 | |
| 	struct ice_vf *vfs;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
 | |
| 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
 | |
| 	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
 | |
| 	set_bit(__ICE_OICR_INTR_DIS, pf->state);
 | |
| 	ice_flush(hw);
 | |
| 
 | |
| 	ret = pci_enable_sriov(pf->pdev, num_alloc_vfs);
 | |
| 	if (ret) {
 | |
| 		pf->num_alloc_vfs = 0;
 | |
| 		goto err_unroll_intr;
 | |
| 	}
 | |
| 	/* allocate memory */
 | |
| 	vfs = devm_kcalloc(dev, num_alloc_vfs, sizeof(*vfs), GFP_KERNEL);
 | |
| 	if (!vfs) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_pci_disable_sriov;
 | |
| 	}
 | |
| 	pf->vf = vfs;
 | |
| 	pf->num_alloc_vfs = num_alloc_vfs;
 | |
| 
 | |
| 	/* apply default profile */
 | |
| 	ice_for_each_vf(pf, i) {
 | |
| 		vfs[i].pf = pf;
 | |
| 		vfs[i].vf_sw_id = pf->first_sw;
 | |
| 		vfs[i].vf_id = i;
 | |
| 
 | |
| 		/* assign default capabilities */
 | |
| 		set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps);
 | |
| 		vfs[i].spoofchk = true;
 | |
| 	}
 | |
| 
 | |
| 	/* VF resources get allocated with initialization */
 | |
| 	if (!ice_config_res_vfs(pf)) {
 | |
| 		ret = -EIO;
 | |
| 		goto err_unroll_sriov;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| err_unroll_sriov:
 | |
| 	pf->vf = NULL;
 | |
| 	devm_kfree(dev, vfs);
 | |
| 	vfs = NULL;
 | |
| 	pf->num_alloc_vfs = 0;
 | |
| err_pci_disable_sriov:
 | |
| 	pci_disable_sriov(pf->pdev);
 | |
| err_unroll_intr:
 | |
| 	/* rearm interrupts here */
 | |
| 	ice_irq_dynamic_ena(hw, NULL, NULL);
 | |
| 	clear_bit(__ICE_OICR_INTR_DIS, pf->state);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_pf_state_is_nominal - checks the PF for nominal state
 | |
|  * @pf: pointer to PF to check
 | |
|  *
 | |
|  * Check the PF's state for a collection of bits that would indicate
 | |
|  * the PF is in a state that would inhibit normal operation for
 | |
|  * driver functionality.
 | |
|  *
 | |
|  * Returns true if PF is in a nominal state.
 | |
|  * Returns false otherwise
 | |
|  */
 | |
| static bool ice_pf_state_is_nominal(struct ice_pf *pf)
 | |
| {
 | |
| 	DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };
 | |
| 
 | |
| 	if (!pf)
 | |
| 		return false;
 | |
| 
 | |
| 	bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
 | |
| 	if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_pci_sriov_ena - Enable or change number of VFs
 | |
|  * @pf: pointer to the PF structure
 | |
|  * @num_vfs: number of VFs to allocate
 | |
|  */
 | |
| static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
 | |
| {
 | |
| 	int pre_existing_vfs = pci_num_vf(pf->pdev);
 | |
| 	struct device *dev = ice_pf_to_dev(pf);
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ice_pf_state_is_nominal(pf)) {
 | |
| 		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
 | |
| 		dev_err(dev, "This device is not capable of SR-IOV\n");
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (pre_existing_vfs && pre_existing_vfs != num_vfs)
 | |
| 		ice_free_vfs(pf);
 | |
| 	else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
 | |
| 		return num_vfs;
 | |
| 
 | |
| 	if (num_vfs > pf->num_vfs_supported) {
 | |
| 		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
 | |
| 			num_vfs, pf->num_vfs_supported);
 | |
| 		return -ENOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(dev, "Allocating %d VFs\n", num_vfs);
 | |
| 	err = ice_alloc_vfs(pf, num_vfs);
 | |
| 	if (err) {
 | |
| 		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
 | |
| 	return num_vfs;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_sriov_configure - Enable or change number of VFs via sysfs
 | |
|  * @pdev: pointer to a pci_dev structure
 | |
|  * @num_vfs: number of VFs to allocate
 | |
|  *
 | |
|  * This function is called when the user updates the number of VFs in sysfs.
 | |
|  */
 | |
| int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
 | |
| {
 | |
| 	struct ice_pf *pf = pci_get_drvdata(pdev);
 | |
| 	struct device *dev = ice_pf_to_dev(pf);
 | |
| 
 | |
| 	if (ice_is_safe_mode(pf)) {
 | |
| 		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (num_vfs)
 | |
| 		return ice_pci_sriov_ena(pf, num_vfs);
 | |
| 
 | |
| 	if (!pci_vfs_assigned(pdev)) {
 | |
| 		ice_free_vfs(pf);
 | |
| 	} else {
 | |
| 		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_process_vflr_event - Free VF resources via IRQ calls
 | |
|  * @pf: pointer to the PF structure
 | |
|  *
 | |
|  * called from the VFLR IRQ handler to
 | |
|  * free up VF resources and state variables
 | |
|  */
 | |
| void ice_process_vflr_event(struct ice_pf *pf)
 | |
| {
 | |
| 	struct ice_hw *hw = &pf->hw;
 | |
| 	int vf_id;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (!test_and_clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
 | |
| 	    !pf->num_alloc_vfs)
 | |
| 		return;
 | |
| 
 | |
| 	ice_for_each_vf(pf, vf_id) {
 | |
| 		struct ice_vf *vf = &pf->vf[vf_id];
 | |
| 		u32 reg_idx, bit_idx;
 | |
| 
 | |
| 		reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
 | |
| 		bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
 | |
| 		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
 | |
| 		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
 | |
| 		if (reg & BIT(bit_idx))
 | |
| 			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
 | |
| 			ice_reset_vf(vf, true);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_reset_vf - Perform software reset on the VF after informing the AVF
 | |
|  * @vf: pointer to the VF info
 | |
|  */
 | |
| static void ice_vc_reset_vf(struct ice_vf *vf)
 | |
| {
 | |
| 	ice_vc_notify_vf_reset(vf);
 | |
| 	ice_reset_vf(vf, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_send_msg_to_vf - Send message to VF
 | |
|  * @vf: pointer to the VF info
 | |
|  * @v_opcode: virtual channel opcode
 | |
|  * @v_retval: virtual channel return value
 | |
|  * @msg: pointer to the msg buffer
 | |
|  * @msglen: msg length
 | |
|  *
 | |
|  * send msg to VF
 | |
|  */
 | |
| static int
 | |
| ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
 | |
| 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
 | |
| {
 | |
| 	enum ice_status aq_ret;
 | |
| 	struct device *dev;
 | |
| 	struct ice_pf *pf;
 | |
| 
 | |
| 	if (!vf)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pf = vf->pf;
 | |
| 	if (ice_validate_vf_id(pf, vf->vf_id))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dev = ice_pf_to_dev(pf);
 | |
| 
 | |
| 	/* single place to detect unsuccessful return values */
 | |
| 	if (v_retval) {
 | |
| 		vf->num_inval_msgs++;
 | |
| 		dev_info(dev, "VF %d failed opcode %d, retval: %d\n", vf->vf_id,
 | |
| 			 v_opcode, v_retval);
 | |
| 		if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) {
 | |
| 			dev_err(dev, "Number of invalid messages exceeded for VF %d\n",
 | |
| 				vf->vf_id);
 | |
| 			dev_err(dev, "Use PF Control I/F to enable the VF\n");
 | |
| 			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	} else {
 | |
| 		vf->num_valid_msgs++;
 | |
| 		/* reset the invalid counter, if a valid message is received. */
 | |
| 		vf->num_inval_msgs = 0;
 | |
| 	}
 | |
| 
 | |
| 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
 | |
| 				       msg, msglen, NULL);
 | |
| 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
 | |
| 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %d\n",
 | |
| 			 vf->vf_id, aq_ret, pf->hw.mailboxq.sq_last_status);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_get_ver_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * called from the VF to request the API version used by the PF
 | |
|  */
 | |
| static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	struct virtchnl_version_info info = {
 | |
| 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
 | |
| 	};
 | |
| 
 | |
| 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
 | |
| 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
 | |
| 	if (VF_IS_V10(&vf->vf_ver))
 | |
| 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
 | |
| 
 | |
| 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
 | |
| 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
 | |
| 				     sizeof(struct virtchnl_version_info));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_get_vf_res_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * called from the VF to request its resources
 | |
|  */
 | |
| static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct virtchnl_vf_resource *vfres = NULL;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 	int len = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (ice_check_vf_init(pf, vf)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	len = sizeof(struct virtchnl_vf_resource);
 | |
| 
 | |
| 	vfres = kzalloc(len, GFP_KERNEL);
 | |
| 	if (!vfres) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
 | |
| 		len = 0;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	if (VF_IS_V11(&vf->vf_ver))
 | |
| 		vf->driver_caps = *(u32 *)msg;
 | |
| 	else
 | |
| 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
 | |
| 				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
 | |
| 				  VIRTCHNL_VF_OFFLOAD_VLAN;
 | |
| 
 | |
| 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (!vsi->info.pvid)
 | |
| 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
 | |
| 
 | |
| 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
 | |
| 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
 | |
| 	} else {
 | |
| 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
 | |
| 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
 | |
| 		else
 | |
| 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
 | |
| 	}
 | |
| 
 | |
| 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
 | |
| 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
 | |
| 
 | |
| 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
 | |
| 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
 | |
| 
 | |
| 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
 | |
| 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
 | |
| 
 | |
| 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
 | |
| 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
 | |
| 
 | |
| 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
 | |
| 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
 | |
| 
 | |
| 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
 | |
| 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
 | |
| 
 | |
| 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
 | |
| 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
 | |
| 
 | |
| 	vfres->num_vsis = 1;
 | |
| 	/* Tx and Rx queue are equal for VF */
 | |
| 	vfres->num_queue_pairs = vsi->num_txq;
 | |
| 	vfres->max_vectors = pf->num_vf_msix;
 | |
| 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
 | |
| 	vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 | |
| 
 | |
| 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
 | |
| 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
 | |
| 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
 | |
| 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
 | |
| 			vf->dflt_lan_addr.addr);
 | |
| 
 | |
| 	/* match guest capabilities */
 | |
| 	vf->driver_caps = vfres->vf_cap_flags;
 | |
| 
 | |
| 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
 | |
| 
 | |
| err:
 | |
| 	/* send the response back to the VF */
 | |
| 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
 | |
| 				    (u8 *)vfres, len);
 | |
| 
 | |
| 	kfree(vfres);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_reset_vf_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  *
 | |
|  * called from the VF to reset itself,
 | |
|  * unlike other virtchnl messages, PF driver
 | |
|  * doesn't send the response back to the VF
 | |
|  */
 | |
| static void ice_vc_reset_vf_msg(struct ice_vf *vf)
 | |
| {
 | |
| 	if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
 | |
| 		ice_reset_vf(vf, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_find_vsi_from_id
 | |
|  * @pf: the PF structure to search for the VSI
 | |
|  * @id: ID of the VSI it is searching for
 | |
|  *
 | |
|  * searches for the VSI with the given ID
 | |
|  */
 | |
| static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	ice_for_each_vsi(pf, i)
 | |
| 		if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
 | |
| 			return pf->vsi[i];
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_isvalid_vsi_id
 | |
|  * @vf: pointer to the VF info
 | |
|  * @vsi_id: VF relative VSI ID
 | |
|  *
 | |
|  * check for the valid VSI ID
 | |
|  */
 | |
| static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
 | |
| {
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 
 | |
| 	vsi = ice_find_vsi_from_id(pf, vsi_id);
 | |
| 
 | |
| 	return (vsi && (vsi->vf_id == vf->vf_id));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_isvalid_q_id
 | |
|  * @vf: pointer to the VF info
 | |
|  * @vsi_id: VSI ID
 | |
|  * @qid: VSI relative queue ID
 | |
|  *
 | |
|  * check for the valid queue ID
 | |
|  */
 | |
| static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
 | |
| {
 | |
| 	struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
 | |
| 	/* allocated Tx and Rx queues should be always equal for VF VSI */
 | |
| 	return (vsi && (qid < vsi->alloc_txq));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_isvalid_ring_len
 | |
|  * @ring_len: length of ring
 | |
|  *
 | |
|  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
 | |
|  * or zero
 | |
|  */
 | |
| static bool ice_vc_isvalid_ring_len(u16 ring_len)
 | |
| {
 | |
| 	return ring_len == 0 ||
 | |
| 	       (ring_len >= ICE_MIN_NUM_DESC &&
 | |
| 		ring_len <= ICE_MAX_NUM_DESC &&
 | |
| 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_config_rss_key
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * Configure the VF's RSS key
 | |
|  */
 | |
| static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct virtchnl_rss_key *vrk =
 | |
| 		(struct virtchnl_rss_key *)msg;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (ice_set_rss(vsi, vrk->key, NULL, 0))
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
 | |
| error_param:
 | |
| 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
 | |
| 				     NULL, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_config_rss_lut
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * Configure the VF's RSS LUT
 | |
|  */
 | |
| static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
 | |
| error_param:
 | |
| 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
 | |
| 				     NULL, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_set_vf_spoofchk
 | |
|  * @netdev: network interface device structure
 | |
|  * @vf_id: VF identifier
 | |
|  * @ena: flag to enable or disable feature
 | |
|  *
 | |
|  * Enable or disable VF spoof checking
 | |
|  */
 | |
| int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
 | |
| {
 | |
| 	struct ice_netdev_priv *np = netdev_priv(netdev);
 | |
| 	struct ice_pf *pf = np->vsi->back;
 | |
| 	struct ice_vsi_ctx *ctx;
 | |
| 	struct ice_vsi *vf_vsi;
 | |
| 	enum ice_status status;
 | |
| 	struct device *dev;
 | |
| 	struct ice_vf *vf;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	dev = ice_pf_to_dev(pf);
 | |
| 	if (ice_validate_vf_id(pf, vf_id))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vf = &pf->vf[vf_id];
 | |
| 
 | |
| 	if (ice_check_vf_init(pf, vf))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	vf_vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vf_vsi) {
 | |
| 		netdev_err(netdev, "VSI %d for VF %d is null\n",
 | |
| 			   vf->lan_vsi_idx, vf->vf_id);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (vf_vsi->type != ICE_VSI_VF) {
 | |
| 		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
 | |
| 			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (ena == vf->spoofchk) {
 | |
| 		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctx->info.sec_flags = vf_vsi->info.sec_flags;
 | |
| 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
 | |
| 	if (ena) {
 | |
| 		ctx->info.sec_flags |=
 | |
| 			ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
 | |
| 			(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
 | |
| 			 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
 | |
| 	} else {
 | |
| 		ctx->info.sec_flags &=
 | |
| 			~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
 | |
| 			  (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
 | |
| 			   ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
 | |
| 	}
 | |
| 
 | |
| 	status = ice_update_vsi(&pf->hw, vf_vsi->idx, ctx, NULL);
 | |
| 	if (status) {
 | |
| 		dev_err(dev, "Failed to %sable spoofchk on VF %d VSI %d\n error %d",
 | |
| 			ena ? "en" : "dis", vf->vf_id, vf_vsi->vsi_num, status);
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* only update spoofchk state and VSI context on success */
 | |
| 	vf_vsi->info.sec_flags = ctx->info.sec_flags;
 | |
| 	vf->spoofchk = ena;
 | |
| 
 | |
| out:
 | |
| 	kfree(ctx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_get_stats_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * called from the VF to get VSI stats
 | |
|  */
 | |
| static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct virtchnl_queue_select *vqs =
 | |
| 		(struct virtchnl_queue_select *)msg;
 | |
| 	struct ice_eth_stats stats = { 0 };
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	ice_update_eth_stats(vsi);
 | |
| 
 | |
| 	stats = vsi->eth_stats;
 | |
| 
 | |
| error_param:
 | |
| 	/* send the response to the VF */
 | |
| 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
 | |
| 				     (u8 *)&stats, sizeof(stats));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_ena_qs_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * called from the VF to enable all or specific queue(s)
 | |
|  */
 | |
| static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct virtchnl_queue_select *vqs =
 | |
| 	    (struct virtchnl_queue_select *)msg;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 	unsigned long q_map;
 | |
| 	u16 vf_q_id;
 | |
| 
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!vqs->rx_queues && !vqs->tx_queues) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (vqs->rx_queues > ICE_MAX_BASE_QS_PER_VF ||
 | |
| 	    vqs->tx_queues > ICE_MAX_BASE_QS_PER_VF) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
 | |
| 	 * Tx queue group list was configured and the context bits were
 | |
| 	 * programmed using ice_vsi_cfg_txqs
 | |
| 	 */
 | |
| 	q_map = vqs->rx_queues;
 | |
| 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
 | |
| 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
 | |
| 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 			goto error_param;
 | |
| 		}
 | |
| 
 | |
| 		/* Skip queue if enabled */
 | |
| 		if (test_bit(vf_q_id, vf->rxq_ena))
 | |
| 			continue;
 | |
| 
 | |
| 		if (ice_vsi_ctrl_rx_ring(vsi, true, vf_q_id)) {
 | |
| 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
 | |
| 				vf_q_id, vsi->vsi_num);
 | |
| 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 			goto error_param;
 | |
| 		}
 | |
| 
 | |
| 		set_bit(vf_q_id, vf->rxq_ena);
 | |
| 		vf->num_qs_ena++;
 | |
| 	}
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	q_map = vqs->tx_queues;
 | |
| 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
 | |
| 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
 | |
| 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 			goto error_param;
 | |
| 		}
 | |
| 
 | |
| 		/* Skip queue if enabled */
 | |
| 		if (test_bit(vf_q_id, vf->txq_ena))
 | |
| 			continue;
 | |
| 
 | |
| 		set_bit(vf_q_id, vf->txq_ena);
 | |
| 		vf->num_qs_ena++;
 | |
| 	}
 | |
| 
 | |
| 	/* Set flag to indicate that queues are enabled */
 | |
| 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
 | |
| 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
 | |
| 
 | |
| error_param:
 | |
| 	/* send the response to the VF */
 | |
| 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
 | |
| 				     NULL, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_dis_qs_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * called from the VF to disable all or specific
 | |
|  * queue(s)
 | |
|  */
 | |
| static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct virtchnl_queue_select *vqs =
 | |
| 	    (struct virtchnl_queue_select *)msg;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 	unsigned long q_map;
 | |
| 	u16 vf_q_id;
 | |
| 
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
 | |
| 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!vqs->rx_queues && !vqs->tx_queues) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (vqs->rx_queues > ICE_MAX_BASE_QS_PER_VF ||
 | |
| 	    vqs->tx_queues > ICE_MAX_BASE_QS_PER_VF) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (vqs->tx_queues) {
 | |
| 		q_map = vqs->tx_queues;
 | |
| 
 | |
| 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
 | |
| 			struct ice_ring *ring = vsi->tx_rings[vf_q_id];
 | |
| 			struct ice_txq_meta txq_meta = { 0 };
 | |
| 
 | |
| 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
 | |
| 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 				goto error_param;
 | |
| 			}
 | |
| 
 | |
| 			/* Skip queue if not enabled */
 | |
| 			if (!test_bit(vf_q_id, vf->txq_ena))
 | |
| 				continue;
 | |
| 
 | |
| 			ice_fill_txq_meta(vsi, ring, &txq_meta);
 | |
| 
 | |
| 			if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id,
 | |
| 						 ring, &txq_meta)) {
 | |
| 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
 | |
| 					vf_q_id, vsi->vsi_num);
 | |
| 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 				goto error_param;
 | |
| 			}
 | |
| 
 | |
| 			/* Clear enabled queues flag */
 | |
| 			clear_bit(vf_q_id, vf->txq_ena);
 | |
| 			vf->num_qs_ena--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (vqs->rx_queues) {
 | |
| 		q_map = vqs->rx_queues;
 | |
| 
 | |
| 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) {
 | |
| 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
 | |
| 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 				goto error_param;
 | |
| 			}
 | |
| 
 | |
| 			/* Skip queue if not enabled */
 | |
| 			if (!test_bit(vf_q_id, vf->rxq_ena))
 | |
| 				continue;
 | |
| 
 | |
| 			if (ice_vsi_ctrl_rx_ring(vsi, false, vf_q_id)) {
 | |
| 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
 | |
| 					vf_q_id, vsi->vsi_num);
 | |
| 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 				goto error_param;
 | |
| 			}
 | |
| 
 | |
| 			/* Clear enabled queues flag */
 | |
| 			clear_bit(vf_q_id, vf->rxq_ena);
 | |
| 			vf->num_qs_ena--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Clear enabled queues flag */
 | |
| 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && !vf->num_qs_ena)
 | |
| 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
 | |
| 
 | |
| error_param:
 | |
| 	/* send the response to the VF */
 | |
| 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
 | |
| 				     NULL, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_cfg_irq_map_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * called from the VF to configure the IRQ to queue map
 | |
|  */
 | |
| static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct virtchnl_irq_map_info *irqmap_info;
 | |
| 	u16 vsi_id, vsi_q_id, vector_id;
 | |
| 	struct virtchnl_vector_map *map;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	u16 num_q_vectors_mapped;
 | |
| 	struct ice_vsi *vsi;
 | |
| 	unsigned long qmap;
 | |
| 	int i;
 | |
| 
 | |
| 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
 | |
| 	num_q_vectors_mapped = irqmap_info->num_vectors;
 | |
| 
 | |
| 	/* Check to make sure number of VF vectors mapped is not greater than
 | |
| 	 * number of VF vectors originally allocated, and check that
 | |
| 	 * there is actually at least a single VF queue vector mapped
 | |
| 	 */
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
 | |
| 	    pf->num_vf_msix < num_q_vectors_mapped ||
 | |
| 	    !irqmap_info->num_vectors) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_q_vectors_mapped; i++) {
 | |
| 		struct ice_q_vector *q_vector;
 | |
| 
 | |
| 		map = &irqmap_info->vecmap[i];
 | |
| 
 | |
| 		vector_id = map->vector_id;
 | |
| 		vsi_id = map->vsi_id;
 | |
| 		/* vector_id is always 0-based for each VF, and can never be
 | |
| 		 * larger than or equal to the max allowed interrupts per VF
 | |
| 		 */
 | |
| 		if (!(vector_id < ICE_MAX_INTR_PER_VF) ||
 | |
| 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
 | |
| 		    (!vector_id && (map->rxq_map || map->txq_map))) {
 | |
| 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 			goto error_param;
 | |
| 		}
 | |
| 
 | |
| 		/* No need to map VF miscellaneous or rogue vector */
 | |
| 		if (!vector_id)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Subtract non queue vector from vector_id passed by VF
 | |
| 		 * to get actual number of VSI queue vector array index
 | |
| 		 */
 | |
| 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
 | |
| 		if (!q_vector) {
 | |
| 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 			goto error_param;
 | |
| 		}
 | |
| 
 | |
| 		/* lookout for the invalid queue index */
 | |
| 		qmap = map->rxq_map;
 | |
| 		q_vector->num_ring_rx = 0;
 | |
| 		for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) {
 | |
| 			if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) {
 | |
| 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 				goto error_param;
 | |
| 			}
 | |
| 			q_vector->num_ring_rx++;
 | |
| 			q_vector->rx.itr_idx = map->rxitr_idx;
 | |
| 			vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
 | |
| 			ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
 | |
| 					      q_vector->rx.itr_idx);
 | |
| 		}
 | |
| 
 | |
| 		qmap = map->txq_map;
 | |
| 		q_vector->num_ring_tx = 0;
 | |
| 		for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) {
 | |
| 			if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) {
 | |
| 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 				goto error_param;
 | |
| 			}
 | |
| 			q_vector->num_ring_tx++;
 | |
| 			q_vector->tx.itr_idx = map->txitr_idx;
 | |
| 			vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
 | |
| 			ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
 | |
| 					      q_vector->tx.itr_idx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| error_param:
 | |
| 	/* send the response to the VF */
 | |
| 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
 | |
| 				     NULL, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_cfg_qs_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * called from the VF to configure the Rx/Tx queues
 | |
|  */
 | |
| static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct virtchnl_vsi_queue_config_info *qci =
 | |
| 	    (struct virtchnl_vsi_queue_config_info *)msg;
 | |
| 	struct virtchnl_queue_pair_info *qpi;
 | |
| 	u16 num_rxq = 0, num_txq = 0;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (qci->num_queue_pairs > ICE_MAX_BASE_QS_PER_VF ||
 | |
| 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
 | |
| 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
 | |
| 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < qci->num_queue_pairs; i++) {
 | |
| 		qpi = &qci->qpair[i];
 | |
| 		if (qpi->txq.vsi_id != qci->vsi_id ||
 | |
| 		    qpi->rxq.vsi_id != qci->vsi_id ||
 | |
| 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
 | |
| 		    qpi->txq.headwb_enabled ||
 | |
| 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
 | |
| 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
 | |
| 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
 | |
| 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 			goto error_param;
 | |
| 		}
 | |
| 		/* copy Tx queue info from VF into VSI */
 | |
| 		if (qpi->txq.ring_len > 0) {
 | |
| 			num_txq++;
 | |
| 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
 | |
| 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
 | |
| 		}
 | |
| 
 | |
| 		/* copy Rx queue info from VF into VSI */
 | |
| 		if (qpi->rxq.ring_len > 0) {
 | |
| 			num_rxq++;
 | |
| 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
 | |
| 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
 | |
| 
 | |
| 			if (qpi->rxq.databuffer_size != 0 &&
 | |
| 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
 | |
| 			     qpi->rxq.databuffer_size < 1024)) {
 | |
| 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 				goto error_param;
 | |
| 			}
 | |
| 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
 | |
| 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
 | |
| 			if (qpi->rxq.max_pkt_size >= (16 * 1024) ||
 | |
| 			    qpi->rxq.max_pkt_size < 64) {
 | |
| 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 				goto error_param;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		vsi->max_frame = qpi->rxq.max_pkt_size;
 | |
| 	}
 | |
| 
 | |
| 	/* VF can request to configure less than allocated queues
 | |
| 	 * or default allocated queues. So update the VSI with new number
 | |
| 	 */
 | |
| 	vsi->num_txq = num_txq;
 | |
| 	vsi->num_rxq = num_rxq;
 | |
| 	/* All queues of VF VSI are in TC 0 */
 | |
| 	vsi->tc_cfg.tc_info[0].qcount_tx = num_txq;
 | |
| 	vsi->tc_cfg.tc_info[0].qcount_rx = num_rxq;
 | |
| 
 | |
| 	if (ice_vsi_cfg_lan_txqs(vsi) || ice_vsi_cfg_rxqs(vsi))
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
 | |
| 
 | |
| error_param:
 | |
| 	/* send the response to the VF */
 | |
| 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
 | |
| 				     NULL, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_is_vf_trusted
 | |
|  * @vf: pointer to the VF info
 | |
|  */
 | |
| static bool ice_is_vf_trusted(struct ice_vf *vf)
 | |
| {
 | |
| 	return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_can_vf_change_mac
 | |
|  * @vf: pointer to the VF info
 | |
|  *
 | |
|  * Return true if the VF is allowed to change its MAC filters, false otherwise
 | |
|  */
 | |
| static bool ice_can_vf_change_mac(struct ice_vf *vf)
 | |
| {
 | |
| 	/* If the VF MAC address has been set administratively (via the
 | |
| 	 * ndo_set_vf_mac command), then deny permission to the VF to
 | |
| 	 * add/delete unicast MAC addresses, unless the VF is trusted
 | |
| 	 */
 | |
| 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
 | |
|  * @vf: pointer to the VF info
 | |
|  * @vsi: pointer to the VF's VSI
 | |
|  * @mac_addr: MAC address to add
 | |
|  */
 | |
| static int
 | |
| ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
 | |
| {
 | |
| 	struct device *dev = ice_pf_to_dev(vf->pf);
 | |
| 	enum ice_status status;
 | |
| 
 | |
| 	/* default unicast MAC already added */
 | |
| 	if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
 | |
| 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	status = ice_vsi_cfg_mac_fltr(vsi, mac_addr, true);
 | |
| 	if (status == ICE_ERR_ALREADY_EXISTS) {
 | |
| 		dev_err(dev, "MAC %pM already exists for VF %d\n", mac_addr,
 | |
| 			vf->vf_id);
 | |
| 		return -EEXIST;
 | |
| 	} else if (status) {
 | |
| 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
 | |
| 			mac_addr, vf->vf_id, status);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* only set dflt_lan_addr once */
 | |
| 	if (is_zero_ether_addr(vf->dflt_lan_addr.addr) &&
 | |
| 	    is_unicast_ether_addr(mac_addr))
 | |
| 		ether_addr_copy(vf->dflt_lan_addr.addr, mac_addr);
 | |
| 
 | |
| 	vf->num_mac++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
 | |
|  * @vf: pointer to the VF info
 | |
|  * @vsi: pointer to the VF's VSI
 | |
|  * @mac_addr: MAC address to delete
 | |
|  */
 | |
| static int
 | |
| ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
 | |
| {
 | |
| 	struct device *dev = ice_pf_to_dev(vf->pf);
 | |
| 	enum ice_status status;
 | |
| 
 | |
| 	if (!ice_can_vf_change_mac(vf) &&
 | |
| 	    ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
 | |
| 		return 0;
 | |
| 
 | |
| 	status = ice_vsi_cfg_mac_fltr(vsi, mac_addr, false);
 | |
| 	if (status == ICE_ERR_DOES_NOT_EXIST) {
 | |
| 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
 | |
| 			vf->vf_id);
 | |
| 		return -ENOENT;
 | |
| 	} else if (status) {
 | |
| 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
 | |
| 			mac_addr, vf->vf_id, status);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
 | |
| 		eth_zero_addr(vf->dflt_lan_addr.addr);
 | |
| 
 | |
| 	vf->num_mac--;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_handle_mac_addr_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  * @set: true if MAC filters are being set, false otherwise
 | |
|  *
 | |
|  * add guest MAC address filter
 | |
|  */
 | |
| static int
 | |
| ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
 | |
| {
 | |
| 	int (*ice_vc_cfg_mac)
 | |
| 		(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr);
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct virtchnl_ether_addr_list *al =
 | |
| 	    (struct virtchnl_ether_addr_list *)msg;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	enum virtchnl_ops vc_op;
 | |
| 	struct ice_vsi *vsi;
 | |
| 	int i;
 | |
| 
 | |
| 	if (set) {
 | |
| 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
 | |
| 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
 | |
| 	} else {
 | |
| 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
 | |
| 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
 | |
| 	}
 | |
| 
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
 | |
| 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto handle_mac_exit;
 | |
| 	}
 | |
| 
 | |
| 	/* If this VF is not privileged, then we can't add more than a
 | |
| 	 * limited number of addresses. Check to make sure that the
 | |
| 	 * additions do not push us over the limit.
 | |
| 	 */
 | |
| 	if (set && !ice_is_vf_trusted(vf) &&
 | |
| 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
 | |
| 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
 | |
| 			vf->vf_id);
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto handle_mac_exit;
 | |
| 	}
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto handle_mac_exit;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < al->num_elements; i++) {
 | |
| 		u8 *mac_addr = al->list[i].addr;
 | |
| 		int result;
 | |
| 
 | |
| 		if (is_broadcast_ether_addr(mac_addr) ||
 | |
| 		    is_zero_ether_addr(mac_addr))
 | |
| 			continue;
 | |
| 
 | |
| 		result = ice_vc_cfg_mac(vf, vsi, mac_addr);
 | |
| 		if (result == -EEXIST || result == -ENOENT) {
 | |
| 			continue;
 | |
| 		} else if (result) {
 | |
| 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
 | |
| 			goto handle_mac_exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| handle_mac_exit:
 | |
| 	/* send the response to the VF */
 | |
| 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_add_mac_addr_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * add guest MAC address filter
 | |
|  */
 | |
| static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_del_mac_addr_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * remove guest MAC address filter
 | |
|  */
 | |
| static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_request_qs_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * VFs get a default number of queues but can use this message to request a
 | |
|  * different number. If the request is successful, PF will reset the VF and
 | |
|  * return 0. If unsuccessful, PF will send message informing VF of number of
 | |
|  * available queue pairs via virtchnl message response to VF.
 | |
|  */
 | |
| static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct virtchnl_vf_res_request *vfres =
 | |
| 		(struct virtchnl_vf_res_request *)msg;
 | |
| 	u16 req_queues = vfres->num_queue_pairs;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	u16 max_allowed_vf_queues;
 | |
| 	u16 tx_rx_queue_left;
 | |
| 	struct device *dev;
 | |
| 	u16 cur_queues;
 | |
| 
 | |
| 	dev = ice_pf_to_dev(pf);
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	cur_queues = vf->num_vf_qs;
 | |
| 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
 | |
| 				 ice_get_avail_rxq_count(pf));
 | |
| 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
 | |
| 	if (!req_queues) {
 | |
| 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
 | |
| 			vf->vf_id);
 | |
| 	} else if (req_queues > ICE_MAX_BASE_QS_PER_VF) {
 | |
| 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
 | |
| 			vf->vf_id, ICE_MAX_BASE_QS_PER_VF);
 | |
| 		vfres->num_queue_pairs = ICE_MAX_BASE_QS_PER_VF;
 | |
| 	} else if (req_queues > cur_queues &&
 | |
| 		   req_queues - cur_queues > tx_rx_queue_left) {
 | |
| 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
 | |
| 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
 | |
| 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
 | |
| 					       ICE_MAX_BASE_QS_PER_VF);
 | |
| 	} else {
 | |
| 		/* request is successful, then reset VF */
 | |
| 		vf->num_req_qs = req_queues;
 | |
| 		ice_vc_reset_vf(vf);
 | |
| 		dev_info(dev, "VF %d granted request of %u queues.\n",
 | |
| 			 vf->vf_id, req_queues);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| error_param:
 | |
| 	/* send the response to the VF */
 | |
| 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
 | |
| 				     v_ret, (u8 *)vfres, sizeof(*vfres));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_set_vf_port_vlan
 | |
|  * @netdev: network interface device structure
 | |
|  * @vf_id: VF identifier
 | |
|  * @vlan_id: VLAN ID being set
 | |
|  * @qos: priority setting
 | |
|  * @vlan_proto: VLAN protocol
 | |
|  *
 | |
|  * program VF Port VLAN ID and/or QoS
 | |
|  */
 | |
| int
 | |
| ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
 | |
| 		     __be16 vlan_proto)
 | |
| {
 | |
| 	u16 vlanprio = vlan_id | (qos << ICE_VLAN_PRIORITY_S);
 | |
| 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
 | |
| 	struct ice_vsi *vsi;
 | |
| 	struct device *dev;
 | |
| 	struct ice_vf *vf;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	dev = ice_pf_to_dev(pf);
 | |
| 	if (ice_validate_vf_id(pf, vf_id))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vlan_id > ICE_MAX_VLANID || qos > 7) {
 | |
| 		dev_err(dev, "Invalid VF Parameters\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (vlan_proto != htons(ETH_P_8021Q)) {
 | |
| 		dev_err(dev, "VF VLAN protocol is not supported\n");
 | |
| 		return -EPROTONOSUPPORT;
 | |
| 	}
 | |
| 
 | |
| 	vf = &pf->vf[vf_id];
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (ice_check_vf_init(pf, vf))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (le16_to_cpu(vsi->info.pvid) == vlanprio) {
 | |
| 		/* duplicate request, so just return success */
 | |
| 		dev_dbg(dev, "Duplicate pvid %d request\n", vlanprio);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* If PVID, then remove all filters on the old VLAN */
 | |
| 	if (vsi->info.pvid)
 | |
| 		ice_vsi_kill_vlan(vsi, (le16_to_cpu(vsi->info.pvid) &
 | |
| 				  VLAN_VID_MASK));
 | |
| 
 | |
| 	if (vlan_id || qos) {
 | |
| 		ret = ice_vsi_manage_pvid(vsi, vlanprio, true);
 | |
| 		if (ret)
 | |
| 			goto error_manage_pvid;
 | |
| 	} else {
 | |
| 		ret = ice_vsi_manage_pvid(vsi, 0, false);
 | |
| 		if (ret)
 | |
| 			goto error_manage_pvid;
 | |
| 	}
 | |
| 
 | |
| 	if (vlan_id) {
 | |
| 		dev_info(dev, "Setting VLAN %d, QoS 0x%x on VF %d\n",
 | |
| 			 vlan_id, qos, vf_id);
 | |
| 
 | |
| 		/* add new VLAN filter for each MAC */
 | |
| 		ret = ice_vsi_add_vlan(vsi, vlan_id);
 | |
| 		if (ret)
 | |
| 			goto error_manage_pvid;
 | |
| 	}
 | |
| 
 | |
| 	/* The Port VLAN needs to be saved across resets the same as the
 | |
| 	 * default LAN MAC address.
 | |
| 	 */
 | |
| 	vf->port_vlan_info = le16_to_cpu(vsi->info.pvid);
 | |
| 
 | |
| error_manage_pvid:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
 | |
|  * @caps: VF driver negotiated capabilities
 | |
|  *
 | |
|  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
 | |
|  */
 | |
| static bool ice_vf_vlan_offload_ena(u32 caps)
 | |
| {
 | |
| 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_process_vlan_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  * @add_v: Add VLAN if true, otherwise delete VLAN
 | |
|  *
 | |
|  * Process virtchnl op to add or remove programmed guest VLAN ID
 | |
|  */
 | |
| static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
 | |
| {
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct virtchnl_vlan_filter_list *vfl =
 | |
| 	    (struct virtchnl_vlan_filter_list *)msg;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	bool vlan_promisc = false;
 | |
| 	struct ice_vsi *vsi;
 | |
| 	struct device *dev;
 | |
| 	struct ice_hw *hw;
 | |
| 	int status = 0;
 | |
| 	u8 promisc_m;
 | |
| 	int i;
 | |
| 
 | |
| 	dev = ice_pf_to_dev(pf);
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < vfl->num_elements; i++) {
 | |
| 		if (vfl->vlan_id[i] > ICE_MAX_VLANID) {
 | |
| 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 			dev_err(dev, "invalid VF VLAN id %d\n",
 | |
| 				vfl->vlan_id[i]);
 | |
| 			goto error_param;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	hw = &pf->hw;
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (add_v && !ice_is_vf_trusted(vf) &&
 | |
| 	    vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
 | |
| 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
 | |
| 			 vf->vf_id);
 | |
| 		/* There is no need to let VF know about being not trusted,
 | |
| 		 * so we can just return success message here
 | |
| 		 */
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (vsi->info.pvid) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
 | |
| 	    test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
 | |
| 		vlan_promisc = true;
 | |
| 
 | |
| 	if (add_v) {
 | |
| 		for (i = 0; i < vfl->num_elements; i++) {
 | |
| 			u16 vid = vfl->vlan_id[i];
 | |
| 
 | |
| 			if (!ice_is_vf_trusted(vf) &&
 | |
| 			    vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
 | |
| 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
 | |
| 					 vf->vf_id);
 | |
| 				/* There is no need to let VF know about being
 | |
| 				 * not trusted, so we can just return success
 | |
| 				 * message here as well.
 | |
| 				 */
 | |
| 				goto error_param;
 | |
| 			}
 | |
| 
 | |
| 			/* we add VLAN 0 by default for each VF so we can enable
 | |
| 			 * Tx VLAN anti-spoof without triggering MDD events so
 | |
| 			 * we don't need to add it again here
 | |
| 			 */
 | |
| 			if (!vid)
 | |
| 				continue;
 | |
| 
 | |
| 			status = ice_vsi_add_vlan(vsi, vid);
 | |
| 			if (status) {
 | |
| 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 				goto error_param;
 | |
| 			}
 | |
| 
 | |
| 			/* Enable VLAN pruning when non-zero VLAN is added */
 | |
| 			if (!vlan_promisc && vid &&
 | |
| 			    !ice_vsi_is_vlan_pruning_ena(vsi)) {
 | |
| 				status = ice_cfg_vlan_pruning(vsi, true, false);
 | |
| 				if (status) {
 | |
| 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
 | |
| 						vid, status);
 | |
| 					goto error_param;
 | |
| 				}
 | |
| 			} else if (vlan_promisc) {
 | |
| 				/* Enable Ucast/Mcast VLAN promiscuous mode */
 | |
| 				promisc_m = ICE_PROMISC_VLAN_TX |
 | |
| 					    ICE_PROMISC_VLAN_RX;
 | |
| 
 | |
| 				status = ice_set_vsi_promisc(hw, vsi->idx,
 | |
| 							     promisc_m, vid);
 | |
| 				if (status) {
 | |
| 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
 | |
| 						vid, status);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* In case of non_trusted VF, number of VLAN elements passed
 | |
| 		 * to PF for removal might be greater than number of VLANs
 | |
| 		 * filter programmed for that VF - So, use actual number of
 | |
| 		 * VLANS added earlier with add VLAN opcode. In order to avoid
 | |
| 		 * removing VLAN that doesn't exist, which result to sending
 | |
| 		 * erroneous failed message back to the VF
 | |
| 		 */
 | |
| 		int num_vf_vlan;
 | |
| 
 | |
| 		num_vf_vlan = vsi->num_vlan;
 | |
| 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
 | |
| 			u16 vid = vfl->vlan_id[i];
 | |
| 
 | |
| 			/* we add VLAN 0 by default for each VF so we can enable
 | |
| 			 * Tx VLAN anti-spoof without triggering MDD events so
 | |
| 			 * we don't want a VIRTCHNL request to remove it
 | |
| 			 */
 | |
| 			if (!vid)
 | |
| 				continue;
 | |
| 
 | |
| 			/* Make sure ice_vsi_kill_vlan is successful before
 | |
| 			 * updating VLAN information
 | |
| 			 */
 | |
| 			status = ice_vsi_kill_vlan(vsi, vid);
 | |
| 			if (status) {
 | |
| 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 				goto error_param;
 | |
| 			}
 | |
| 
 | |
| 			/* Disable VLAN pruning when only VLAN 0 is left */
 | |
| 			if (vsi->num_vlan == 1 &&
 | |
| 			    ice_vsi_is_vlan_pruning_ena(vsi))
 | |
| 				ice_cfg_vlan_pruning(vsi, false, false);
 | |
| 
 | |
| 			/* Disable Unicast/Multicast VLAN promiscuous mode */
 | |
| 			if (vlan_promisc) {
 | |
| 				promisc_m = ICE_PROMISC_VLAN_TX |
 | |
| 					    ICE_PROMISC_VLAN_RX;
 | |
| 
 | |
| 				ice_clear_vsi_promisc(hw, vsi->idx,
 | |
| 						      promisc_m, vid);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| error_param:
 | |
| 	/* send the response to the VF */
 | |
| 	if (add_v)
 | |
| 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
 | |
| 					     NULL, 0);
 | |
| 	else
 | |
| 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
 | |
| 					     NULL, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_add_vlan_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * Add and program guest VLAN ID
 | |
|  */
 | |
| static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	return ice_vc_process_vlan_msg(vf, msg, true);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_remove_vlan_msg
 | |
|  * @vf: pointer to the VF info
 | |
|  * @msg: pointer to the msg buffer
 | |
|  *
 | |
|  * remove programmed guest VLAN ID
 | |
|  */
 | |
| static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
 | |
| {
 | |
| 	return ice_vc_process_vlan_msg(vf, msg, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_ena_vlan_stripping
 | |
|  * @vf: pointer to the VF info
 | |
|  *
 | |
|  * Enable VLAN header stripping for a given VF
 | |
|  */
 | |
| static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
 | |
| {
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (ice_vsi_manage_vlan_stripping(vsi, true))
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 
 | |
| error_param:
 | |
| 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
 | |
| 				     v_ret, NULL, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_dis_vlan_stripping
 | |
|  * @vf: pointer to the VF info
 | |
|  *
 | |
|  * Disable VLAN header stripping for a given VF
 | |
|  */
 | |
| static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
 | |
| {
 | |
| 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
 | |
| 	struct ice_pf *pf = vf->pf;
 | |
| 	struct ice_vsi *vsi;
 | |
| 
 | |
| 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi) {
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 		goto error_param;
 | |
| 	}
 | |
| 
 | |
| 	if (ice_vsi_manage_vlan_stripping(vsi, false))
 | |
| 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
 | |
| 
 | |
| error_param:
 | |
| 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
 | |
| 				     v_ret, NULL, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
 | |
|  * @vf: VF to enable/disable VLAN stripping for on initialization
 | |
|  *
 | |
|  * If the VIRTCHNL_VF_OFFLOAD_VLAN flag is set enable VLAN stripping, else if
 | |
|  * the flag is cleared then we want to disable stripping. For example, the flag
 | |
|  * will be cleared when port VLANs are configured by the administrator before
 | |
|  * passing the VF to the guest or if the AVF driver doesn't support VLAN
 | |
|  * offloads.
 | |
|  */
 | |
| static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
 | |
| {
 | |
| 	struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
 | |
| 
 | |
| 	if (!vsi)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* don't modify stripping if port VLAN is configured */
 | |
| 	if (vsi->info.pvid)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ice_vf_vlan_offload_ena(vf->driver_caps))
 | |
| 		return ice_vsi_manage_vlan_stripping(vsi, true);
 | |
| 	else
 | |
| 		return ice_vsi_manage_vlan_stripping(vsi, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_vc_process_vf_msg - Process request from VF
 | |
|  * @pf: pointer to the PF structure
 | |
|  * @event: pointer to the AQ event
 | |
|  *
 | |
|  * called from the common asq/arq handler to
 | |
|  * process request from VF
 | |
|  */
 | |
| void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
 | |
| {
 | |
| 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
 | |
| 	s16 vf_id = le16_to_cpu(event->desc.retval);
 | |
| 	u16 msglen = event->msg_len;
 | |
| 	u8 *msg = event->msg_buf;
 | |
| 	struct ice_vf *vf = NULL;
 | |
| 	struct device *dev;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	dev = ice_pf_to_dev(pf);
 | |
| 	if (ice_validate_vf_id(pf, vf_id)) {
 | |
| 		err = -EINVAL;
 | |
| 		goto error_handler;
 | |
| 	}
 | |
| 
 | |
| 	vf = &pf->vf[vf_id];
 | |
| 
 | |
| 	/* Check if VF is disabled. */
 | |
| 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
 | |
| 		err = -EPERM;
 | |
| 		goto error_handler;
 | |
| 	}
 | |
| 
 | |
| 	/* Perform basic checks on the msg */
 | |
| 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
 | |
| 	if (err) {
 | |
| 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
 | |
| 			err = -EPERM;
 | |
| 		else
 | |
| 			err = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| error_handler:
 | |
| 	if (err) {
 | |
| 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
 | |
| 				      NULL, 0);
 | |
| 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
 | |
| 			vf_id, v_opcode, msglen, err);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (v_opcode) {
 | |
| 	case VIRTCHNL_OP_VERSION:
 | |
| 		err = ice_vc_get_ver_msg(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_GET_VF_RESOURCES:
 | |
| 		err = ice_vc_get_vf_res_msg(vf, msg);
 | |
| 		if (ice_vf_init_vlan_stripping(vf))
 | |
| 			dev_err(dev, "Failed to initialize VLAN stripping for VF %d\n",
 | |
| 				vf->vf_id);
 | |
| 		ice_vc_notify_vf_link_state(vf);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_RESET_VF:
 | |
| 		ice_vc_reset_vf_msg(vf);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_ADD_ETH_ADDR:
 | |
| 		err = ice_vc_add_mac_addr_msg(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_DEL_ETH_ADDR:
 | |
| 		err = ice_vc_del_mac_addr_msg(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
 | |
| 		err = ice_vc_cfg_qs_msg(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_ENABLE_QUEUES:
 | |
| 		err = ice_vc_ena_qs_msg(vf, msg);
 | |
| 		ice_vc_notify_vf_link_state(vf);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_DISABLE_QUEUES:
 | |
| 		err = ice_vc_dis_qs_msg(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_REQUEST_QUEUES:
 | |
| 		err = ice_vc_request_qs_msg(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
 | |
| 		err = ice_vc_cfg_irq_map_msg(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
 | |
| 		err = ice_vc_config_rss_key(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
 | |
| 		err = ice_vc_config_rss_lut(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_GET_STATS:
 | |
| 		err = ice_vc_get_stats_msg(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_ADD_VLAN:
 | |
| 		err = ice_vc_add_vlan_msg(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_DEL_VLAN:
 | |
| 		err = ice_vc_remove_vlan_msg(vf, msg);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
 | |
| 		err = ice_vc_ena_vlan_stripping(vf);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
 | |
| 		err = ice_vc_dis_vlan_stripping(vf);
 | |
| 		break;
 | |
| 	case VIRTCHNL_OP_UNKNOWN:
 | |
| 	default:
 | |
| 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
 | |
| 			vf_id);
 | |
| 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
 | |
| 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
 | |
| 					    NULL, 0);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (err) {
 | |
| 		/* Helper function cares less about error return values here
 | |
| 		 * as it is busy with pending work.
 | |
| 		 */
 | |
| 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
 | |
| 			 vf_id, v_opcode, err);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_vf_cfg
 | |
|  * @netdev: network interface device structure
 | |
|  * @vf_id: VF identifier
 | |
|  * @ivi: VF configuration structure
 | |
|  *
 | |
|  * return VF configuration
 | |
|  */
 | |
| int
 | |
| ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
 | |
| {
 | |
| 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
 | |
| 	struct ice_vsi *vsi;
 | |
| 	struct ice_vf *vf;
 | |
| 
 | |
| 	if (ice_validate_vf_id(pf, vf_id))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vf = &pf->vf[vf_id];
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 
 | |
| 	if (ice_check_vf_init(pf, vf))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	ivi->vf = vf_id;
 | |
| 	ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr);
 | |
| 
 | |
| 	/* VF configuration for VLAN and applicable QoS */
 | |
| 	ivi->vlan = le16_to_cpu(vsi->info.pvid) & ICE_VLAN_M;
 | |
| 	ivi->qos = (le16_to_cpu(vsi->info.pvid) & ICE_PRIORITY_M) >>
 | |
| 		    ICE_VLAN_PRIORITY_S;
 | |
| 
 | |
| 	ivi->trusted = vf->trusted;
 | |
| 	ivi->spoofchk = vf->spoofchk;
 | |
| 	if (!vf->link_forced)
 | |
| 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
 | |
| 	else if (vf->link_up)
 | |
| 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
 | |
| 	else
 | |
| 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
 | |
| 	ivi->max_tx_rate = vf->tx_rate;
 | |
| 	ivi->min_tx_rate = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_wait_on_vf_reset
 | |
|  * @vf: The VF being resseting
 | |
|  *
 | |
|  * Poll to make sure a given VF is ready after reset
 | |
|  */
 | |
| static void ice_wait_on_vf_reset(struct ice_vf *vf)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ICE_MAX_VF_RESET_WAIT; i++) {
 | |
| 		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
 | |
| 			break;
 | |
| 		msleep(20);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_set_vf_mac
 | |
|  * @netdev: network interface device structure
 | |
|  * @vf_id: VF identifier
 | |
|  * @mac: MAC address
 | |
|  *
 | |
|  * program VF MAC address
 | |
|  */
 | |
| int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
 | |
| {
 | |
| 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
 | |
| 	struct ice_vf *vf;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (ice_validate_vf_id(pf, vf_id))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vf = &pf->vf[vf_id];
 | |
| 	/* Don't set MAC on disabled VF */
 | |
| 	if (ice_is_vf_disabled(vf))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* In case VF is in reset mode, wait until it is completed. Depending
 | |
| 	 * on factors like queue disabling routine, this could take ~250ms
 | |
| 	 */
 | |
| 	ice_wait_on_vf_reset(vf);
 | |
| 
 | |
| 	if (ice_check_vf_init(pf, vf))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (is_zero_ether_addr(mac) || is_multicast_ether_addr(mac)) {
 | |
| 		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* copy MAC into dflt_lan_addr and trigger a VF reset. The reset
 | |
| 	 * flow will use the updated dflt_lan_addr and add a MAC filter
 | |
| 	 * using ice_add_mac. Also set pf_set_mac to indicate that the PF has
 | |
| 	 * set the MAC address for this VF.
 | |
| 	 */
 | |
| 	ether_addr_copy(vf->dflt_lan_addr.addr, mac);
 | |
| 	vf->pf_set_mac = true;
 | |
| 	netdev_info(netdev, "MAC on VF %d set to %pM. VF driver will be reinitialized\n",
 | |
| 		    vf_id, mac);
 | |
| 
 | |
| 	ice_vc_reset_vf(vf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_set_vf_trust
 | |
|  * @netdev: network interface device structure
 | |
|  * @vf_id: VF identifier
 | |
|  * @trusted: Boolean value to enable/disable trusted VF
 | |
|  *
 | |
|  * Enable or disable a given VF as trusted
 | |
|  */
 | |
| int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
 | |
| {
 | |
| 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
 | |
| 	struct ice_vf *vf;
 | |
| 
 | |
| 	if (ice_validate_vf_id(pf, vf_id))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vf = &pf->vf[vf_id];
 | |
| 	/* Don't set Trusted Mode on disabled VF */
 | |
| 	if (ice_is_vf_disabled(vf))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* In case VF is in reset mode, wait until it is completed. Depending
 | |
| 	 * on factors like queue disabling routine, this could take ~250ms
 | |
| 	 */
 | |
| 	ice_wait_on_vf_reset(vf);
 | |
| 
 | |
| 	if (ice_check_vf_init(pf, vf))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* Check if already trusted */
 | |
| 	if (trusted == vf->trusted)
 | |
| 		return 0;
 | |
| 
 | |
| 	vf->trusted = trusted;
 | |
| 	ice_vc_reset_vf(vf);
 | |
| 	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
 | |
| 		 vf_id, trusted ? "" : "un");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_set_vf_link_state
 | |
|  * @netdev: network interface device structure
 | |
|  * @vf_id: VF identifier
 | |
|  * @link_state: required link state
 | |
|  *
 | |
|  * Set VF's link state, irrespective of physical link state status
 | |
|  */
 | |
| int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
 | |
| {
 | |
| 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
 | |
| 	struct ice_vf *vf;
 | |
| 
 | |
| 	if (ice_validate_vf_id(pf, vf_id))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vf = &pf->vf[vf_id];
 | |
| 	if (ice_check_vf_init(pf, vf))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	switch (link_state) {
 | |
| 	case IFLA_VF_LINK_STATE_AUTO:
 | |
| 		vf->link_forced = false;
 | |
| 		break;
 | |
| 	case IFLA_VF_LINK_STATE_ENABLE:
 | |
| 		vf->link_forced = true;
 | |
| 		vf->link_up = true;
 | |
| 		break;
 | |
| 	case IFLA_VF_LINK_STATE_DISABLE:
 | |
| 		vf->link_forced = true;
 | |
| 		vf->link_up = false;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ice_vc_notify_vf_link_state(vf);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_vf_stats - populate some stats for the VF
 | |
|  * @netdev: the netdev of the PF
 | |
|  * @vf_id: the host OS identifier (0-255)
 | |
|  * @vf_stats: pointer to the OS memory to be initialized
 | |
|  */
 | |
| int ice_get_vf_stats(struct net_device *netdev, int vf_id,
 | |
| 		     struct ifla_vf_stats *vf_stats)
 | |
| {
 | |
| 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
 | |
| 	struct ice_eth_stats *stats;
 | |
| 	struct ice_vsi *vsi;
 | |
| 	struct ice_vf *vf;
 | |
| 
 | |
| 	if (ice_validate_vf_id(pf, vf_id))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vf = &pf->vf[vf_id];
 | |
| 
 | |
| 	if (ice_check_vf_init(pf, vf))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	vsi = pf->vsi[vf->lan_vsi_idx];
 | |
| 	if (!vsi)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ice_update_eth_stats(vsi);
 | |
| 	stats = &vsi->eth_stats;
 | |
| 
 | |
| 	memset(vf_stats, 0, sizeof(*vf_stats));
 | |
| 
 | |
| 	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
 | |
| 		stats->rx_multicast;
 | |
| 	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
 | |
| 		stats->tx_multicast;
 | |
| 	vf_stats->rx_bytes   = stats->rx_bytes;
 | |
| 	vf_stats->tx_bytes   = stats->tx_bytes;
 | |
| 	vf_stats->broadcast  = stats->rx_broadcast;
 | |
| 	vf_stats->multicast  = stats->rx_multicast;
 | |
| 	vf_stats->rx_dropped = stats->rx_discards;
 | |
| 	vf_stats->tx_dropped = stats->tx_discards;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |