linux/drivers/net/bnx2.c
Jeff Garzik 9b91cf9daa [netdrvr] use dev_xxx() printk helpers, rather than dev_printk(KERN_xxx, ...
Suggested by Jiri Slaby.

Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-07-05 13:42:57 -04:00

6031 lines
142 KiB
C

/* bnx2.c: Broadcom NX2 network driver.
*
* Copyright (c) 2004, 2005, 2006 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Written by: Michael Chan (mchan@broadcom.com)
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/dma-mapping.h>
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <linux/delay.h>
#include <asm/byteorder.h>
#include <asm/page.h>
#include <linux/time.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#ifdef NETIF_F_HW_VLAN_TX
#include <linux/if_vlan.h>
#define BCM_VLAN 1
#endif
#ifdef NETIF_F_TSO
#include <net/ip.h>
#include <net/tcp.h>
#include <net/checksum.h>
#define BCM_TSO 1
#endif
#include <linux/workqueue.h>
#include <linux/crc32.h>
#include <linux/prefetch.h>
#include <linux/cache.h>
#include <linux/zlib.h>
#include "bnx2.h"
#include "bnx2_fw.h"
#define DRV_MODULE_NAME "bnx2"
#define PFX DRV_MODULE_NAME ": "
#define DRV_MODULE_VERSION "1.4.43"
#define DRV_MODULE_RELDATE "June 28, 2006"
#define RUN_AT(x) (jiffies + (x))
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (5*HZ)
static const char version[] __devinitdata =
"Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
static int disable_msi = 0;
module_param(disable_msi, int, 0);
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
typedef enum {
BCM5706 = 0,
NC370T,
NC370I,
BCM5706S,
NC370F,
BCM5708,
BCM5708S,
} board_t;
/* indexed by board_t, above */
static const struct {
char *name;
} board_info[] __devinitdata = {
{ "Broadcom NetXtreme II BCM5706 1000Base-T" },
{ "HP NC370T Multifunction Gigabit Server Adapter" },
{ "HP NC370i Multifunction Gigabit Server Adapter" },
{ "Broadcom NetXtreme II BCM5706 1000Base-SX" },
{ "HP NC370F Multifunction Gigabit Server Adapter" },
{ "Broadcom NetXtreme II BCM5708 1000Base-T" },
{ "Broadcom NetXtreme II BCM5708 1000Base-SX" },
};
static struct pci_device_id bnx2_pci_tbl[] = {
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
{ 0, }
};
static struct flash_spec flash_table[] =
{
/* Slow EEPROM */
{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - slow"},
/* Expansion entry 0001 */
{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0001"},
/* Saifun SA25F010 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
"Non-buffered flash (128kB)"},
/* Saifun SA25F020 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
"Non-buffered flash (256kB)"},
/* Expansion entry 0100 */
{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0100"},
/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
"Entry 0101: ST M45PE10 (128kB non-bufferred)"},
/* Entry 0110: ST M45PE20 (non-buffered flash)*/
{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
"Entry 0110: ST M45PE20 (256kB non-bufferred)"},
/* Saifun SA25F005 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
"Non-buffered flash (64kB)"},
/* Fast EEPROM */
{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - fast"},
/* Expansion entry 1001 */
{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1001"},
/* Expansion entry 1010 */
{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1010"},
/* ATMEL AT45DB011B (buffered flash) */
{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
"Buffered flash (128kB)"},
/* Expansion entry 1100 */
{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1100"},
/* Expansion entry 1101 */
{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1101"},
/* Ateml Expansion entry 1110 */
{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1110 (Atmel)"},
/* ATMEL AT45DB021B (buffered flash) */
{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
"Buffered flash (256kB)"},
};
MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
static inline u32 bnx2_tx_avail(struct bnx2 *bp)
{
u32 diff = TX_RING_IDX(bp->tx_prod) - TX_RING_IDX(bp->tx_cons);
if (diff > MAX_TX_DESC_CNT)
diff = (diff & MAX_TX_DESC_CNT) - 1;
return (bp->tx_ring_size - diff);
}
static u32
bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
{
REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW));
}
static void
bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
{
REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
}
static void
bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
{
offset += cid_addr;
REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
REG_WR(bp, BNX2_CTX_DATA, val);
}
static int
bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
{
u32 val1;
int i, ret;
if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
val1 = (bp->phy_addr << 21) | (reg << 16) |
BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
BNX2_EMAC_MDIO_COMM_START_BUSY;
REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
for (i = 0; i < 50; i++) {
udelay(10);
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
udelay(5);
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
val1 &= BNX2_EMAC_MDIO_COMM_DATA;
break;
}
}
if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
*val = 0x0;
ret = -EBUSY;
}
else {
*val = val1;
ret = 0;
}
if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
return ret;
}
static int
bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
{
u32 val1;
int i, ret;
if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
val1 = (bp->phy_addr << 21) | (reg << 16) | val |
BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
for (i = 0; i < 50; i++) {
udelay(10);
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
udelay(5);
break;
}
}
if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
ret = -EBUSY;
else
ret = 0;
if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
return ret;
}
static void
bnx2_disable_int(struct bnx2 *bp)
{
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
}
static void
bnx2_enable_int(struct bnx2 *bp)
{
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
}
static void
bnx2_disable_int_sync(struct bnx2 *bp)
{
atomic_inc(&bp->intr_sem);
bnx2_disable_int(bp);
synchronize_irq(bp->pdev->irq);
}
static void
bnx2_netif_stop(struct bnx2 *bp)
{
bnx2_disable_int_sync(bp);
if (netif_running(bp->dev)) {
netif_poll_disable(bp->dev);
netif_tx_disable(bp->dev);
bp->dev->trans_start = jiffies; /* prevent tx timeout */
}
}
static void
bnx2_netif_start(struct bnx2 *bp)
{
if (atomic_dec_and_test(&bp->intr_sem)) {
if (netif_running(bp->dev)) {
netif_wake_queue(bp->dev);
netif_poll_enable(bp->dev);
bnx2_enable_int(bp);
}
}
}
static void
bnx2_free_mem(struct bnx2 *bp)
{
int i;
if (bp->status_blk) {
pci_free_consistent(bp->pdev, bp->status_stats_size,
bp->status_blk, bp->status_blk_mapping);
bp->status_blk = NULL;
bp->stats_blk = NULL;
}
if (bp->tx_desc_ring) {
pci_free_consistent(bp->pdev,
sizeof(struct tx_bd) * TX_DESC_CNT,
bp->tx_desc_ring, bp->tx_desc_mapping);
bp->tx_desc_ring = NULL;
}
kfree(bp->tx_buf_ring);
bp->tx_buf_ring = NULL;
for (i = 0; i < bp->rx_max_ring; i++) {
if (bp->rx_desc_ring[i])
pci_free_consistent(bp->pdev,
sizeof(struct rx_bd) * RX_DESC_CNT,
bp->rx_desc_ring[i],
bp->rx_desc_mapping[i]);
bp->rx_desc_ring[i] = NULL;
}
vfree(bp->rx_buf_ring);
bp->rx_buf_ring = NULL;
}
static int
bnx2_alloc_mem(struct bnx2 *bp)
{
int i, status_blk_size;
bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
GFP_KERNEL);
if (bp->tx_buf_ring == NULL)
return -ENOMEM;
bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
sizeof(struct tx_bd) *
TX_DESC_CNT,
&bp->tx_desc_mapping);
if (bp->tx_desc_ring == NULL)
goto alloc_mem_err;
bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT *
bp->rx_max_ring);
if (bp->rx_buf_ring == NULL)
goto alloc_mem_err;
memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT *
bp->rx_max_ring);
for (i = 0; i < bp->rx_max_ring; i++) {
bp->rx_desc_ring[i] =
pci_alloc_consistent(bp->pdev,
sizeof(struct rx_bd) * RX_DESC_CNT,
&bp->rx_desc_mapping[i]);
if (bp->rx_desc_ring[i] == NULL)
goto alloc_mem_err;
}
/* Combine status and statistics blocks into one allocation. */
status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
bp->status_stats_size = status_blk_size +
sizeof(struct statistics_block);
bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
&bp->status_blk_mapping);
if (bp->status_blk == NULL)
goto alloc_mem_err;
memset(bp->status_blk, 0, bp->status_stats_size);
bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
status_blk_size);
bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
return 0;
alloc_mem_err:
bnx2_free_mem(bp);
return -ENOMEM;
}
static void
bnx2_report_fw_link(struct bnx2 *bp)
{
u32 fw_link_status = 0;
if (bp->link_up) {
u32 bmsr;
switch (bp->line_speed) {
case SPEED_10:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_10HALF;
else
fw_link_status = BNX2_LINK_STATUS_10FULL;
break;
case SPEED_100:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_100HALF;
else
fw_link_status = BNX2_LINK_STATUS_100FULL;
break;
case SPEED_1000:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_1000HALF;
else
fw_link_status = BNX2_LINK_STATUS_1000FULL;
break;
case SPEED_2500:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_2500HALF;
else
fw_link_status = BNX2_LINK_STATUS_2500FULL;
break;
}
fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
if (bp->autoneg) {
fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
bnx2_read_phy(bp, MII_BMSR, &bmsr);
bnx2_read_phy(bp, MII_BMSR, &bmsr);
if (!(bmsr & BMSR_ANEGCOMPLETE) ||
bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
else
fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
}
}
else
fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
}
static void
bnx2_report_link(struct bnx2 *bp)
{
if (bp->link_up) {
netif_carrier_on(bp->dev);
printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name);
printk("%d Mbps ", bp->line_speed);
if (bp->duplex == DUPLEX_FULL)
printk("full duplex");
else
printk("half duplex");
if (bp->flow_ctrl) {
if (bp->flow_ctrl & FLOW_CTRL_RX) {
printk(", receive ");
if (bp->flow_ctrl & FLOW_CTRL_TX)
printk("& transmit ");
}
else {
printk(", transmit ");
}
printk("flow control ON");
}
printk("\n");
}
else {
netif_carrier_off(bp->dev);
printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name);
}
bnx2_report_fw_link(bp);
}
static void
bnx2_resolve_flow_ctrl(struct bnx2 *bp)
{
u32 local_adv, remote_adv;
bp->flow_ctrl = 0;
if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
(AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
if (bp->duplex == DUPLEX_FULL) {
bp->flow_ctrl = bp->req_flow_ctrl;
}
return;
}
if (bp->duplex != DUPLEX_FULL) {
return;
}
if ((bp->phy_flags & PHY_SERDES_FLAG) &&
(CHIP_NUM(bp) == CHIP_NUM_5708)) {
u32 val;
bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
bp->flow_ctrl |= FLOW_CTRL_TX;
if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
bp->flow_ctrl |= FLOW_CTRL_RX;
return;
}
bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
bnx2_read_phy(bp, MII_LPA, &remote_adv);
if (bp->phy_flags & PHY_SERDES_FLAG) {
u32 new_local_adv = 0;
u32 new_remote_adv = 0;
if (local_adv & ADVERTISE_1000XPAUSE)
new_local_adv |= ADVERTISE_PAUSE_CAP;
if (local_adv & ADVERTISE_1000XPSE_ASYM)
new_local_adv |= ADVERTISE_PAUSE_ASYM;
if (remote_adv & ADVERTISE_1000XPAUSE)
new_remote_adv |= ADVERTISE_PAUSE_CAP;
if (remote_adv & ADVERTISE_1000XPSE_ASYM)
new_remote_adv |= ADVERTISE_PAUSE_ASYM;
local_adv = new_local_adv;
remote_adv = new_remote_adv;
}
/* See Table 28B-3 of 802.3ab-1999 spec. */
if (local_adv & ADVERTISE_PAUSE_CAP) {
if(local_adv & ADVERTISE_PAUSE_ASYM) {
if (remote_adv & ADVERTISE_PAUSE_CAP) {
bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
}
else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
bp->flow_ctrl = FLOW_CTRL_RX;
}
}
else {
if (remote_adv & ADVERTISE_PAUSE_CAP) {
bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
}
}
}
else if (local_adv & ADVERTISE_PAUSE_ASYM) {
if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
(remote_adv & ADVERTISE_PAUSE_ASYM)) {
bp->flow_ctrl = FLOW_CTRL_TX;
}
}
}
static int
bnx2_5708s_linkup(struct bnx2 *bp)
{
u32 val;
bp->link_up = 1;
bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
case BCM5708S_1000X_STAT1_SPEED_10:
bp->line_speed = SPEED_10;
break;
case BCM5708S_1000X_STAT1_SPEED_100:
bp->line_speed = SPEED_100;
break;
case BCM5708S_1000X_STAT1_SPEED_1G:
bp->line_speed = SPEED_1000;
break;
case BCM5708S_1000X_STAT1_SPEED_2G5:
bp->line_speed = SPEED_2500;
break;
}
if (val & BCM5708S_1000X_STAT1_FD)
bp->duplex = DUPLEX_FULL;
else
bp->duplex = DUPLEX_HALF;
return 0;
}
static int
bnx2_5706s_linkup(struct bnx2 *bp)
{
u32 bmcr, local_adv, remote_adv, common;
bp->link_up = 1;
bp->line_speed = SPEED_1000;
bnx2_read_phy(bp, MII_BMCR, &bmcr);
if (bmcr & BMCR_FULLDPLX) {
bp->duplex = DUPLEX_FULL;
}
else {
bp->duplex = DUPLEX_HALF;
}
if (!(bmcr & BMCR_ANENABLE)) {
return 0;
}
bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
bnx2_read_phy(bp, MII_LPA, &remote_adv);
common = local_adv & remote_adv;
if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
if (common & ADVERTISE_1000XFULL) {
bp->duplex = DUPLEX_FULL;
}
else {
bp->duplex = DUPLEX_HALF;
}
}
return 0;
}
static int
bnx2_copper_linkup(struct bnx2 *bp)
{
u32 bmcr;
bnx2_read_phy(bp, MII_BMCR, &bmcr);
if (bmcr & BMCR_ANENABLE) {
u32 local_adv, remote_adv, common;
bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
common = local_adv & (remote_adv >> 2);
if (common & ADVERTISE_1000FULL) {
bp->line_speed = SPEED_1000;
bp->duplex = DUPLEX_FULL;
}
else if (common & ADVERTISE_1000HALF) {
bp->line_speed = SPEED_1000;
bp->duplex = DUPLEX_HALF;
}
else {
bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
bnx2_read_phy(bp, MII_LPA, &remote_adv);
common = local_adv & remote_adv;
if (common & ADVERTISE_100FULL) {
bp->line_speed = SPEED_100;
bp->duplex = DUPLEX_FULL;
}
else if (common & ADVERTISE_100HALF) {
bp->line_speed = SPEED_100;
bp->duplex = DUPLEX_HALF;
}
else if (common & ADVERTISE_10FULL) {
bp->line_speed = SPEED_10;
bp->duplex = DUPLEX_FULL;
}
else if (common & ADVERTISE_10HALF) {
bp->line_speed = SPEED_10;
bp->duplex = DUPLEX_HALF;
}
else {
bp->line_speed = 0;
bp->link_up = 0;
}
}
}
else {
if (bmcr & BMCR_SPEED100) {
bp->line_speed = SPEED_100;
}
else {
bp->line_speed = SPEED_10;
}
if (bmcr & BMCR_FULLDPLX) {
bp->duplex = DUPLEX_FULL;
}
else {
bp->duplex = DUPLEX_HALF;
}
}
return 0;
}
static int
bnx2_set_mac_link(struct bnx2 *bp)
{
u32 val;
REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
if (bp->link_up && (bp->line_speed == SPEED_1000) &&
(bp->duplex == DUPLEX_HALF)) {
REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
}
/* Configure the EMAC mode register. */
val = REG_RD(bp, BNX2_EMAC_MODE);
val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
BNX2_EMAC_MODE_25G);
if (bp->link_up) {
switch (bp->line_speed) {
case SPEED_10:
if (CHIP_NUM(bp) == CHIP_NUM_5708) {
val |= BNX2_EMAC_MODE_PORT_MII_10;
break;
}
/* fall through */
case SPEED_100:
val |= BNX2_EMAC_MODE_PORT_MII;
break;
case SPEED_2500:
val |= BNX2_EMAC_MODE_25G;
/* fall through */
case SPEED_1000:
val |= BNX2_EMAC_MODE_PORT_GMII;
break;
}
}
else {
val |= BNX2_EMAC_MODE_PORT_GMII;
}
/* Set the MAC to operate in the appropriate duplex mode. */
if (bp->duplex == DUPLEX_HALF)
val |= BNX2_EMAC_MODE_HALF_DUPLEX;
REG_WR(bp, BNX2_EMAC_MODE, val);
/* Enable/disable rx PAUSE. */
bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
if (bp->flow_ctrl & FLOW_CTRL_RX)
bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
/* Enable/disable tx PAUSE. */
val = REG_RD(bp, BNX2_EMAC_TX_MODE);
val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
if (bp->flow_ctrl & FLOW_CTRL_TX)
val |= BNX2_EMAC_TX_MODE_FLOW_EN;
REG_WR(bp, BNX2_EMAC_TX_MODE, val);
/* Acknowledge the interrupt. */
REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
return 0;
}
static int
bnx2_set_link(struct bnx2 *bp)
{
u32 bmsr;
u8 link_up;
if (bp->loopback == MAC_LOOPBACK) {
bp->link_up = 1;
return 0;
}
link_up = bp->link_up;
bnx2_read_phy(bp, MII_BMSR, &bmsr);
bnx2_read_phy(bp, MII_BMSR, &bmsr);
if ((bp->phy_flags & PHY_SERDES_FLAG) &&
(CHIP_NUM(bp) == CHIP_NUM_5706)) {
u32 val;
val = REG_RD(bp, BNX2_EMAC_STATUS);
if (val & BNX2_EMAC_STATUS_LINK)
bmsr |= BMSR_LSTATUS;
else
bmsr &= ~BMSR_LSTATUS;
}
if (bmsr & BMSR_LSTATUS) {
bp->link_up = 1;
if (bp->phy_flags & PHY_SERDES_FLAG) {
if (CHIP_NUM(bp) == CHIP_NUM_5706)
bnx2_5706s_linkup(bp);
else if (CHIP_NUM(bp) == CHIP_NUM_5708)
bnx2_5708s_linkup(bp);
}
else {
bnx2_copper_linkup(bp);
}
bnx2_resolve_flow_ctrl(bp);
}
else {
if ((bp->phy_flags & PHY_SERDES_FLAG) &&
(bp->autoneg & AUTONEG_SPEED)) {
u32 bmcr;
bnx2_read_phy(bp, MII_BMCR, &bmcr);
if (!(bmcr & BMCR_ANENABLE)) {
bnx2_write_phy(bp, MII_BMCR, bmcr |
BMCR_ANENABLE);
}
}
bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
bp->link_up = 0;
}
if (bp->link_up != link_up) {
bnx2_report_link(bp);
}
bnx2_set_mac_link(bp);
return 0;
}
static int
bnx2_reset_phy(struct bnx2 *bp)
{
int i;
u32 reg;
bnx2_write_phy(bp, MII_BMCR, BMCR_RESET);
#define PHY_RESET_MAX_WAIT 100
for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
udelay(10);
bnx2_read_phy(bp, MII_BMCR, &reg);
if (!(reg & BMCR_RESET)) {
udelay(20);
break;
}
}
if (i == PHY_RESET_MAX_WAIT) {
return -EBUSY;
}
return 0;
}
static u32
bnx2_phy_get_pause_adv(struct bnx2 *bp)
{
u32 adv = 0;
if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
(FLOW_CTRL_RX | FLOW_CTRL_TX)) {
if (bp->phy_flags & PHY_SERDES_FLAG) {
adv = ADVERTISE_1000XPAUSE;
}
else {
adv = ADVERTISE_PAUSE_CAP;
}
}
else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
if (bp->phy_flags & PHY_SERDES_FLAG) {
adv = ADVERTISE_1000XPSE_ASYM;
}
else {
adv = ADVERTISE_PAUSE_ASYM;
}
}
else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
if (bp->phy_flags & PHY_SERDES_FLAG) {
adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
}
else {
adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
}
}
return adv;
}
static int
bnx2_setup_serdes_phy(struct bnx2 *bp)
{
u32 adv, bmcr, up1;
u32 new_adv = 0;
if (!(bp->autoneg & AUTONEG_SPEED)) {
u32 new_bmcr;
int force_link_down = 0;
if (CHIP_NUM(bp) == CHIP_NUM_5708) {
bnx2_read_phy(bp, BCM5708S_UP1, &up1);
if (up1 & BCM5708S_UP1_2G5) {
up1 &= ~BCM5708S_UP1_2G5;
bnx2_write_phy(bp, BCM5708S_UP1, up1);
force_link_down = 1;
}
}
bnx2_read_phy(bp, MII_ADVERTISE, &adv);
adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
bnx2_read_phy(bp, MII_BMCR, &bmcr);
new_bmcr = bmcr & ~BMCR_ANENABLE;
new_bmcr |= BMCR_SPEED1000;
if (bp->req_duplex == DUPLEX_FULL) {
adv |= ADVERTISE_1000XFULL;
new_bmcr |= BMCR_FULLDPLX;
}
else {
adv |= ADVERTISE_1000XHALF;
new_bmcr &= ~BMCR_FULLDPLX;
}
if ((new_bmcr != bmcr) || (force_link_down)) {
/* Force a link down visible on the other side */
if (bp->link_up) {
bnx2_write_phy(bp, MII_ADVERTISE, adv &
~(ADVERTISE_1000XFULL |
ADVERTISE_1000XHALF));
bnx2_write_phy(bp, MII_BMCR, bmcr |
BMCR_ANRESTART | BMCR_ANENABLE);
bp->link_up = 0;
netif_carrier_off(bp->dev);
bnx2_write_phy(bp, MII_BMCR, new_bmcr);
}
bnx2_write_phy(bp, MII_ADVERTISE, adv);
bnx2_write_phy(bp, MII_BMCR, new_bmcr);
}
return 0;
}
if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
bnx2_read_phy(bp, BCM5708S_UP1, &up1);
up1 |= BCM5708S_UP1_2G5;
bnx2_write_phy(bp, BCM5708S_UP1, up1);
}
if (bp->advertising & ADVERTISED_1000baseT_Full)
new_adv |= ADVERTISE_1000XFULL;
new_adv |= bnx2_phy_get_pause_adv(bp);
bnx2_read_phy(bp, MII_ADVERTISE, &adv);
bnx2_read_phy(bp, MII_BMCR, &bmcr);
bp->serdes_an_pending = 0;
if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
/* Force a link down visible on the other side */
if (bp->link_up) {
int i;
bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
for (i = 0; i < 110; i++) {
udelay(100);
}
}
bnx2_write_phy(bp, MII_ADVERTISE, new_adv);
bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART |
BMCR_ANENABLE);
if (CHIP_NUM(bp) == CHIP_NUM_5706) {
/* Speed up link-up time when the link partner
* does not autonegotiate which is very common
* in blade servers. Some blade servers use
* IPMI for kerboard input and it's important
* to minimize link disruptions. Autoneg. involves
* exchanging base pages plus 3 next pages and
* normally completes in about 120 msec.
*/
bp->current_interval = SERDES_AN_TIMEOUT;
bp->serdes_an_pending = 1;
mod_timer(&bp->timer, jiffies + bp->current_interval);
}
}
return 0;
}
#define ETHTOOL_ALL_FIBRE_SPEED \
(ADVERTISED_1000baseT_Full)
#define ETHTOOL_ALL_COPPER_SPEED \
(ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
ADVERTISED_1000baseT_Full)
#define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
#define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
static int
bnx2_setup_copper_phy(struct bnx2 *bp)
{
u32 bmcr;
u32 new_bmcr;
bnx2_read_phy(bp, MII_BMCR, &bmcr);
if (bp->autoneg & AUTONEG_SPEED) {
u32 adv_reg, adv1000_reg;
u32 new_adv_reg = 0;
u32 new_adv1000_reg = 0;
bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg);
adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
adv1000_reg &= PHY_ALL_1000_SPEED;
if (bp->advertising & ADVERTISED_10baseT_Half)
new_adv_reg |= ADVERTISE_10HALF;
if (bp->advertising & ADVERTISED_10baseT_Full)
new_adv_reg |= ADVERTISE_10FULL;
if (bp->advertising & ADVERTISED_100baseT_Half)
new_adv_reg |= ADVERTISE_100HALF;
if (bp->advertising & ADVERTISED_100baseT_Full)
new_adv_reg |= ADVERTISE_100FULL;
if (bp->advertising & ADVERTISED_1000baseT_Full)
new_adv1000_reg |= ADVERTISE_1000FULL;
new_adv_reg |= ADVERTISE_CSMA;
new_adv_reg |= bnx2_phy_get_pause_adv(bp);
if ((adv1000_reg != new_adv1000_reg) ||
(adv_reg != new_adv_reg) ||
((bmcr & BMCR_ANENABLE) == 0)) {
bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg);
bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART |
BMCR_ANENABLE);
}
else if (bp->link_up) {
/* Flow ctrl may have changed from auto to forced */
/* or vice-versa. */
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
return 0;
}
new_bmcr = 0;
if (bp->req_line_speed == SPEED_100) {
new_bmcr |= BMCR_SPEED100;
}
if (bp->req_duplex == DUPLEX_FULL) {
new_bmcr |= BMCR_FULLDPLX;
}
if (new_bmcr != bmcr) {
u32 bmsr;
int i = 0;
bnx2_read_phy(bp, MII_BMSR, &bmsr);
bnx2_read_phy(bp, MII_BMSR, &bmsr);
if (bmsr & BMSR_LSTATUS) {
/* Force link down */
bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
do {
udelay(100);
bnx2_read_phy(bp, MII_BMSR, &bmsr);
bnx2_read_phy(bp, MII_BMSR, &bmsr);
i++;
} while ((bmsr & BMSR_LSTATUS) && (i < 620));
}
bnx2_write_phy(bp, MII_BMCR, new_bmcr);
/* Normally, the new speed is setup after the link has
* gone down and up again. In some cases, link will not go
* down so we need to set up the new speed here.
*/
if (bmsr & BMSR_LSTATUS) {
bp->line_speed = bp->req_line_speed;
bp->duplex = bp->req_duplex;
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
}
return 0;
}
static int
bnx2_setup_phy(struct bnx2 *bp)
{
if (bp->loopback == MAC_LOOPBACK)
return 0;
if (bp->phy_flags & PHY_SERDES_FLAG) {
return (bnx2_setup_serdes_phy(bp));
}
else {
return (bnx2_setup_copper_phy(bp));
}
}
static int
bnx2_init_5708s_phy(struct bnx2 *bp)
{
u32 val;
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
bnx2_read_phy(bp, BCM5708S_UP1, &val);
val |= BCM5708S_UP1_2G5;
bnx2_write_phy(bp, BCM5708S_UP1, val);
}
if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
(CHIP_ID(bp) == CHIP_ID_5708_B0) ||
(CHIP_ID(bp) == CHIP_ID_5708_B1)) {
/* increase tx signal amplitude */
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
BCM5708S_BLK_ADDR_TX_MISC);
bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
}
val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
if (val) {
u32 is_backplane;
is_backplane = REG_RD_IND(bp, bp->shmem_base +
BNX2_SHARED_HW_CFG_CONFIG);
if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
BCM5708S_BLK_ADDR_TX_MISC);
bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
BCM5708S_BLK_ADDR_DIG);
}
}
return 0;
}
static int
bnx2_init_5706s_phy(struct bnx2 *bp)
{
bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
if (CHIP_NUM(bp) == CHIP_NUM_5706) {
REG_WR(bp, BNX2_MISC_UNUSED0, 0x300);
}
if (bp->dev->mtu > 1500) {
u32 val;
/* Set extended packet length bit */
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
bnx2_write_phy(bp, 0x1c, 0x6c00);
bnx2_read_phy(bp, 0x1c, &val);
bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
}
else {
u32 val;
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val & ~0x4007);
bnx2_write_phy(bp, 0x1c, 0x6c00);
bnx2_read_phy(bp, 0x1c, &val);
bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
}
return 0;
}
static int
bnx2_init_copper_phy(struct bnx2 *bp)
{
u32 val;
bp->phy_flags |= PHY_CRC_FIX_FLAG;
if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
bnx2_write_phy(bp, 0x18, 0x0c00);
bnx2_write_phy(bp, 0x17, 0x000a);
bnx2_write_phy(bp, 0x15, 0x310b);
bnx2_write_phy(bp, 0x17, 0x201f);
bnx2_write_phy(bp, 0x15, 0x9506);
bnx2_write_phy(bp, 0x17, 0x401f);
bnx2_write_phy(bp, 0x15, 0x14e2);
bnx2_write_phy(bp, 0x18, 0x0400);
}
if (bp->dev->mtu > 1500) {
/* Set extended packet length bit */
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val | 0x4000);
bnx2_read_phy(bp, 0x10, &val);
bnx2_write_phy(bp, 0x10, val | 0x1);
}
else {
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val & ~0x4007);
bnx2_read_phy(bp, 0x10, &val);
bnx2_write_phy(bp, 0x10, val & ~0x1);
}
/* ethernet@wirespeed */
bnx2_write_phy(bp, 0x18, 0x7007);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
return 0;
}
static int
bnx2_init_phy(struct bnx2 *bp)
{
u32 val;
int rc = 0;
bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
bnx2_reset_phy(bp);
bnx2_read_phy(bp, MII_PHYSID1, &val);
bp->phy_id = val << 16;
bnx2_read_phy(bp, MII_PHYSID2, &val);
bp->phy_id |= val & 0xffff;
if (bp->phy_flags & PHY_SERDES_FLAG) {
if (CHIP_NUM(bp) == CHIP_NUM_5706)
rc = bnx2_init_5706s_phy(bp);
else if (CHIP_NUM(bp) == CHIP_NUM_5708)
rc = bnx2_init_5708s_phy(bp);
}
else {
rc = bnx2_init_copper_phy(bp);
}
bnx2_setup_phy(bp);
return rc;
}
static int
bnx2_set_mac_loopback(struct bnx2 *bp)
{
u32 mac_mode;
mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
mac_mode &= ~BNX2_EMAC_MODE_PORT;
mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
bp->link_up = 1;
return 0;
}
static int bnx2_test_link(struct bnx2 *);
static int
bnx2_set_phy_loopback(struct bnx2 *bp)
{
u32 mac_mode;
int rc, i;
spin_lock_bh(&bp->phy_lock);
rc = bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX |
BMCR_SPEED1000);
spin_unlock_bh(&bp->phy_lock);
if (rc)
return rc;
for (i = 0; i < 10; i++) {
if (bnx2_test_link(bp) == 0)
break;
udelay(10);
}
mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
BNX2_EMAC_MODE_25G);
mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
bp->link_up = 1;
return 0;
}
static int
bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
{
int i;
u32 val;
bp->fw_wr_seq++;
msg_data |= bp->fw_wr_seq;
REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
/* wait for an acknowledgement. */
for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
msleep(10);
val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
break;
}
if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
return 0;
/* If we timed out, inform the firmware that this is the case. */
if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
if (!silent)
printk(KERN_ERR PFX "fw sync timeout, reset code = "
"%x\n", msg_data);
msg_data &= ~BNX2_DRV_MSG_CODE;
msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
return -EBUSY;
}
if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
return -EIO;
return 0;
}
static void
bnx2_init_context(struct bnx2 *bp)
{
u32 vcid;
vcid = 96;
while (vcid) {
u32 vcid_addr, pcid_addr, offset;
vcid--;
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
u32 new_vcid;
vcid_addr = GET_PCID_ADDR(vcid);
if (vcid & 0x8) {
new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
}
else {
new_vcid = vcid;
}
pcid_addr = GET_PCID_ADDR(new_vcid);
}
else {
vcid_addr = GET_CID_ADDR(vcid);
pcid_addr = vcid_addr;
}
REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
/* Zero out the context. */
for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
CTX_WR(bp, 0x00, offset, 0);
}
REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
}
}
static int
bnx2_alloc_bad_rbuf(struct bnx2 *bp)
{
u16 *good_mbuf;
u32 good_mbuf_cnt;
u32 val;
good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
if (good_mbuf == NULL) {
printk(KERN_ERR PFX "Failed to allocate memory in "
"bnx2_alloc_bad_rbuf\n");
return -ENOMEM;
}
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
good_mbuf_cnt = 0;
/* Allocate a bunch of mbufs and save the good ones in an array. */
val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
/* The addresses with Bit 9 set are bad memory blocks. */
if (!(val & (1 << 9))) {
good_mbuf[good_mbuf_cnt] = (u16) val;
good_mbuf_cnt++;
}
val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
}
/* Free the good ones back to the mbuf pool thus discarding
* all the bad ones. */
while (good_mbuf_cnt) {
good_mbuf_cnt--;
val = good_mbuf[good_mbuf_cnt];
val = (val << 9) | val | 1;
REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
}
kfree(good_mbuf);
return 0;
}
static void
bnx2_set_mac_addr(struct bnx2 *bp)
{
u32 val;
u8 *mac_addr = bp->dev->dev_addr;
val = (mac_addr[0] << 8) | mac_addr[1];
REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
(mac_addr[4] << 8) | mac_addr[5];
REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
}
static inline int
bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
{
struct sk_buff *skb;
struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
dma_addr_t mapping;
struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
unsigned long align;
skb = dev_alloc_skb(bp->rx_buf_size);
if (skb == NULL) {
return -ENOMEM;
}
if (unlikely((align = (unsigned long) skb->data & 0x7))) {
skb_reserve(skb, 8 - align);
}
skb->dev = bp->dev;
mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
PCI_DMA_FROMDEVICE);
rx_buf->skb = skb;
pci_unmap_addr_set(rx_buf, mapping, mapping);
rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
bp->rx_prod_bseq += bp->rx_buf_use_size;
return 0;
}
static void
bnx2_phy_int(struct bnx2 *bp)
{
u32 new_link_state, old_link_state;
new_link_state = bp->status_blk->status_attn_bits &
STATUS_ATTN_BITS_LINK_STATE;
old_link_state = bp->status_blk->status_attn_bits_ack &
STATUS_ATTN_BITS_LINK_STATE;
if (new_link_state != old_link_state) {
if (new_link_state) {
REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD,
STATUS_ATTN_BITS_LINK_STATE);
}
else {
REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD,
STATUS_ATTN_BITS_LINK_STATE);
}
bnx2_set_link(bp);
}
}
static void
bnx2_tx_int(struct bnx2 *bp)
{
struct status_block *sblk = bp->status_blk;
u16 hw_cons, sw_cons, sw_ring_cons;
int tx_free_bd = 0;
hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
hw_cons++;
}
sw_cons = bp->tx_cons;
while (sw_cons != hw_cons) {
struct sw_bd *tx_buf;
struct sk_buff *skb;
int i, last;
sw_ring_cons = TX_RING_IDX(sw_cons);
tx_buf = &bp->tx_buf_ring[sw_ring_cons];
skb = tx_buf->skb;
#ifdef BCM_TSO
/* partial BD completions possible with TSO packets */
if (skb_shinfo(skb)->gso_size) {
u16 last_idx, last_ring_idx;
last_idx = sw_cons +
skb_shinfo(skb)->nr_frags + 1;
last_ring_idx = sw_ring_cons +
skb_shinfo(skb)->nr_frags + 1;
if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
last_idx++;
}
if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
break;
}
}
#endif
pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
skb_headlen(skb), PCI_DMA_TODEVICE);
tx_buf->skb = NULL;
last = skb_shinfo(skb)->nr_frags;
for (i = 0; i < last; i++) {
sw_cons = NEXT_TX_BD(sw_cons);
pci_unmap_page(bp->pdev,
pci_unmap_addr(
&bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
mapping),
skb_shinfo(skb)->frags[i].size,
PCI_DMA_TODEVICE);
}
sw_cons = NEXT_TX_BD(sw_cons);
tx_free_bd += last + 1;
dev_kfree_skb(skb);
hw_cons = bp->hw_tx_cons =
sblk->status_tx_quick_consumer_index0;
if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
hw_cons++;
}
}
bp->tx_cons = sw_cons;
if (unlikely(netif_queue_stopped(bp->dev))) {
spin_lock(&bp->tx_lock);
if ((netif_queue_stopped(bp->dev)) &&
(bnx2_tx_avail(bp) > MAX_SKB_FRAGS)) {
netif_wake_queue(bp->dev);
}
spin_unlock(&bp->tx_lock);
}
}
static inline void
bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
u16 cons, u16 prod)
{
struct sw_bd *cons_rx_buf, *prod_rx_buf;
struct rx_bd *cons_bd, *prod_bd;
cons_rx_buf = &bp->rx_buf_ring[cons];
prod_rx_buf = &bp->rx_buf_ring[prod];
pci_dma_sync_single_for_device(bp->pdev,
pci_unmap_addr(cons_rx_buf, mapping),
bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
bp->rx_prod_bseq += bp->rx_buf_use_size;
prod_rx_buf->skb = skb;
if (cons == prod)
return;
pci_unmap_addr_set(prod_rx_buf, mapping,
pci_unmap_addr(cons_rx_buf, mapping));
cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
}
static int
bnx2_rx_int(struct bnx2 *bp, int budget)
{
struct status_block *sblk = bp->status_blk;
u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
struct l2_fhdr *rx_hdr;
int rx_pkt = 0;
hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
hw_cons++;
}
sw_cons = bp->rx_cons;
sw_prod = bp->rx_prod;
/* Memory barrier necessary as speculative reads of the rx
* buffer can be ahead of the index in the status block
*/
rmb();
while (sw_cons != hw_cons) {
unsigned int len;
u32 status;
struct sw_bd *rx_buf;
struct sk_buff *skb;
dma_addr_t dma_addr;
sw_ring_cons = RX_RING_IDX(sw_cons);
sw_ring_prod = RX_RING_IDX(sw_prod);
rx_buf = &bp->rx_buf_ring[sw_ring_cons];
skb = rx_buf->skb;
rx_buf->skb = NULL;
dma_addr = pci_unmap_addr(rx_buf, mapping);
pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
rx_hdr = (struct l2_fhdr *) skb->data;
len = rx_hdr->l2_fhdr_pkt_len - 4;
if ((status = rx_hdr->l2_fhdr_status) &
(L2_FHDR_ERRORS_BAD_CRC |
L2_FHDR_ERRORS_PHY_DECODE |
L2_FHDR_ERRORS_ALIGNMENT |
L2_FHDR_ERRORS_TOO_SHORT |
L2_FHDR_ERRORS_GIANT_FRAME)) {
goto reuse_rx;
}
/* Since we don't have a jumbo ring, copy small packets
* if mtu > 1500
*/
if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
struct sk_buff *new_skb;
new_skb = dev_alloc_skb(len + 2);
if (new_skb == NULL)
goto reuse_rx;
/* aligned copy */
memcpy(new_skb->data,
skb->data + bp->rx_offset - 2,
len + 2);
skb_reserve(new_skb, 2);
skb_put(new_skb, len);
new_skb->dev = bp->dev;
bnx2_reuse_rx_skb(bp, skb,
sw_ring_cons, sw_ring_prod);
skb = new_skb;
}
else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
pci_unmap_single(bp->pdev, dma_addr,
bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
skb_reserve(skb, bp->rx_offset);
skb_put(skb, len);
}
else {
reuse_rx:
bnx2_reuse_rx_skb(bp, skb,
sw_ring_cons, sw_ring_prod);
goto next_rx;
}
skb->protocol = eth_type_trans(skb, bp->dev);
if ((len > (bp->dev->mtu + ETH_HLEN)) &&
(ntohs(skb->protocol) != 0x8100)) {
dev_kfree_skb(skb);
goto next_rx;
}
skb->ip_summed = CHECKSUM_NONE;
if (bp->rx_csum &&
(status & (L2_FHDR_STATUS_TCP_SEGMENT |
L2_FHDR_STATUS_UDP_DATAGRAM))) {
if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
L2_FHDR_ERRORS_UDP_XSUM)) == 0))
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
#ifdef BCM_VLAN
if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
vlan_hwaccel_receive_skb(skb, bp->vlgrp,
rx_hdr->l2_fhdr_vlan_tag);
}
else
#endif
netif_receive_skb(skb);
bp->dev->last_rx = jiffies;
rx_pkt++;
next_rx:
sw_cons = NEXT_RX_BD(sw_cons);
sw_prod = NEXT_RX_BD(sw_prod);
if ((rx_pkt == budget))
break;
/* Refresh hw_cons to see if there is new work */
if (sw_cons == hw_cons) {
hw_cons = bp->hw_rx_cons =
sblk->status_rx_quick_consumer_index0;
if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
hw_cons++;
rmb();
}
}
bp->rx_cons = sw_cons;
bp->rx_prod = sw_prod;
REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
mmiowb();
return rx_pkt;
}
/* MSI ISR - The only difference between this and the INTx ISR
* is that the MSI interrupt is always serviced.
*/
static irqreturn_t
bnx2_msi(int irq, void *dev_instance, struct pt_regs *regs)
{
struct net_device *dev = dev_instance;
struct bnx2 *bp = netdev_priv(dev);
prefetch(bp->status_blk);
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
/* Return here if interrupt is disabled. */
if (unlikely(atomic_read(&bp->intr_sem) != 0))
return IRQ_HANDLED;
netif_rx_schedule(dev);
return IRQ_HANDLED;
}
static irqreturn_t
bnx2_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
{
struct net_device *dev = dev_instance;
struct bnx2 *bp = netdev_priv(dev);
/* When using INTx, it is possible for the interrupt to arrive
* at the CPU before the status block posted prior to the
* interrupt. Reading a register will flush the status block.
* When using MSI, the MSI message will always complete after
* the status block write.
*/
if ((bp->status_blk->status_idx == bp->last_status_idx) &&
(REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
return IRQ_NONE;
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
/* Return here if interrupt is shared and is disabled. */
if (unlikely(atomic_read(&bp->intr_sem) != 0))
return IRQ_HANDLED;
netif_rx_schedule(dev);
return IRQ_HANDLED;
}
static inline int
bnx2_has_work(struct bnx2 *bp)
{
struct status_block *sblk = bp->status_blk;
if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
(sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
return 1;
if (((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) !=
bp->link_up)
return 1;
return 0;
}
static int
bnx2_poll(struct net_device *dev, int *budget)
{
struct bnx2 *bp = netdev_priv(dev);
if ((bp->status_blk->status_attn_bits &
STATUS_ATTN_BITS_LINK_STATE) !=
(bp->status_blk->status_attn_bits_ack &
STATUS_ATTN_BITS_LINK_STATE)) {
spin_lock(&bp->phy_lock);
bnx2_phy_int(bp);
spin_unlock(&bp->phy_lock);
/* This is needed to take care of transient status
* during link changes.
*/
REG_WR(bp, BNX2_HC_COMMAND,
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
REG_RD(bp, BNX2_HC_COMMAND);
}
if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
bnx2_tx_int(bp);
if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) {
int orig_budget = *budget;
int work_done;
if (orig_budget > dev->quota)
orig_budget = dev->quota;
work_done = bnx2_rx_int(bp, orig_budget);
*budget -= work_done;
dev->quota -= work_done;
}
bp->last_status_idx = bp->status_blk->status_idx;
rmb();
if (!bnx2_has_work(bp)) {
netif_rx_complete(dev);
if (likely(bp->flags & USING_MSI_FLAG)) {
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
bp->last_status_idx);
return 0;
}
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
bp->last_status_idx);
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
bp->last_status_idx);
return 0;
}
return 1;
}
/* Called with rtnl_lock from vlan functions and also netif_tx_lock
* from set_multicast.
*/
static void
bnx2_set_rx_mode(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
u32 rx_mode, sort_mode;
int i;
spin_lock_bh(&bp->phy_lock);
rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
#ifdef BCM_VLAN
if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
#else
if (!(bp->flags & ASF_ENABLE_FLAG))
rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
#endif
if (dev->flags & IFF_PROMISC) {
/* Promiscuous mode. */
rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN;
}
else if (dev->flags & IFF_ALLMULTI) {
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
0xffffffff);
}
sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
}
else {
/* Accept one or more multicast(s). */
struct dev_mc_list *mclist;
u32 mc_filter[NUM_MC_HASH_REGISTERS];
u32 regidx;
u32 bit;
u32 crc;
memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
i++, mclist = mclist->next) {
crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
bit = crc & 0xff;
regidx = (bit & 0xe0) >> 5;
bit &= 0x1f;
mc_filter[regidx] |= (1 << bit);
}
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
mc_filter[i]);
}
sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
}
if (rx_mode != bp->rx_mode) {
bp->rx_mode = rx_mode;
REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
}
REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
spin_unlock_bh(&bp->phy_lock);
}
#define FW_BUF_SIZE 0x8000
static int
bnx2_gunzip_init(struct bnx2 *bp)
{
if ((bp->gunzip_buf = vmalloc(FW_BUF_SIZE)) == NULL)
goto gunzip_nomem1;
if ((bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL)) == NULL)
goto gunzip_nomem2;
bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
if (bp->strm->workspace == NULL)
goto gunzip_nomem3;
return 0;
gunzip_nomem3:
kfree(bp->strm);
bp->strm = NULL;
gunzip_nomem2:
vfree(bp->gunzip_buf);
bp->gunzip_buf = NULL;
gunzip_nomem1:
printk(KERN_ERR PFX "%s: Cannot allocate firmware buffer for "
"uncompression.\n", bp->dev->name);
return -ENOMEM;
}
static void
bnx2_gunzip_end(struct bnx2 *bp)
{
kfree(bp->strm->workspace);
kfree(bp->strm);
bp->strm = NULL;
if (bp->gunzip_buf) {
vfree(bp->gunzip_buf);
bp->gunzip_buf = NULL;
}
}
static int
bnx2_gunzip(struct bnx2 *bp, u8 *zbuf, int len, void **outbuf, int *outlen)
{
int n, rc;
/* check gzip header */
if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED))
return -EINVAL;
n = 10;
#define FNAME 0x8
if (zbuf[3] & FNAME)
while ((zbuf[n++] != 0) && (n < len));
bp->strm->next_in = zbuf + n;
bp->strm->avail_in = len - n;
bp->strm->next_out = bp->gunzip_buf;
bp->strm->avail_out = FW_BUF_SIZE;
rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
if (rc != Z_OK)
return rc;
rc = zlib_inflate(bp->strm, Z_FINISH);
*outlen = FW_BUF_SIZE - bp->strm->avail_out;
*outbuf = bp->gunzip_buf;
if ((rc != Z_OK) && (rc != Z_STREAM_END))
printk(KERN_ERR PFX "%s: Firmware decompression error: %s\n",
bp->dev->name, bp->strm->msg);
zlib_inflateEnd(bp->strm);
if (rc == Z_STREAM_END)
return 0;
return rc;
}
static void
load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
u32 rv2p_proc)
{
int i;
u32 val;
for (i = 0; i < rv2p_code_len; i += 8) {
REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code));
rv2p_code++;
REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code));
rv2p_code++;
if (rv2p_proc == RV2P_PROC1) {
val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
}
else {
val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
}
}
/* Reset the processor, un-stall is done later. */
if (rv2p_proc == RV2P_PROC1) {
REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
}
else {
REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
}
}
static void
load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
{
u32 offset;
u32 val;
/* Halt the CPU. */
val = REG_RD_IND(bp, cpu_reg->mode);
val |= cpu_reg->mode_value_halt;
REG_WR_IND(bp, cpu_reg->mode, val);
REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
/* Load the Text area. */
offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
if (fw->text) {
int j;
for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j]));
}
}
/* Load the Data area. */
offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
if (fw->data) {
int j;
for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
REG_WR_IND(bp, offset, fw->data[j]);
}
}
/* Load the SBSS area. */
offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
if (fw->sbss) {
int j;
for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
REG_WR_IND(bp, offset, fw->sbss[j]);
}
}
/* Load the BSS area. */
offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
if (fw->bss) {
int j;
for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
REG_WR_IND(bp, offset, fw->bss[j]);
}
}
/* Load the Read-Only area. */
offset = cpu_reg->spad_base +
(fw->rodata_addr - cpu_reg->mips_view_base);
if (fw->rodata) {
int j;
for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
REG_WR_IND(bp, offset, fw->rodata[j]);
}
}
/* Clear the pre-fetch instruction. */
REG_WR_IND(bp, cpu_reg->inst, 0);
REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
/* Start the CPU. */
val = REG_RD_IND(bp, cpu_reg->mode);
val &= ~cpu_reg->mode_value_halt;
REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
REG_WR_IND(bp, cpu_reg->mode, val);
}
static int
bnx2_init_cpus(struct bnx2 *bp)
{
struct cpu_reg cpu_reg;
struct fw_info fw;
int rc = 0;
void *text;
u32 text_len;
if ((rc = bnx2_gunzip_init(bp)) != 0)
return rc;
/* Initialize the RV2P processor. */
rc = bnx2_gunzip(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), &text,
&text_len);
if (rc)
goto init_cpu_err;
load_rv2p_fw(bp, text, text_len, RV2P_PROC1);
rc = bnx2_gunzip(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), &text,
&text_len);
if (rc)
goto init_cpu_err;
load_rv2p_fw(bp, text, text_len, RV2P_PROC2);
/* Initialize the RX Processor. */
cpu_reg.mode = BNX2_RXP_CPU_MODE;
cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX2_RXP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX2_RXP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx2_RXP_b06FwReleaseMajor;
fw.ver_minor = bnx2_RXP_b06FwReleaseMinor;
fw.ver_fix = bnx2_RXP_b06FwReleaseFix;
fw.start_addr = bnx2_RXP_b06FwStartAddr;
fw.text_addr = bnx2_RXP_b06FwTextAddr;
fw.text_len = bnx2_RXP_b06FwTextLen;
fw.text_index = 0;
rc = bnx2_gunzip(bp, bnx2_RXP_b06FwText, sizeof(bnx2_RXP_b06FwText),
&text, &text_len);
if (rc)
goto init_cpu_err;
fw.text = text;
fw.data_addr = bnx2_RXP_b06FwDataAddr;
fw.data_len = bnx2_RXP_b06FwDataLen;
fw.data_index = 0;
fw.data = bnx2_RXP_b06FwData;
fw.sbss_addr = bnx2_RXP_b06FwSbssAddr;
fw.sbss_len = bnx2_RXP_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx2_RXP_b06FwSbss;
fw.bss_addr = bnx2_RXP_b06FwBssAddr;
fw.bss_len = bnx2_RXP_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bnx2_RXP_b06FwBss;
fw.rodata_addr = bnx2_RXP_b06FwRodataAddr;
fw.rodata_len = bnx2_RXP_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx2_RXP_b06FwRodata;
load_cpu_fw(bp, &cpu_reg, &fw);
/* Initialize the TX Processor. */
cpu_reg.mode = BNX2_TXP_CPU_MODE;
cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX2_TXP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX2_TXP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx2_TXP_b06FwReleaseMajor;
fw.ver_minor = bnx2_TXP_b06FwReleaseMinor;
fw.ver_fix = bnx2_TXP_b06FwReleaseFix;
fw.start_addr = bnx2_TXP_b06FwStartAddr;
fw.text_addr = bnx2_TXP_b06FwTextAddr;
fw.text_len = bnx2_TXP_b06FwTextLen;
fw.text_index = 0;
rc = bnx2_gunzip(bp, bnx2_TXP_b06FwText, sizeof(bnx2_TXP_b06FwText),
&text, &text_len);
if (rc)
goto init_cpu_err;
fw.text = text;
fw.data_addr = bnx2_TXP_b06FwDataAddr;
fw.data_len = bnx2_TXP_b06FwDataLen;
fw.data_index = 0;
fw.data = bnx2_TXP_b06FwData;
fw.sbss_addr = bnx2_TXP_b06FwSbssAddr;
fw.sbss_len = bnx2_TXP_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx2_TXP_b06FwSbss;
fw.bss_addr = bnx2_TXP_b06FwBssAddr;
fw.bss_len = bnx2_TXP_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bnx2_TXP_b06FwBss;
fw.rodata_addr = bnx2_TXP_b06FwRodataAddr;
fw.rodata_len = bnx2_TXP_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx2_TXP_b06FwRodata;
load_cpu_fw(bp, &cpu_reg, &fw);
/* Initialize the TX Patch-up Processor. */
cpu_reg.mode = BNX2_TPAT_CPU_MODE;
cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX2_TPAT_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx2_TPAT_b06FwReleaseMajor;
fw.ver_minor = bnx2_TPAT_b06FwReleaseMinor;
fw.ver_fix = bnx2_TPAT_b06FwReleaseFix;
fw.start_addr = bnx2_TPAT_b06FwStartAddr;
fw.text_addr = bnx2_TPAT_b06FwTextAddr;
fw.text_len = bnx2_TPAT_b06FwTextLen;
fw.text_index = 0;
rc = bnx2_gunzip(bp, bnx2_TPAT_b06FwText, sizeof(bnx2_TPAT_b06FwText),
&text, &text_len);
if (rc)
goto init_cpu_err;
fw.text = text;
fw.data_addr = bnx2_TPAT_b06FwDataAddr;
fw.data_len = bnx2_TPAT_b06FwDataLen;
fw.data_index = 0;
fw.data = bnx2_TPAT_b06FwData;
fw.sbss_addr = bnx2_TPAT_b06FwSbssAddr;
fw.sbss_len = bnx2_TPAT_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx2_TPAT_b06FwSbss;
fw.bss_addr = bnx2_TPAT_b06FwBssAddr;
fw.bss_len = bnx2_TPAT_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bnx2_TPAT_b06FwBss;
fw.rodata_addr = bnx2_TPAT_b06FwRodataAddr;
fw.rodata_len = bnx2_TPAT_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx2_TPAT_b06FwRodata;
load_cpu_fw(bp, &cpu_reg, &fw);
/* Initialize the Completion Processor. */
cpu_reg.mode = BNX2_COM_CPU_MODE;
cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX2_COM_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX2_COM_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx2_COM_b06FwReleaseMajor;
fw.ver_minor = bnx2_COM_b06FwReleaseMinor;
fw.ver_fix = bnx2_COM_b06FwReleaseFix;
fw.start_addr = bnx2_COM_b06FwStartAddr;
fw.text_addr = bnx2_COM_b06FwTextAddr;
fw.text_len = bnx2_COM_b06FwTextLen;
fw.text_index = 0;
rc = bnx2_gunzip(bp, bnx2_COM_b06FwText, sizeof(bnx2_COM_b06FwText),
&text, &text_len);
if (rc)
goto init_cpu_err;
fw.text = text;
fw.data_addr = bnx2_COM_b06FwDataAddr;
fw.data_len = bnx2_COM_b06FwDataLen;
fw.data_index = 0;
fw.data = bnx2_COM_b06FwData;
fw.sbss_addr = bnx2_COM_b06FwSbssAddr;
fw.sbss_len = bnx2_COM_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx2_COM_b06FwSbss;
fw.bss_addr = bnx2_COM_b06FwBssAddr;
fw.bss_len = bnx2_COM_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bnx2_COM_b06FwBss;
fw.rodata_addr = bnx2_COM_b06FwRodataAddr;
fw.rodata_len = bnx2_COM_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx2_COM_b06FwRodata;
load_cpu_fw(bp, &cpu_reg, &fw);
init_cpu_err:
bnx2_gunzip_end(bp);
return rc;
}
static int
bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
{
u16 pmcsr;
pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
switch (state) {
case PCI_D0: {
u32 val;
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
(pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
PCI_PM_CTRL_PME_STATUS);
if (pmcsr & PCI_PM_CTRL_STATE_MASK)
/* delay required during transition out of D3hot */
msleep(20);
val = REG_RD(bp, BNX2_EMAC_MODE);
val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
val &= ~BNX2_EMAC_MODE_MPKT;
REG_WR(bp, BNX2_EMAC_MODE, val);
val = REG_RD(bp, BNX2_RPM_CONFIG);
val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
REG_WR(bp, BNX2_RPM_CONFIG, val);
break;
}
case PCI_D3hot: {
int i;
u32 val, wol_msg;
if (bp->wol) {
u32 advertising;
u8 autoneg;
autoneg = bp->autoneg;
advertising = bp->advertising;
bp->autoneg = AUTONEG_SPEED;
bp->advertising = ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_Autoneg;
bnx2_setup_copper_phy(bp);
bp->autoneg = autoneg;
bp->advertising = advertising;
bnx2_set_mac_addr(bp);
val = REG_RD(bp, BNX2_EMAC_MODE);
/* Enable port mode. */
val &= ~BNX2_EMAC_MODE_PORT;
val |= BNX2_EMAC_MODE_PORT_MII |
BNX2_EMAC_MODE_MPKT_RCVD |
BNX2_EMAC_MODE_ACPI_RCVD |
BNX2_EMAC_MODE_MPKT;
REG_WR(bp, BNX2_EMAC_MODE, val);
/* receive all multicast */
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
0xffffffff);
}
REG_WR(bp, BNX2_EMAC_RX_MODE,
BNX2_EMAC_RX_MODE_SORT_MODE);
val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
BNX2_RPM_SORT_USER0_MC_EN;
REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
REG_WR(bp, BNX2_RPM_SORT_USER0, val);
REG_WR(bp, BNX2_RPM_SORT_USER0, val |
BNX2_RPM_SORT_USER0_ENA);
/* Need to enable EMAC and RPM for WOL. */
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
val = REG_RD(bp, BNX2_RPM_CONFIG);
val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
REG_WR(bp, BNX2_RPM_CONFIG, val);
wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
}
else {
wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
}
if (!(bp->flags & NO_WOL_FLAG))
bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
(CHIP_ID(bp) == CHIP_ID_5706_A1)) {
if (bp->wol)
pmcsr |= 3;
}
else {
pmcsr |= 3;
}
if (bp->wol) {
pmcsr |= PCI_PM_CTRL_PME_ENABLE;
}
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
pmcsr);
/* No more memory access after this point until
* device is brought back to D0.
*/
udelay(50);
break;
}
default:
return -EINVAL;
}
return 0;
}
static int
bnx2_acquire_nvram_lock(struct bnx2 *bp)
{
u32 val;
int j;
/* Request access to the flash interface. */
REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = REG_RD(bp, BNX2_NVM_SW_ARB);
if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
break;
udelay(5);
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_release_nvram_lock(struct bnx2 *bp)
{
int j;
u32 val;
/* Relinquish nvram interface. */
REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = REG_RD(bp, BNX2_NVM_SW_ARB);
if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
break;
udelay(5);
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_enable_nvram_write(struct bnx2 *bp)
{
u32 val;
val = REG_RD(bp, BNX2_MISC_CFG);
REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
if (!bp->flash_info->buffered) {
int j;
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
REG_WR(bp, BNX2_NVM_COMMAND,
BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
udelay(5);
val = REG_RD(bp, BNX2_NVM_COMMAND);
if (val & BNX2_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
}
return 0;
}
static void
bnx2_disable_nvram_write(struct bnx2 *bp)
{
u32 val;
val = REG_RD(bp, BNX2_MISC_CFG);
REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
}
static void
bnx2_enable_nvram_access(struct bnx2 *bp)
{
u32 val;
val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
/* Enable both bits, even on read. */
REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
}
static void
bnx2_disable_nvram_access(struct bnx2 *bp)
{
u32 val;
val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
/* Disable both bits, even after read. */
REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
BNX2_NVM_ACCESS_ENABLE_WR_EN));
}
static int
bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
{
u32 cmd;
int j;
if (bp->flash_info->buffered)
/* Buffered flash, no erase needed */
return 0;
/* Build an erase command */
cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
BNX2_NVM_COMMAND_DOIT;
/* Need to clear DONE bit separately. */
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
/* Address of the NVRAM to read from. */
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
/* Issue an erase command. */
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
u32 val;
udelay(5);
val = REG_RD(bp, BNX2_NVM_COMMAND);
if (val & BNX2_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
{
u32 cmd;
int j;
/* Build the command word. */
cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
/* Calculate an offset of a buffered flash. */
if (bp->flash_info->buffered) {
offset = ((offset / bp->flash_info->page_size) <<
bp->flash_info->page_bits) +
(offset % bp->flash_info->page_size);
}
/* Need to clear DONE bit separately. */
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
/* Address of the NVRAM to read from. */
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
/* Issue a read command. */
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
u32 val;
udelay(5);
val = REG_RD(bp, BNX2_NVM_COMMAND);
if (val & BNX2_NVM_COMMAND_DONE) {
val = REG_RD(bp, BNX2_NVM_READ);
val = be32_to_cpu(val);
memcpy(ret_val, &val, 4);
break;
}
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
{
u32 cmd, val32;
int j;
/* Build the command word. */
cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
/* Calculate an offset of a buffered flash. */
if (bp->flash_info->buffered) {
offset = ((offset / bp->flash_info->page_size) <<
bp->flash_info->page_bits) +
(offset % bp->flash_info->page_size);
}
/* Need to clear DONE bit separately. */
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
memcpy(&val32, val, 4);
val32 = cpu_to_be32(val32);
/* Write the data. */
REG_WR(bp, BNX2_NVM_WRITE, val32);
/* Address of the NVRAM to write to. */
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
/* Issue the write command. */
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
udelay(5);
if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_init_nvram(struct bnx2 *bp)
{
u32 val;
int j, entry_count, rc;
struct flash_spec *flash;
/* Determine the selected interface. */
val = REG_RD(bp, BNX2_NVM_CFG1);
entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
rc = 0;
if (val & 0x40000000) {
/* Flash interface has been reconfigured */
for (j = 0, flash = &flash_table[0]; j < entry_count;
j++, flash++) {
if ((val & FLASH_BACKUP_STRAP_MASK) ==
(flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
bp->flash_info = flash;
break;
}
}
}
else {
u32 mask;
/* Not yet been reconfigured */
if (val & (1 << 23))
mask = FLASH_BACKUP_STRAP_MASK;
else
mask = FLASH_STRAP_MASK;
for (j = 0, flash = &flash_table[0]; j < entry_count;
j++, flash++) {
if ((val & mask) == (flash->strapping & mask)) {
bp->flash_info = flash;
/* Request access to the flash interface. */
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
return rc;
/* Enable access to flash interface */
bnx2_enable_nvram_access(bp);
/* Reconfigure the flash interface */
REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
/* Disable access to flash interface */
bnx2_disable_nvram_access(bp);
bnx2_release_nvram_lock(bp);
break;
}
}
} /* if (val & 0x40000000) */
if (j == entry_count) {
bp->flash_info = NULL;
printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
return -ENODEV;
}
val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
if (val)
bp->flash_size = val;
else
bp->flash_size = bp->flash_info->total_size;
return rc;
}
static int
bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
int buf_size)
{
int rc = 0;
u32 cmd_flags, offset32, len32, extra;
if (buf_size == 0)
return 0;
/* Request access to the flash interface. */
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
return rc;
/* Enable access to flash interface */
bnx2_enable_nvram_access(bp);
len32 = buf_size;
offset32 = offset;
extra = 0;
cmd_flags = 0;
if (offset32 & 3) {
u8 buf[4];
u32 pre_len;
offset32 &= ~3;
pre_len = 4 - (offset & 3);
if (pre_len >= len32) {
pre_len = len32;
cmd_flags = BNX2_NVM_COMMAND_FIRST |
BNX2_NVM_COMMAND_LAST;
}
else {
cmd_flags = BNX2_NVM_COMMAND_FIRST;
}
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
if (rc)
return rc;
memcpy(ret_buf, buf + (offset & 3), pre_len);
offset32 += 4;
ret_buf += pre_len;
len32 -= pre_len;
}
if (len32 & 3) {
extra = 4 - (len32 & 3);
len32 = (len32 + 4) & ~3;
}
if (len32 == 4) {
u8 buf[4];
if (cmd_flags)
cmd_flags = BNX2_NVM_COMMAND_LAST;
else
cmd_flags = BNX2_NVM_COMMAND_FIRST |
BNX2_NVM_COMMAND_LAST;
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
}
else if (len32 > 0) {
u8 buf[4];
/* Read the first word. */
if (cmd_flags)
cmd_flags = 0;
else
cmd_flags = BNX2_NVM_COMMAND_FIRST;
rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
while (len32 > 4 && rc == 0) {
rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
}
if (rc)
return rc;
cmd_flags = BNX2_NVM_COMMAND_LAST;
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
}
/* Disable access to flash interface */
bnx2_disable_nvram_access(bp);
bnx2_release_nvram_lock(bp);
return rc;
}
static int
bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
int buf_size)
{
u32 written, offset32, len32;
u8 *buf, start[4], end[4], *flash_buffer = NULL;
int rc = 0;
int align_start, align_end;
buf = data_buf;
offset32 = offset;
len32 = buf_size;
align_start = align_end = 0;
if ((align_start = (offset32 & 3))) {
offset32 &= ~3;
len32 += align_start;
if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
return rc;
}
if (len32 & 3) {
if ((len32 > 4) || !align_start) {
align_end = 4 - (len32 & 3);
len32 += align_end;
if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4,
end, 4))) {
return rc;
}
}
}
if (align_start || align_end) {
buf = kmalloc(len32, GFP_KERNEL);
if (buf == 0)
return -ENOMEM;
if (align_start) {
memcpy(buf, start, 4);
}
if (align_end) {
memcpy(buf + len32 - 4, end, 4);
}
memcpy(buf + align_start, data_buf, buf_size);
}
if (bp->flash_info->buffered == 0) {
flash_buffer = kmalloc(264, GFP_KERNEL);
if (flash_buffer == NULL) {
rc = -ENOMEM;
goto nvram_write_end;
}
}
written = 0;
while ((written < len32) && (rc == 0)) {
u32 page_start, page_end, data_start, data_end;
u32 addr, cmd_flags;
int i;
/* Find the page_start addr */
page_start = offset32 + written;
page_start -= (page_start % bp->flash_info->page_size);
/* Find the page_end addr */
page_end = page_start + bp->flash_info->page_size;
/* Find the data_start addr */
data_start = (written == 0) ? offset32 : page_start;
/* Find the data_end addr */
data_end = (page_end > offset32 + len32) ?
(offset32 + len32) : page_end;
/* Request access to the flash interface. */
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
goto nvram_write_end;
/* Enable access to flash interface */
bnx2_enable_nvram_access(bp);
cmd_flags = BNX2_NVM_COMMAND_FIRST;
if (bp->flash_info->buffered == 0) {
int j;
/* Read the whole page into the buffer
* (non-buffer flash only) */
for (j = 0; j < bp->flash_info->page_size; j += 4) {
if (j == (bp->flash_info->page_size - 4)) {
cmd_flags |= BNX2_NVM_COMMAND_LAST;
}
rc = bnx2_nvram_read_dword(bp,
page_start + j,
&flash_buffer[j],
cmd_flags);
if (rc)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Enable writes to flash interface (unlock write-protect) */
if ((rc = bnx2_enable_nvram_write(bp)) != 0)
goto nvram_write_end;
/* Erase the page */
if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
goto nvram_write_end;
/* Re-enable the write again for the actual write */
bnx2_enable_nvram_write(bp);
/* Loop to write back the buffer data from page_start to
* data_start */
i = 0;
if (bp->flash_info->buffered == 0) {
for (addr = page_start; addr < data_start;
addr += 4, i += 4) {
rc = bnx2_nvram_write_dword(bp, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Loop to write the new data from data_start to data_end */
for (addr = data_start; addr < data_end; addr += 4, i += 4) {
if ((addr == page_end - 4) ||
((bp->flash_info->buffered) &&
(addr == data_end - 4))) {
cmd_flags |= BNX2_NVM_COMMAND_LAST;
}
rc = bnx2_nvram_write_dword(bp, addr, buf,
cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
buf += 4;
}
/* Loop to write back the buffer data from data_end
* to page_end */
if (bp->flash_info->buffered == 0) {
for (addr = data_end; addr < page_end;
addr += 4, i += 4) {
if (addr == page_end-4) {
cmd_flags = BNX2_NVM_COMMAND_LAST;
}
rc = bnx2_nvram_write_dword(bp, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Disable writes to flash interface (lock write-protect) */
bnx2_disable_nvram_write(bp);
/* Disable access to flash interface */
bnx2_disable_nvram_access(bp);
bnx2_release_nvram_lock(bp);
/* Increment written */
written += data_end - data_start;
}
nvram_write_end:
if (bp->flash_info->buffered == 0)
kfree(flash_buffer);
if (align_start || align_end)
kfree(buf);
return rc;
}
static int
bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
{
u32 val;
int i, rc = 0;
/* Wait for the current PCI transaction to complete before
* issuing a reset. */
REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
udelay(5);
/* Wait for the firmware to tell us it is ok to issue a reset. */
bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
/* Deposit a driver reset signature so the firmware knows that
* this is a soft reset. */
REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
BNX2_DRV_RESET_SIGNATURE_MAGIC);
/* Do a dummy read to force the chip to complete all current transaction
* before we issue a reset. */
val = REG_RD(bp, BNX2_MISC_ID);
val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
/* Chip reset. */
REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
(CHIP_ID(bp) == CHIP_ID_5706_A1))
msleep(15);
/* Reset takes approximate 30 usec */
for (i = 0; i < 10; i++) {
val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
break;
}
udelay(10);
}
if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
printk(KERN_ERR PFX "Chip reset did not complete\n");
return -EBUSY;
}
/* Make sure byte swapping is properly configured. */
val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
if (val != 0x01020304) {
printk(KERN_ERR PFX "Chip not in correct endian mode\n");
return -ENODEV;
}
/* Wait for the firmware to finish its initialization. */
rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
if (rc)
return rc;
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
/* Adjust the voltage regular to two steps lower. The default
* of this register is 0x0000000e. */
REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
/* Remove bad rbuf memory from the free pool. */
rc = bnx2_alloc_bad_rbuf(bp);
}
return rc;
}
static int
bnx2_init_chip(struct bnx2 *bp)
{
u32 val;
int rc;
/* Make sure the interrupt is not active. */
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
BNX2_DMA_CONFIG_DATA_WORD_SWAP |
#ifdef __BIG_ENDIAN
BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
#endif
BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
DMA_READ_CHANS << 12 |
DMA_WRITE_CHANS << 16;
val |= (0x2 << 20) | (1 << 11);
if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
val |= (1 << 23);
if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
(CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
REG_WR(bp, BNX2_DMA_CONFIG, val);
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
val = REG_RD(bp, BNX2_TDMA_CONFIG);
val |= BNX2_TDMA_CONFIG_ONE_DMA;
REG_WR(bp, BNX2_TDMA_CONFIG, val);
}
if (bp->flags & PCIX_FLAG) {
u16 val16;
pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
&val16);
pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
val16 & ~PCI_X_CMD_ERO);
}
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
/* Initialize context mapping and zero out the quick contexts. The
* context block must have already been enabled. */
bnx2_init_context(bp);
if ((rc = bnx2_init_cpus(bp)) != 0)
return rc;
bnx2_init_nvram(bp);
bnx2_set_mac_addr(bp);
val = REG_RD(bp, BNX2_MQ_CONFIG);
val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
REG_WR(bp, BNX2_MQ_CONFIG, val);
val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
val = (BCM_PAGE_BITS - 8) << 24;
REG_WR(bp, BNX2_RV2P_CONFIG, val);
/* Configure page size. */
val = REG_RD(bp, BNX2_TBDR_CONFIG);
val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
REG_WR(bp, BNX2_TBDR_CONFIG, val);
val = bp->mac_addr[0] +
(bp->mac_addr[1] << 8) +
(bp->mac_addr[2] << 16) +
bp->mac_addr[3] +
(bp->mac_addr[4] << 8) +
(bp->mac_addr[5] << 16);
REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
/* Program the MTU. Also include 4 bytes for CRC32. */
val = bp->dev->mtu + ETH_HLEN + 4;
if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
bp->last_status_idx = 0;
bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
/* Set up how to generate a link change interrupt. */
REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
(u64) bp->status_blk_mapping & 0xffffffff);
REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
(u64) bp->stats_blk_mapping & 0xffffffff);
REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
(u64) bp->stats_blk_mapping >> 32);
REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
(bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
(bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
(bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
REG_WR(bp, BNX2_HC_COM_TICKS,
(bp->com_ticks_int << 16) | bp->com_ticks);
REG_WR(bp, BNX2_HC_CMD_TICKS,
(bp->cmd_ticks_int << 16) | bp->cmd_ticks);
REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
if (CHIP_ID(bp) == CHIP_ID_5706_A1)
REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS);
else {
REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE |
BNX2_HC_CONFIG_TX_TMR_MODE |
BNX2_HC_CONFIG_COLLECT_STATS);
}
/* Clear internal stats counters. */
REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) &
BNX2_PORT_FEATURE_ASF_ENABLED)
bp->flags |= ASF_ENABLE_FLAG;
/* Initialize the receive filter. */
bnx2_set_rx_mode(bp->dev);
rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
0);
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
udelay(20);
bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
return rc;
}
static void
bnx2_init_tx_ring(struct bnx2 *bp)
{
struct tx_bd *txbd;
u32 val;
txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
bp->tx_prod = 0;
bp->tx_cons = 0;
bp->hw_tx_cons = 0;
bp->tx_prod_bseq = 0;
val = BNX2_L2CTX_TYPE_TYPE_L2;
val |= BNX2_L2CTX_TYPE_SIZE_L2;
CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TYPE, val);
val = BNX2_L2CTX_CMD_TYPE_TYPE_L2;
val |= 8 << 16;
CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_CMD_TYPE, val);
val = (u64) bp->tx_desc_mapping >> 32;
CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_HI, val);
val = (u64) bp->tx_desc_mapping & 0xffffffff;
CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_LO, val);
}
static void
bnx2_init_rx_ring(struct bnx2 *bp)
{
struct rx_bd *rxbd;
int i;
u16 prod, ring_prod;
u32 val;
/* 8 for CRC and VLAN */
bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
/* 8 for alignment */
bp->rx_buf_size = bp->rx_buf_use_size + 8;
ring_prod = prod = bp->rx_prod = 0;
bp->rx_cons = 0;
bp->hw_rx_cons = 0;
bp->rx_prod_bseq = 0;
for (i = 0; i < bp->rx_max_ring; i++) {
int j;
rxbd = &bp->rx_desc_ring[i][0];
for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
rxbd->rx_bd_len = bp->rx_buf_use_size;
rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
}
if (i == (bp->rx_max_ring - 1))
j = 0;
else
j = i + 1;
rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32;
rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] &
0xffffffff;
}
val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
val |= 0x02 << 8;
CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
val = (u64) bp->rx_desc_mapping[0] >> 32;
CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
for (i = 0; i < bp->rx_ring_size; i++) {
if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
break;
}
prod = NEXT_RX_BD(prod);
ring_prod = RX_RING_IDX(prod);
}
bp->rx_prod = prod;
REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
}
static void
bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
{
u32 num_rings, max;
bp->rx_ring_size = size;
num_rings = 1;
while (size > MAX_RX_DESC_CNT) {
size -= MAX_RX_DESC_CNT;
num_rings++;
}
/* round to next power of 2 */
max = MAX_RX_RINGS;
while ((max & num_rings) == 0)
max >>= 1;
if (num_rings != max)
max <<= 1;
bp->rx_max_ring = max;
bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
}
static void
bnx2_free_tx_skbs(struct bnx2 *bp)
{
int i;
if (bp->tx_buf_ring == NULL)
return;
for (i = 0; i < TX_DESC_CNT; ) {
struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
struct sk_buff *skb = tx_buf->skb;
int j, last;
if (skb == NULL) {
i++;
continue;
}
pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
skb_headlen(skb), PCI_DMA_TODEVICE);
tx_buf->skb = NULL;
last = skb_shinfo(skb)->nr_frags;
for (j = 0; j < last; j++) {
tx_buf = &bp->tx_buf_ring[i + j + 1];
pci_unmap_page(bp->pdev,
pci_unmap_addr(tx_buf, mapping),
skb_shinfo(skb)->frags[j].size,
PCI_DMA_TODEVICE);
}
dev_kfree_skb(skb);
i += j + 1;
}
}
static void
bnx2_free_rx_skbs(struct bnx2 *bp)
{
int i;
if (bp->rx_buf_ring == NULL)
return;
for (i = 0; i < bp->rx_max_ring_idx; i++) {
struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
struct sk_buff *skb = rx_buf->skb;
if (skb == NULL)
continue;
pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
rx_buf->skb = NULL;
dev_kfree_skb(skb);
}
}
static void
bnx2_free_skbs(struct bnx2 *bp)
{
bnx2_free_tx_skbs(bp);
bnx2_free_rx_skbs(bp);
}
static int
bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
{
int rc;
rc = bnx2_reset_chip(bp, reset_code);
bnx2_free_skbs(bp);
if (rc)
return rc;
if ((rc = bnx2_init_chip(bp)) != 0)
return rc;
bnx2_init_tx_ring(bp);
bnx2_init_rx_ring(bp);
return 0;
}
static int
bnx2_init_nic(struct bnx2 *bp)
{
int rc;
if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
return rc;
bnx2_init_phy(bp);
bnx2_set_link(bp);
return 0;
}
static int
bnx2_test_registers(struct bnx2 *bp)
{
int ret;
int i;
static const struct {
u16 offset;
u16 flags;
u32 rw_mask;
u32 ro_mask;
} reg_tbl[] = {
{ 0x006c, 0, 0x00000000, 0x0000003f },
{ 0x0090, 0, 0xffffffff, 0x00000000 },
{ 0x0094, 0, 0x00000000, 0x00000000 },
{ 0x0404, 0, 0x00003f00, 0x00000000 },
{ 0x0418, 0, 0x00000000, 0xffffffff },
{ 0x041c, 0, 0x00000000, 0xffffffff },
{ 0x0420, 0, 0x00000000, 0x80ffffff },
{ 0x0424, 0, 0x00000000, 0x00000000 },
{ 0x0428, 0, 0x00000000, 0x00000001 },
{ 0x0450, 0, 0x00000000, 0x0000ffff },
{ 0x0454, 0, 0x00000000, 0xffffffff },
{ 0x0458, 0, 0x00000000, 0xffffffff },
{ 0x0808, 0, 0x00000000, 0xffffffff },
{ 0x0854, 0, 0x00000000, 0xffffffff },
{ 0x0868, 0, 0x00000000, 0x77777777 },
{ 0x086c, 0, 0x00000000, 0x77777777 },
{ 0x0870, 0, 0x00000000, 0x77777777 },
{ 0x0874, 0, 0x00000000, 0x77777777 },
{ 0x0c00, 0, 0x00000000, 0x00000001 },
{ 0x0c04, 0, 0x00000000, 0x03ff0001 },
{ 0x0c08, 0, 0x0f0ff073, 0x00000000 },
{ 0x1000, 0, 0x00000000, 0x00000001 },
{ 0x1004, 0, 0x00000000, 0x000f0001 },
{ 0x1408, 0, 0x01c00800, 0x00000000 },
{ 0x149c, 0, 0x8000ffff, 0x00000000 },
{ 0x14a8, 0, 0x00000000, 0x000001ff },
{ 0x14ac, 0, 0x0fffffff, 0x10000000 },
{ 0x14b0, 0, 0x00000002, 0x00000001 },
{ 0x14b8, 0, 0x00000000, 0x00000000 },
{ 0x14c0, 0, 0x00000000, 0x00000009 },
{ 0x14c4, 0, 0x00003fff, 0x00000000 },
{ 0x14cc, 0, 0x00000000, 0x00000001 },
{ 0x14d0, 0, 0xffffffff, 0x00000000 },
{ 0x1800, 0, 0x00000000, 0x00000001 },
{ 0x1804, 0, 0x00000000, 0x00000003 },
{ 0x2800, 0, 0x00000000, 0x00000001 },
{ 0x2804, 0, 0x00000000, 0x00003f01 },
{ 0x2808, 0, 0x0f3f3f03, 0x00000000 },
{ 0x2810, 0, 0xffff0000, 0x00000000 },
{ 0x2814, 0, 0xffff0000, 0x00000000 },
{ 0x2818, 0, 0xffff0000, 0x00000000 },
{ 0x281c, 0, 0xffff0000, 0x00000000 },
{ 0x2834, 0, 0xffffffff, 0x00000000 },
{ 0x2840, 0, 0x00000000, 0xffffffff },
{ 0x2844, 0, 0x00000000, 0xffffffff },
{ 0x2848, 0, 0xffffffff, 0x00000000 },
{ 0x284c, 0, 0xf800f800, 0x07ff07ff },
{ 0x2c00, 0, 0x00000000, 0x00000011 },
{ 0x2c04, 0, 0x00000000, 0x00030007 },
{ 0x3c00, 0, 0x00000000, 0x00000001 },
{ 0x3c04, 0, 0x00000000, 0x00070000 },
{ 0x3c08, 0, 0x00007f71, 0x07f00000 },
{ 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
{ 0x3c10, 0, 0xffffffff, 0x00000000 },
{ 0x3c14, 0, 0x00000000, 0xffffffff },
{ 0x3c18, 0, 0x00000000, 0xffffffff },
{ 0x3c1c, 0, 0xfffff000, 0x00000000 },
{ 0x3c20, 0, 0xffffff00, 0x00000000 },
{ 0x5004, 0, 0x00000000, 0x0000007f },
{ 0x5008, 0, 0x0f0007ff, 0x00000000 },
{ 0x500c, 0, 0xf800f800, 0x07ff07ff },
{ 0x5c00, 0, 0x00000000, 0x00000001 },
{ 0x5c04, 0, 0x00000000, 0x0003000f },
{ 0x5c08, 0, 0x00000003, 0x00000000 },
{ 0x5c0c, 0, 0x0000fff8, 0x00000000 },
{ 0x5c10, 0, 0x00000000, 0xffffffff },
{ 0x5c80, 0, 0x00000000, 0x0f7113f1 },
{ 0x5c84, 0, 0x00000000, 0x0000f333 },
{ 0x5c88, 0, 0x00000000, 0x00077373 },
{ 0x5c8c, 0, 0x00000000, 0x0007f737 },
{ 0x6808, 0, 0x0000ff7f, 0x00000000 },
{ 0x680c, 0, 0xffffffff, 0x00000000 },
{ 0x6810, 0, 0xffffffff, 0x00000000 },
{ 0x6814, 0, 0xffffffff, 0x00000000 },
{ 0x6818, 0, 0xffffffff, 0x00000000 },
{ 0x681c, 0, 0xffffffff, 0x00000000 },
{ 0x6820, 0, 0x00ff00ff, 0x00000000 },
{ 0x6824, 0, 0x00ff00ff, 0x00000000 },
{ 0x6828, 0, 0x00ff00ff, 0x00000000 },
{ 0x682c, 0, 0x03ff03ff, 0x00000000 },
{ 0x6830, 0, 0x03ff03ff, 0x00000000 },
{ 0x6834, 0, 0x03ff03ff, 0x00000000 },
{ 0x6838, 0, 0x03ff03ff, 0x00000000 },
{ 0x683c, 0, 0x0000ffff, 0x00000000 },
{ 0x6840, 0, 0x00000ff0, 0x00000000 },
{ 0x6844, 0, 0x00ffff00, 0x00000000 },
{ 0x684c, 0, 0xffffffff, 0x00000000 },
{ 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x6908, 0, 0x00000000, 0x0001ff0f },
{ 0x690c, 0, 0x00000000, 0x0ffe00f0 },
{ 0xffff, 0, 0x00000000, 0x00000000 },
};
ret = 0;
for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
u32 offset, rw_mask, ro_mask, save_val, val;
offset = (u32) reg_tbl[i].offset;
rw_mask = reg_tbl[i].rw_mask;
ro_mask = reg_tbl[i].ro_mask;
save_val = readl(bp->regview + offset);
writel(0, bp->regview + offset);
val = readl(bp->regview + offset);
if ((val & rw_mask) != 0) {
goto reg_test_err;
}
if ((val & ro_mask) != (save_val & ro_mask)) {
goto reg_test_err;
}
writel(0xffffffff, bp->regview + offset);
val = readl(bp->regview + offset);
if ((val & rw_mask) != rw_mask) {
goto reg_test_err;
}
if ((val & ro_mask) != (save_val & ro_mask)) {
goto reg_test_err;
}
writel(save_val, bp->regview + offset);
continue;
reg_test_err:
writel(save_val, bp->regview + offset);
ret = -ENODEV;
break;
}
return ret;
}
static int
bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
{
static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
int i;
for (i = 0; i < sizeof(test_pattern) / 4; i++) {
u32 offset;
for (offset = 0; offset < size; offset += 4) {
REG_WR_IND(bp, start + offset, test_pattern[i]);
if (REG_RD_IND(bp, start + offset) !=
test_pattern[i]) {
return -ENODEV;
}
}
}
return 0;
}
static int
bnx2_test_memory(struct bnx2 *bp)
{
int ret = 0;
int i;
static const struct {
u32 offset;
u32 len;
} mem_tbl[] = {
{ 0x60000, 0x4000 },
{ 0xa0000, 0x3000 },
{ 0xe0000, 0x4000 },
{ 0x120000, 0x4000 },
{ 0x1a0000, 0x4000 },
{ 0x160000, 0x4000 },
{ 0xffffffff, 0 },
};
for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
mem_tbl[i].len)) != 0) {
return ret;
}
}
return ret;
}
#define BNX2_MAC_LOOPBACK 0
#define BNX2_PHY_LOOPBACK 1
static int
bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
{
unsigned int pkt_size, num_pkts, i;
struct sk_buff *skb, *rx_skb;
unsigned char *packet;
u16 rx_start_idx, rx_idx;
dma_addr_t map;
struct tx_bd *txbd;
struct sw_bd *rx_buf;
struct l2_fhdr *rx_hdr;
int ret = -ENODEV;
if (loopback_mode == BNX2_MAC_LOOPBACK) {
bp->loopback = MAC_LOOPBACK;
bnx2_set_mac_loopback(bp);
}
else if (loopback_mode == BNX2_PHY_LOOPBACK) {
bp->loopback = 0;
bnx2_set_phy_loopback(bp);
}
else
return -EINVAL;
pkt_size = 1514;
skb = dev_alloc_skb(pkt_size);
if (!skb)
return -ENOMEM;
packet = skb_put(skb, pkt_size);
memcpy(packet, bp->mac_addr, 6);
memset(packet + 6, 0x0, 8);
for (i = 14; i < pkt_size; i++)
packet[i] = (unsigned char) (i & 0xff);
map = pci_map_single(bp->pdev, skb->data, pkt_size,
PCI_DMA_TODEVICE);
REG_WR(bp, BNX2_HC_COMMAND,
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
REG_RD(bp, BNX2_HC_COMMAND);
udelay(5);
rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
num_pkts = 0;
txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
txbd->tx_bd_haddr_hi = (u64) map >> 32;
txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
txbd->tx_bd_mss_nbytes = pkt_size;
txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
num_pkts++;
bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
bp->tx_prod_bseq += pkt_size;
REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, bp->tx_prod);
REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq);
udelay(100);
REG_WR(bp, BNX2_HC_COMMAND,
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
REG_RD(bp, BNX2_HC_COMMAND);
udelay(5);
pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
dev_kfree_skb(skb);
if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
goto loopback_test_done;
}
rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
if (rx_idx != rx_start_idx + num_pkts) {
goto loopback_test_done;
}
rx_buf = &bp->rx_buf_ring[rx_start_idx];
rx_skb = rx_buf->skb;
rx_hdr = (struct l2_fhdr *) rx_skb->data;
skb_reserve(rx_skb, bp->rx_offset);
pci_dma_sync_single_for_cpu(bp->pdev,
pci_unmap_addr(rx_buf, mapping),
bp->rx_buf_size, PCI_DMA_FROMDEVICE);
if (rx_hdr->l2_fhdr_status &
(L2_FHDR_ERRORS_BAD_CRC |
L2_FHDR_ERRORS_PHY_DECODE |
L2_FHDR_ERRORS_ALIGNMENT |
L2_FHDR_ERRORS_TOO_SHORT |
L2_FHDR_ERRORS_GIANT_FRAME)) {
goto loopback_test_done;
}
if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
goto loopback_test_done;
}
for (i = 14; i < pkt_size; i++) {
if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
goto loopback_test_done;
}
}
ret = 0;
loopback_test_done:
bp->loopback = 0;
return ret;
}
#define BNX2_MAC_LOOPBACK_FAILED 1
#define BNX2_PHY_LOOPBACK_FAILED 2
#define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
BNX2_PHY_LOOPBACK_FAILED)
static int
bnx2_test_loopback(struct bnx2 *bp)
{
int rc = 0;
if (!netif_running(bp->dev))
return BNX2_LOOPBACK_FAILED;
bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
spin_lock_bh(&bp->phy_lock);
bnx2_init_phy(bp);
spin_unlock_bh(&bp->phy_lock);
if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
rc |= BNX2_MAC_LOOPBACK_FAILED;
if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
rc |= BNX2_PHY_LOOPBACK_FAILED;
return rc;
}
#define NVRAM_SIZE 0x200
#define CRC32_RESIDUAL 0xdebb20e3
static int
bnx2_test_nvram(struct bnx2 *bp)
{
u32 buf[NVRAM_SIZE / 4];
u8 *data = (u8 *) buf;
int rc = 0;
u32 magic, csum;
if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
goto test_nvram_done;
magic = be32_to_cpu(buf[0]);
if (magic != 0x669955aa) {
rc = -ENODEV;
goto test_nvram_done;
}
if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
goto test_nvram_done;
csum = ether_crc_le(0x100, data);
if (csum != CRC32_RESIDUAL) {
rc = -ENODEV;
goto test_nvram_done;
}
csum = ether_crc_le(0x100, data + 0x100);
if (csum != CRC32_RESIDUAL) {
rc = -ENODEV;
}
test_nvram_done:
return rc;
}
static int
bnx2_test_link(struct bnx2 *bp)
{
u32 bmsr;
spin_lock_bh(&bp->phy_lock);
bnx2_read_phy(bp, MII_BMSR, &bmsr);
bnx2_read_phy(bp, MII_BMSR, &bmsr);
spin_unlock_bh(&bp->phy_lock);
if (bmsr & BMSR_LSTATUS) {
return 0;
}
return -ENODEV;
}
static int
bnx2_test_intr(struct bnx2 *bp)
{
int i;
u16 status_idx;
if (!netif_running(bp->dev))
return -ENODEV;
status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
/* This register is not touched during run-time. */
REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
REG_RD(bp, BNX2_HC_COMMAND);
for (i = 0; i < 10; i++) {
if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
status_idx) {
break;
}
msleep_interruptible(10);
}
if (i < 10)
return 0;
return -ENODEV;
}
static void
bnx2_timer(unsigned long data)
{
struct bnx2 *bp = (struct bnx2 *) data;
u32 msg;
if (!netif_running(bp->dev))
return;
if (atomic_read(&bp->intr_sem) != 0)
goto bnx2_restart_timer;
msg = (u32) ++bp->fw_drv_pulse_wr_seq;
REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg);
bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT);
if ((bp->phy_flags & PHY_SERDES_FLAG) &&
(CHIP_NUM(bp) == CHIP_NUM_5706)) {
spin_lock(&bp->phy_lock);
if (bp->serdes_an_pending) {
bp->serdes_an_pending--;
}
else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
u32 bmcr;
bp->current_interval = bp->timer_interval;
bnx2_read_phy(bp, MII_BMCR, &bmcr);
if (bmcr & BMCR_ANENABLE) {
u32 phy1, phy2;
bnx2_write_phy(bp, 0x1c, 0x7c00);
bnx2_read_phy(bp, 0x1c, &phy1);
bnx2_write_phy(bp, 0x17, 0x0f01);
bnx2_read_phy(bp, 0x15, &phy2);
bnx2_write_phy(bp, 0x17, 0x0f01);
bnx2_read_phy(bp, 0x15, &phy2);
if ((phy1 & 0x10) && /* SIGNAL DETECT */
!(phy2 & 0x20)) { /* no CONFIG */
bmcr &= ~BMCR_ANENABLE;
bmcr |= BMCR_SPEED1000 |
BMCR_FULLDPLX;
bnx2_write_phy(bp, MII_BMCR, bmcr);
bp->phy_flags |=
PHY_PARALLEL_DETECT_FLAG;
}
}
}
else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
(bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
u32 phy2;
bnx2_write_phy(bp, 0x17, 0x0f01);
bnx2_read_phy(bp, 0x15, &phy2);
if (phy2 & 0x20) {
u32 bmcr;
bnx2_read_phy(bp, MII_BMCR, &bmcr);
bmcr |= BMCR_ANENABLE;
bnx2_write_phy(bp, MII_BMCR, bmcr);
bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
}
}
else
bp->current_interval = bp->timer_interval;
spin_unlock(&bp->phy_lock);
}
bnx2_restart_timer:
mod_timer(&bp->timer, jiffies + bp->current_interval);
}
/* Called with rtnl_lock */
static int
bnx2_open(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
int rc;
bnx2_set_power_state(bp, PCI_D0);
bnx2_disable_int(bp);
rc = bnx2_alloc_mem(bp);
if (rc)
return rc;
if ((CHIP_ID(bp) != CHIP_ID_5706_A0) &&
(CHIP_ID(bp) != CHIP_ID_5706_A1) &&
!disable_msi) {
if (pci_enable_msi(bp->pdev) == 0) {
bp->flags |= USING_MSI_FLAG;
rc = request_irq(bp->pdev->irq, bnx2_msi, 0, dev->name,
dev);
}
else {
rc = request_irq(bp->pdev->irq, bnx2_interrupt,
IRQF_SHARED, dev->name, dev);
}
}
else {
rc = request_irq(bp->pdev->irq, bnx2_interrupt, IRQF_SHARED,
dev->name, dev);
}
if (rc) {
bnx2_free_mem(bp);
return rc;
}
rc = bnx2_init_nic(bp);
if (rc) {
free_irq(bp->pdev->irq, dev);
if (bp->flags & USING_MSI_FLAG) {
pci_disable_msi(bp->pdev);
bp->flags &= ~USING_MSI_FLAG;
}
bnx2_free_skbs(bp);
bnx2_free_mem(bp);
return rc;
}
mod_timer(&bp->timer, jiffies + bp->current_interval);
atomic_set(&bp->intr_sem, 0);
bnx2_enable_int(bp);
if (bp->flags & USING_MSI_FLAG) {
/* Test MSI to make sure it is working
* If MSI test fails, go back to INTx mode
*/
if (bnx2_test_intr(bp) != 0) {
printk(KERN_WARNING PFX "%s: No interrupt was generated"
" using MSI, switching to INTx mode. Please"
" report this failure to the PCI maintainer"
" and include system chipset information.\n",
bp->dev->name);
bnx2_disable_int(bp);
free_irq(bp->pdev->irq, dev);
pci_disable_msi(bp->pdev);
bp->flags &= ~USING_MSI_FLAG;
rc = bnx2_init_nic(bp);
if (!rc) {
rc = request_irq(bp->pdev->irq, bnx2_interrupt,
IRQF_SHARED, dev->name, dev);
}
if (rc) {
bnx2_free_skbs(bp);
bnx2_free_mem(bp);
del_timer_sync(&bp->timer);
return rc;
}
bnx2_enable_int(bp);
}
}
if (bp->flags & USING_MSI_FLAG) {
printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
}
netif_start_queue(dev);
return 0;
}
static void
bnx2_reset_task(void *data)
{
struct bnx2 *bp = data;
if (!netif_running(bp->dev))
return;
bp->in_reset_task = 1;
bnx2_netif_stop(bp);
bnx2_init_nic(bp);
atomic_set(&bp->intr_sem, 1);
bnx2_netif_start(bp);
bp->in_reset_task = 0;
}
static void
bnx2_tx_timeout(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
/* This allows the netif to be shutdown gracefully before resetting */
schedule_work(&bp->reset_task);
}
#ifdef BCM_VLAN
/* Called with rtnl_lock */
static void
bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
{
struct bnx2 *bp = netdev_priv(dev);
bnx2_netif_stop(bp);
bp->vlgrp = vlgrp;
bnx2_set_rx_mode(dev);
bnx2_netif_start(bp);
}
/* Called with rtnl_lock */
static void
bnx2_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
{
struct bnx2 *bp = netdev_priv(dev);
bnx2_netif_stop(bp);
if (bp->vlgrp)
bp->vlgrp->vlan_devices[vid] = NULL;
bnx2_set_rx_mode(dev);
bnx2_netif_start(bp);
}
#endif
/* Called with netif_tx_lock.
* hard_start_xmit is pseudo-lockless - a lock is only required when
* the tx queue is full. This way, we get the benefit of lockless
* operations most of the time without the complexities to handle
* netif_stop_queue/wake_queue race conditions.
*/
static int
bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
dma_addr_t mapping;
struct tx_bd *txbd;
struct sw_bd *tx_buf;
u32 len, vlan_tag_flags, last_frag, mss;
u16 prod, ring_prod;
int i;
if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
netif_stop_queue(dev);
printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
dev->name);
return NETDEV_TX_BUSY;
}
len = skb_headlen(skb);
prod = bp->tx_prod;
ring_prod = TX_RING_IDX(prod);
vlan_tag_flags = 0;
if (skb->ip_summed == CHECKSUM_HW) {
vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
}
if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
vlan_tag_flags |=
(TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
}
#ifdef BCM_TSO
if ((mss = skb_shinfo(skb)->gso_size) &&
(skb->len > (bp->dev->mtu + ETH_HLEN))) {
u32 tcp_opt_len, ip_tcp_len;
if (skb_header_cloned(skb) &&
pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
tcp_opt_len = ((skb->h.th->doff - 5) * 4);
vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
tcp_opt_len = 0;
if (skb->h.th->doff > 5) {
tcp_opt_len = (skb->h.th->doff - 5) << 2;
}
ip_tcp_len = (skb->nh.iph->ihl << 2) + sizeof(struct tcphdr);
skb->nh.iph->check = 0;
skb->nh.iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
skb->h.th->check =
~csum_tcpudp_magic(skb->nh.iph->saddr,
skb->nh.iph->daddr,
0, IPPROTO_TCP, 0);
if (tcp_opt_len || (skb->nh.iph->ihl > 5)) {
vlan_tag_flags |= ((skb->nh.iph->ihl - 5) +
(tcp_opt_len >> 2)) << 8;
}
}
else
#endif
{
mss = 0;
}
mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
tx_buf = &bp->tx_buf_ring[ring_prod];
tx_buf->skb = skb;
pci_unmap_addr_set(tx_buf, mapping, mapping);
txbd = &bp->tx_desc_ring[ring_prod];
txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
txbd->tx_bd_mss_nbytes = len | (mss << 16);
txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
last_frag = skb_shinfo(skb)->nr_frags;
for (i = 0; i < last_frag; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
prod = NEXT_TX_BD(prod);
ring_prod = TX_RING_IDX(prod);
txbd = &bp->tx_desc_ring[ring_prod];
len = frag->size;
mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
len, PCI_DMA_TODEVICE);
pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
mapping, mapping);
txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
txbd->tx_bd_mss_nbytes = len | (mss << 16);
txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
}
txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
prod = NEXT_TX_BD(prod);
bp->tx_prod_bseq += skb->len;
REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, prod);
REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq);
mmiowb();
bp->tx_prod = prod;
dev->trans_start = jiffies;
if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
spin_lock(&bp->tx_lock);
netif_stop_queue(dev);
if (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)
netif_wake_queue(dev);
spin_unlock(&bp->tx_lock);
}
return NETDEV_TX_OK;
}
/* Called with rtnl_lock */
static int
bnx2_close(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
u32 reset_code;
/* Calling flush_scheduled_work() may deadlock because
* linkwatch_event() may be on the workqueue and it will try to get
* the rtnl_lock which we are holding.
*/
while (bp->in_reset_task)
msleep(1);
bnx2_netif_stop(bp);
del_timer_sync(&bp->timer);
if (bp->flags & NO_WOL_FLAG)
reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
else if (bp->wol)
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
else
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
bnx2_reset_chip(bp, reset_code);
free_irq(bp->pdev->irq, dev);
if (bp->flags & USING_MSI_FLAG) {
pci_disable_msi(bp->pdev);
bp->flags &= ~USING_MSI_FLAG;
}
bnx2_free_skbs(bp);
bnx2_free_mem(bp);
bp->link_up = 0;
netif_carrier_off(bp->dev);
bnx2_set_power_state(bp, PCI_D3hot);
return 0;
}
#define GET_NET_STATS64(ctr) \
(unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
(unsigned long) (ctr##_lo)
#define GET_NET_STATS32(ctr) \
(ctr##_lo)
#if (BITS_PER_LONG == 64)
#define GET_NET_STATS GET_NET_STATS64
#else
#define GET_NET_STATS GET_NET_STATS32
#endif
static struct net_device_stats *
bnx2_get_stats(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
struct statistics_block *stats_blk = bp->stats_blk;
struct net_device_stats *net_stats = &bp->net_stats;
if (bp->stats_blk == NULL) {
return net_stats;
}
net_stats->rx_packets =
GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
net_stats->tx_packets =
GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
net_stats->rx_bytes =
GET_NET_STATS(stats_blk->stat_IfHCInOctets);
net_stats->tx_bytes =
GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
net_stats->multicast =
GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
net_stats->collisions =
(unsigned long) stats_blk->stat_EtherStatsCollisions;
net_stats->rx_length_errors =
(unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
stats_blk->stat_EtherStatsOverrsizePkts);
net_stats->rx_over_errors =
(unsigned long) stats_blk->stat_IfInMBUFDiscards;
net_stats->rx_frame_errors =
(unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
net_stats->rx_crc_errors =
(unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
net_stats->rx_errors = net_stats->rx_length_errors +
net_stats->rx_over_errors + net_stats->rx_frame_errors +
net_stats->rx_crc_errors;
net_stats->tx_aborted_errors =
(unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
stats_blk->stat_Dot3StatsLateCollisions);
if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
(CHIP_ID(bp) == CHIP_ID_5708_A0))
net_stats->tx_carrier_errors = 0;
else {
net_stats->tx_carrier_errors =
(unsigned long)
stats_blk->stat_Dot3StatsCarrierSenseErrors;
}
net_stats->tx_errors =
(unsigned long)
stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
+
net_stats->tx_aborted_errors +
net_stats->tx_carrier_errors;
net_stats->rx_missed_errors =
(unsigned long) (stats_blk->stat_IfInMBUFDiscards +
stats_blk->stat_FwRxDrop);
return net_stats;
}
/* All ethtool functions called with rtnl_lock */
static int
bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bnx2 *bp = netdev_priv(dev);
cmd->supported = SUPPORTED_Autoneg;
if (bp->phy_flags & PHY_SERDES_FLAG) {
cmd->supported |= SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE;
cmd->port = PORT_FIBRE;
}
else {
cmd->supported |= SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_TP;
cmd->port = PORT_TP;
}
cmd->advertising = bp->advertising;
if (bp->autoneg & AUTONEG_SPEED) {
cmd->autoneg = AUTONEG_ENABLE;
}
else {
cmd->autoneg = AUTONEG_DISABLE;
}
if (netif_carrier_ok(dev)) {
cmd->speed = bp->line_speed;
cmd->duplex = bp->duplex;
}
else {
cmd->speed = -1;
cmd->duplex = -1;
}
cmd->transceiver = XCVR_INTERNAL;
cmd->phy_address = bp->phy_addr;
return 0;
}
static int
bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bnx2 *bp = netdev_priv(dev);
u8 autoneg = bp->autoneg;
u8 req_duplex = bp->req_duplex;
u16 req_line_speed = bp->req_line_speed;
u32 advertising = bp->advertising;
if (cmd->autoneg == AUTONEG_ENABLE) {
autoneg |= AUTONEG_SPEED;
cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
/* allow advertising 1 speed */
if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
(cmd->advertising == ADVERTISED_10baseT_Full) ||
(cmd->advertising == ADVERTISED_100baseT_Half) ||
(cmd->advertising == ADVERTISED_100baseT_Full)) {
if (bp->phy_flags & PHY_SERDES_FLAG)
return -EINVAL;
advertising = cmd->advertising;
}
else if (cmd->advertising == ADVERTISED_1000baseT_Full) {
advertising = cmd->advertising;
}
else if (cmd->advertising == ADVERTISED_1000baseT_Half) {
return -EINVAL;
}
else {
if (bp->phy_flags & PHY_SERDES_FLAG) {
advertising = ETHTOOL_ALL_FIBRE_SPEED;
}
else {
advertising = ETHTOOL_ALL_COPPER_SPEED;
}
}
advertising |= ADVERTISED_Autoneg;
}
else {
if (bp->phy_flags & PHY_SERDES_FLAG) {
if ((cmd->speed != SPEED_1000) ||
(cmd->duplex != DUPLEX_FULL)) {
return -EINVAL;
}
}
else if (cmd->speed == SPEED_1000) {
return -EINVAL;
}
autoneg &= ~AUTONEG_SPEED;
req_line_speed = cmd->speed;
req_duplex = cmd->duplex;
advertising = 0;
}
bp->autoneg = autoneg;
bp->advertising = advertising;
bp->req_line_speed = req_line_speed;
bp->req_duplex = req_duplex;
spin_lock_bh(&bp->phy_lock);
bnx2_setup_phy(bp);
spin_unlock_bh(&bp->phy_lock);
return 0;
}
static void
bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct bnx2 *bp = netdev_priv(dev);
strcpy(info->driver, DRV_MODULE_NAME);
strcpy(info->version, DRV_MODULE_VERSION);
strcpy(info->bus_info, pci_name(bp->pdev));
info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0';
info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0';
info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0';
info->fw_version[1] = info->fw_version[3] = '.';
info->fw_version[5] = 0;
}
#define BNX2_REGDUMP_LEN (32 * 1024)
static int
bnx2_get_regs_len(struct net_device *dev)
{
return BNX2_REGDUMP_LEN;
}
static void
bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
{
u32 *p = _p, i, offset;
u8 *orig_p = _p;
struct bnx2 *bp = netdev_priv(dev);
u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
0x0800, 0x0880, 0x0c00, 0x0c10,
0x0c30, 0x0d08, 0x1000, 0x101c,
0x1040, 0x1048, 0x1080, 0x10a4,
0x1400, 0x1490, 0x1498, 0x14f0,
0x1500, 0x155c, 0x1580, 0x15dc,
0x1600, 0x1658, 0x1680, 0x16d8,
0x1800, 0x1820, 0x1840, 0x1854,
0x1880, 0x1894, 0x1900, 0x1984,
0x1c00, 0x1c0c, 0x1c40, 0x1c54,
0x1c80, 0x1c94, 0x1d00, 0x1d84,
0x2000, 0x2030, 0x23c0, 0x2400,
0x2800, 0x2820, 0x2830, 0x2850,
0x2b40, 0x2c10, 0x2fc0, 0x3058,
0x3c00, 0x3c94, 0x4000, 0x4010,
0x4080, 0x4090, 0x43c0, 0x4458,
0x4c00, 0x4c18, 0x4c40, 0x4c54,
0x4fc0, 0x5010, 0x53c0, 0x5444,
0x5c00, 0x5c18, 0x5c80, 0x5c90,
0x5fc0, 0x6000, 0x6400, 0x6428,
0x6800, 0x6848, 0x684c, 0x6860,
0x6888, 0x6910, 0x8000 };
regs->version = 0;
memset(p, 0, BNX2_REGDUMP_LEN);
if (!netif_running(bp->dev))
return;
i = 0;
offset = reg_boundaries[0];
p += offset;
while (offset < BNX2_REGDUMP_LEN) {
*p++ = REG_RD(bp, offset);
offset += 4;
if (offset == reg_boundaries[i + 1]) {
offset = reg_boundaries[i + 2];
p = (u32 *) (orig_p + offset);
i += 2;
}
}
}
static void
bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2 *bp = netdev_priv(dev);
if (bp->flags & NO_WOL_FLAG) {
wol->supported = 0;
wol->wolopts = 0;
}
else {
wol->supported = WAKE_MAGIC;
if (bp->wol)
wol->wolopts = WAKE_MAGIC;
else
wol->wolopts = 0;
}
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int
bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2 *bp = netdev_priv(dev);
if (wol->wolopts & ~WAKE_MAGIC)
return -EINVAL;
if (wol->wolopts & WAKE_MAGIC) {
if (bp->flags & NO_WOL_FLAG)
return -EINVAL;
bp->wol = 1;
}
else {
bp->wol = 0;
}
return 0;
}
static int
bnx2_nway_reset(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
u32 bmcr;
if (!(bp->autoneg & AUTONEG_SPEED)) {
return -EINVAL;
}
spin_lock_bh(&bp->phy_lock);
/* Force a link down visible on the other side */
if (bp->phy_flags & PHY_SERDES_FLAG) {
bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
spin_unlock_bh(&bp->phy_lock);
msleep(20);
spin_lock_bh(&bp->phy_lock);
if (CHIP_NUM(bp) == CHIP_NUM_5706) {
bp->current_interval = SERDES_AN_TIMEOUT;
bp->serdes_an_pending = 1;
mod_timer(&bp->timer, jiffies + bp->current_interval);
}
}
bnx2_read_phy(bp, MII_BMCR, &bmcr);
bmcr &= ~BMCR_LOOPBACK;
bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
spin_unlock_bh(&bp->phy_lock);
return 0;
}
static int
bnx2_get_eeprom_len(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
if (bp->flash_info == NULL)
return 0;
return (int) bp->flash_size;
}
static int
bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *eebuf)
{
struct bnx2 *bp = netdev_priv(dev);
int rc;
/* parameters already validated in ethtool_get_eeprom */
rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
return rc;
}
static int
bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *eebuf)
{
struct bnx2 *bp = netdev_priv(dev);
int rc;
/* parameters already validated in ethtool_set_eeprom */
rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
return rc;
}
static int
bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
{
struct bnx2 *bp = netdev_priv(dev);
memset(coal, 0, sizeof(struct ethtool_coalesce));
coal->rx_coalesce_usecs = bp->rx_ticks;
coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
coal->tx_coalesce_usecs = bp->tx_ticks;
coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
coal->stats_block_coalesce_usecs = bp->stats_ticks;
return 0;
}
static int
bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
{
struct bnx2 *bp = netdev_priv(dev);
bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
if (bp->rx_quick_cons_trip_int > 0xff)
bp->rx_quick_cons_trip_int = 0xff;
bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
0xff;
bp->stats_ticks = coal->stats_block_coalesce_usecs;
if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00;
bp->stats_ticks &= 0xffff00;
if (netif_running(bp->dev)) {
bnx2_netif_stop(bp);
bnx2_init_nic(bp);
bnx2_netif_start(bp);
}
return 0;
}
static void
bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
{
struct bnx2 *bp = netdev_priv(dev);
ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
ering->rx_mini_max_pending = 0;
ering->rx_jumbo_max_pending = 0;
ering->rx_pending = bp->rx_ring_size;
ering->rx_mini_pending = 0;
ering->rx_jumbo_pending = 0;
ering->tx_max_pending = MAX_TX_DESC_CNT;
ering->tx_pending = bp->tx_ring_size;
}
static int
bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
{
struct bnx2 *bp = netdev_priv(dev);
if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
(ering->tx_pending > MAX_TX_DESC_CNT) ||
(ering->tx_pending <= MAX_SKB_FRAGS)) {
return -EINVAL;
}
if (netif_running(bp->dev)) {
bnx2_netif_stop(bp);
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
bnx2_free_skbs(bp);
bnx2_free_mem(bp);
}
bnx2_set_rx_ring_size(bp, ering->rx_pending);
bp->tx_ring_size = ering->tx_pending;
if (netif_running(bp->dev)) {
int rc;
rc = bnx2_alloc_mem(bp);
if (rc)
return rc;
bnx2_init_nic(bp);
bnx2_netif_start(bp);
}
return 0;
}
static void
bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
{
struct bnx2 *bp = netdev_priv(dev);
epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
}
static int
bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
{
struct bnx2 *bp = netdev_priv(dev);
bp->req_flow_ctrl = 0;
if (epause->rx_pause)
bp->req_flow_ctrl |= FLOW_CTRL_RX;
if (epause->tx_pause)
bp->req_flow_ctrl |= FLOW_CTRL_TX;
if (epause->autoneg) {
bp->autoneg |= AUTONEG_FLOW_CTRL;
}
else {
bp->autoneg &= ~AUTONEG_FLOW_CTRL;
}
spin_lock_bh(&bp->phy_lock);
bnx2_setup_phy(bp);
spin_unlock_bh(&bp->phy_lock);
return 0;
}
static u32
bnx2_get_rx_csum(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
return bp->rx_csum;
}
static int
bnx2_set_rx_csum(struct net_device *dev, u32 data)
{
struct bnx2 *bp = netdev_priv(dev);
bp->rx_csum = data;
return 0;
}
static int
bnx2_set_tso(struct net_device *dev, u32 data)
{
if (data)
dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
else
dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO_ECN);
return 0;
}
#define BNX2_NUM_STATS 46
static struct {
char string[ETH_GSTRING_LEN];
} bnx2_stats_str_arr[BNX2_NUM_STATS] = {
{ "rx_bytes" },
{ "rx_error_bytes" },
{ "tx_bytes" },
{ "tx_error_bytes" },
{ "rx_ucast_packets" },
{ "rx_mcast_packets" },
{ "rx_bcast_packets" },
{ "tx_ucast_packets" },
{ "tx_mcast_packets" },
{ "tx_bcast_packets" },
{ "tx_mac_errors" },
{ "tx_carrier_errors" },
{ "rx_crc_errors" },
{ "rx_align_errors" },
{ "tx_single_collisions" },
{ "tx_multi_collisions" },
{ "tx_deferred" },
{ "tx_excess_collisions" },
{ "tx_late_collisions" },
{ "tx_total_collisions" },
{ "rx_fragments" },
{ "rx_jabbers" },
{ "rx_undersize_packets" },
{ "rx_oversize_packets" },
{ "rx_64_byte_packets" },
{ "rx_65_to_127_byte_packets" },
{ "rx_128_to_255_byte_packets" },
{ "rx_256_to_511_byte_packets" },
{ "rx_512_to_1023_byte_packets" },
{ "rx_1024_to_1522_byte_packets" },
{ "rx_1523_to_9022_byte_packets" },
{ "tx_64_byte_packets" },
{ "tx_65_to_127_byte_packets" },
{ "tx_128_to_255_byte_packets" },
{ "tx_256_to_511_byte_packets" },
{ "tx_512_to_1023_byte_packets" },
{ "tx_1024_to_1522_byte_packets" },
{ "tx_1523_to_9022_byte_packets" },
{ "rx_xon_frames" },
{ "rx_xoff_frames" },
{ "tx_xon_frames" },
{ "tx_xoff_frames" },
{ "rx_mac_ctrl_frames" },
{ "rx_filtered_packets" },
{ "rx_discards" },
{ "rx_fw_discards" },
};
#define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
STATS_OFFSET32(stat_IfHCInOctets_hi),
STATS_OFFSET32(stat_IfHCInBadOctets_hi),
STATS_OFFSET32(stat_IfHCOutOctets_hi),
STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
STATS_OFFSET32(stat_Dot3StatsFCSErrors),
STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
STATS_OFFSET32(stat_Dot3StatsLateCollisions),
STATS_OFFSET32(stat_EtherStatsCollisions),
STATS_OFFSET32(stat_EtherStatsFragments),
STATS_OFFSET32(stat_EtherStatsJabbers),
STATS_OFFSET32(stat_EtherStatsUndersizePkts),
STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
STATS_OFFSET32(stat_XonPauseFramesReceived),
STATS_OFFSET32(stat_XoffPauseFramesReceived),
STATS_OFFSET32(stat_OutXonSent),
STATS_OFFSET32(stat_OutXoffSent),
STATS_OFFSET32(stat_MacControlFramesReceived),
STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
STATS_OFFSET32(stat_IfInMBUFDiscards),
STATS_OFFSET32(stat_FwRxDrop),
};
/* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
* skipped because of errata.
*/
static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
8,0,8,8,8,8,8,8,8,8,
4,0,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,
};
static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
8,0,8,8,8,8,8,8,8,8,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,
};
#define BNX2_NUM_TESTS 6
static struct {
char string[ETH_GSTRING_LEN];
} bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
{ "register_test (offline)" },
{ "memory_test (offline)" },
{ "loopback_test (offline)" },
{ "nvram_test (online)" },
{ "interrupt_test (online)" },
{ "link_test (online)" },
};
static int
bnx2_self_test_count(struct net_device *dev)
{
return BNX2_NUM_TESTS;
}
static void
bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
{
struct bnx2 *bp = netdev_priv(dev);
memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
if (etest->flags & ETH_TEST_FL_OFFLINE) {
bnx2_netif_stop(bp);
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
bnx2_free_skbs(bp);
if (bnx2_test_registers(bp) != 0) {
buf[0] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2_test_memory(bp) != 0) {
buf[1] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if ((buf[2] = bnx2_test_loopback(bp)) != 0)
etest->flags |= ETH_TEST_FL_FAILED;
if (!netif_running(bp->dev)) {
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
}
else {
bnx2_init_nic(bp);
bnx2_netif_start(bp);
}
/* wait for link up */
msleep_interruptible(3000);
if ((!bp->link_up) && !(bp->phy_flags & PHY_SERDES_FLAG))
msleep_interruptible(4000);
}
if (bnx2_test_nvram(bp) != 0) {
buf[3] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2_test_intr(bp) != 0) {
buf[4] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2_test_link(bp) != 0) {
buf[5] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
}
static void
bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(buf, bnx2_stats_str_arr,
sizeof(bnx2_stats_str_arr));
break;
case ETH_SS_TEST:
memcpy(buf, bnx2_tests_str_arr,
sizeof(bnx2_tests_str_arr));
break;
}
}
static int
bnx2_get_stats_count(struct net_device *dev)
{
return BNX2_NUM_STATS;
}
static void
bnx2_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *buf)
{
struct bnx2 *bp = netdev_priv(dev);
int i;
u32 *hw_stats = (u32 *) bp->stats_blk;
u8 *stats_len_arr = NULL;
if (hw_stats == NULL) {
memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
return;
}
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
(CHIP_ID(bp) == CHIP_ID_5706_A1) ||
(CHIP_ID(bp) == CHIP_ID_5706_A2) ||
(CHIP_ID(bp) == CHIP_ID_5708_A0))
stats_len_arr = bnx2_5706_stats_len_arr;
else
stats_len_arr = bnx2_5708_stats_len_arr;
for (i = 0; i < BNX2_NUM_STATS; i++) {
if (stats_len_arr[i] == 0) {
/* skip this counter */
buf[i] = 0;
continue;
}
if (stats_len_arr[i] == 4) {
/* 4-byte counter */
buf[i] = (u64)
*(hw_stats + bnx2_stats_offset_arr[i]);
continue;
}
/* 8-byte counter */
buf[i] = (((u64) *(hw_stats +
bnx2_stats_offset_arr[i])) << 32) +
*(hw_stats + bnx2_stats_offset_arr[i] + 1);
}
}
static int
bnx2_phys_id(struct net_device *dev, u32 data)
{
struct bnx2 *bp = netdev_priv(dev);
int i;
u32 save;
if (data == 0)
data = 2;
save = REG_RD(bp, BNX2_MISC_CFG);
REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
for (i = 0; i < (data * 2); i++) {
if ((i % 2) == 0) {
REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
}
else {
REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
BNX2_EMAC_LED_1000MB_OVERRIDE |
BNX2_EMAC_LED_100MB_OVERRIDE |
BNX2_EMAC_LED_10MB_OVERRIDE |
BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
BNX2_EMAC_LED_TRAFFIC);
}
msleep_interruptible(500);
if (signal_pending(current))
break;
}
REG_WR(bp, BNX2_EMAC_LED, 0);
REG_WR(bp, BNX2_MISC_CFG, save);
return 0;
}
static struct ethtool_ops bnx2_ethtool_ops = {
.get_settings = bnx2_get_settings,
.set_settings = bnx2_set_settings,
.get_drvinfo = bnx2_get_drvinfo,
.get_regs_len = bnx2_get_regs_len,
.get_regs = bnx2_get_regs,
.get_wol = bnx2_get_wol,
.set_wol = bnx2_set_wol,
.nway_reset = bnx2_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = bnx2_get_eeprom_len,
.get_eeprom = bnx2_get_eeprom,
.set_eeprom = bnx2_set_eeprom,
.get_coalesce = bnx2_get_coalesce,
.set_coalesce = bnx2_set_coalesce,
.get_ringparam = bnx2_get_ringparam,
.set_ringparam = bnx2_set_ringparam,
.get_pauseparam = bnx2_get_pauseparam,
.set_pauseparam = bnx2_set_pauseparam,
.get_rx_csum = bnx2_get_rx_csum,
.set_rx_csum = bnx2_set_rx_csum,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_csum,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
#ifdef BCM_TSO
.get_tso = ethtool_op_get_tso,
.set_tso = bnx2_set_tso,
#endif
.self_test_count = bnx2_self_test_count,
.self_test = bnx2_self_test,
.get_strings = bnx2_get_strings,
.phys_id = bnx2_phys_id,
.get_stats_count = bnx2_get_stats_count,
.get_ethtool_stats = bnx2_get_ethtool_stats,
.get_perm_addr = ethtool_op_get_perm_addr,
};
/* Called with rtnl_lock */
static int
bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct bnx2 *bp = netdev_priv(dev);
int err;
switch(cmd) {
case SIOCGMIIPHY:
data->phy_id = bp->phy_addr;
/* fallthru */
case SIOCGMIIREG: {
u32 mii_regval;
spin_lock_bh(&bp->phy_lock);
err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
spin_unlock_bh(&bp->phy_lock);
data->val_out = mii_regval;
return err;
}
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
spin_lock_bh(&bp->phy_lock);
err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
spin_unlock_bh(&bp->phy_lock);
return err;
default:
/* do nothing */
break;
}
return -EOPNOTSUPP;
}
/* Called with rtnl_lock */
static int
bnx2_change_mac_addr(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
struct bnx2 *bp = netdev_priv(dev);
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
if (netif_running(dev))
bnx2_set_mac_addr(bp);
return 0;
}
/* Called with rtnl_lock */
static int
bnx2_change_mtu(struct net_device *dev, int new_mtu)
{
struct bnx2 *bp = netdev_priv(dev);
if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
return -EINVAL;
dev->mtu = new_mtu;
if (netif_running(dev)) {
bnx2_netif_stop(bp);
bnx2_init_nic(bp);
bnx2_netif_start(bp);
}
return 0;
}
#if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
static void
poll_bnx2(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
disable_irq(bp->pdev->irq);
bnx2_interrupt(bp->pdev->irq, dev, NULL);
enable_irq(bp->pdev->irq);
}
#endif
static int __devinit
bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
{
struct bnx2 *bp;
unsigned long mem_len;
int rc;
u32 reg;
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pdev->dev);
bp = netdev_priv(dev);
bp->flags = 0;
bp->phy_flags = 0;
/* enable device (incl. PCI PM wakeup), and bus-mastering */
rc = pci_enable_device(pdev);
if (rc) {
dev_err(&pdev->dev, "Cannot enable PCI device, aborting.");
goto err_out;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
dev_err(&pdev->dev,
"Cannot find PCI device base address, aborting.\n");
rc = -ENODEV;
goto err_out_disable;
}
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
if (rc) {
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
goto err_out_disable;
}
pci_set_master(pdev);
bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (bp->pm_cap == 0) {
dev_err(&pdev->dev,
"Cannot find power management capability, aborting.\n");
rc = -EIO;
goto err_out_release;
}
bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
if (bp->pcix_cap == 0) {
dev_err(&pdev->dev, "Cannot find PCIX capability, aborting.\n");
rc = -EIO;
goto err_out_release;
}
if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) {
bp->flags |= USING_DAC_FLAG;
if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
dev_err(&pdev->dev,
"pci_set_consistent_dma_mask failed, aborting.\n");
rc = -EIO;
goto err_out_release;
}
}
else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) {
dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
rc = -EIO;
goto err_out_release;
}
bp->dev = dev;
bp->pdev = pdev;
spin_lock_init(&bp->phy_lock);
spin_lock_init(&bp->tx_lock);
INIT_WORK(&bp->reset_task, bnx2_reset_task, bp);
dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
mem_len = MB_GET_CID_ADDR(17);
dev->mem_end = dev->mem_start + mem_len;
dev->irq = pdev->irq;
bp->regview = ioremap_nocache(dev->base_addr, mem_len);
if (!bp->regview) {
dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
rc = -ENOMEM;
goto err_out_release;
}
/* Configure byte swap and enable write to the reg_window registers.
* Rely on CPU to do target byte swapping on big endian systems
* The chip's target access swapping will not swap all accesses
*/
pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
bnx2_set_power_state(bp, PCI_D0);
bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
/* Get bus information. */
reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
u32 clkreg;
bp->flags |= PCIX_FLAG;
clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
switch (clkreg) {
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
bp->bus_speed_mhz = 133;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
bp->bus_speed_mhz = 100;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
bp->bus_speed_mhz = 66;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
bp->bus_speed_mhz = 50;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
bp->bus_speed_mhz = 33;
break;
}
}
else {
if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
bp->bus_speed_mhz = 66;
else
bp->bus_speed_mhz = 33;
}
if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
bp->flags |= PCI_32BIT_FLAG;
/* 5706A0 may falsely detect SERR and PERR. */
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
reg = REG_RD(bp, PCI_COMMAND);
reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
REG_WR(bp, PCI_COMMAND, reg);
}
else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
!(bp->flags & PCIX_FLAG)) {
dev_err(&pdev->dev,
"5706 A1 can only be used in a PCIX bus, aborting.\n");
goto err_out_unmap;
}
bnx2_init_nvram(bp);
reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
BNX2_SHM_HDR_SIGNATURE_SIG)
bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0);
else
bp->shmem_base = HOST_VIEW_SHMEM_BASE;
/* Get the permanent MAC address. First we need to make sure the
* firmware is actually running.
*/
reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
BNX2_DEV_INFO_SIGNATURE_MAGIC) {
dev_err(&pdev->dev, "Firmware not running, aborting.\n");
rc = -ENODEV;
goto err_out_unmap;
}
bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
bp->mac_addr[0] = (u8) (reg >> 8);
bp->mac_addr[1] = (u8) reg;
reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
bp->mac_addr[2] = (u8) (reg >> 24);
bp->mac_addr[3] = (u8) (reg >> 16);
bp->mac_addr[4] = (u8) (reg >> 8);
bp->mac_addr[5] = (u8) reg;
bp->tx_ring_size = MAX_TX_DESC_CNT;
bnx2_set_rx_ring_size(bp, 100);
bp->rx_csum = 1;
bp->rx_offset = sizeof(struct l2_fhdr) + 2;
bp->tx_quick_cons_trip_int = 20;
bp->tx_quick_cons_trip = 20;
bp->tx_ticks_int = 80;
bp->tx_ticks = 80;
bp->rx_quick_cons_trip_int = 6;
bp->rx_quick_cons_trip = 6;
bp->rx_ticks_int = 18;
bp->rx_ticks = 18;
bp->stats_ticks = 1000000 & 0xffff00;
bp->timer_interval = HZ;
bp->current_interval = HZ;
bp->phy_addr = 1;
/* Disable WOL support if we are running on a SERDES chip. */
if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT) {
bp->phy_flags |= PHY_SERDES_FLAG;
bp->flags |= NO_WOL_FLAG;
if (CHIP_NUM(bp) == CHIP_NUM_5708) {
bp->phy_addr = 2;
reg = REG_RD_IND(bp, bp->shmem_base +
BNX2_SHARED_HW_CFG_CONFIG);
if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
}
}
if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
(CHIP_ID(bp) == CHIP_ID_5708_B0) ||
(CHIP_ID(bp) == CHIP_ID_5708_B1))
bp->flags |= NO_WOL_FLAG;
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
bp->tx_quick_cons_trip_int =
bp->tx_quick_cons_trip;
bp->tx_ticks_int = bp->tx_ticks;
bp->rx_quick_cons_trip_int =
bp->rx_quick_cons_trip;
bp->rx_ticks_int = bp->rx_ticks;
bp->comp_prod_trip_int = bp->comp_prod_trip;
bp->com_ticks_int = bp->com_ticks;
bp->cmd_ticks_int = bp->cmd_ticks;
}
bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
bp->req_line_speed = 0;
if (bp->phy_flags & PHY_SERDES_FLAG) {
bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
bp->autoneg = 0;
bp->req_line_speed = bp->line_speed = SPEED_1000;
bp->req_duplex = DUPLEX_FULL;
}
}
else {
bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
}
bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
init_timer(&bp->timer);
bp->timer.expires = RUN_AT(bp->timer_interval);
bp->timer.data = (unsigned long) bp;
bp->timer.function = bnx2_timer;
return 0;
err_out_unmap:
if (bp->regview) {
iounmap(bp->regview);
bp->regview = NULL;
}
err_out_release:
pci_release_regions(pdev);
err_out_disable:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
err_out:
return rc;
}
static int __devinit
bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int version_printed = 0;
struct net_device *dev = NULL;
struct bnx2 *bp;
int rc, i;
if (version_printed++ == 0)
printk(KERN_INFO "%s", version);
/* dev zeroed in init_etherdev */
dev = alloc_etherdev(sizeof(*bp));
if (!dev)
return -ENOMEM;
rc = bnx2_init_board(pdev, dev);
if (rc < 0) {
free_netdev(dev);
return rc;
}
dev->open = bnx2_open;
dev->hard_start_xmit = bnx2_start_xmit;
dev->stop = bnx2_close;
dev->get_stats = bnx2_get_stats;
dev->set_multicast_list = bnx2_set_rx_mode;
dev->do_ioctl = bnx2_ioctl;
dev->set_mac_address = bnx2_change_mac_addr;
dev->change_mtu = bnx2_change_mtu;
dev->tx_timeout = bnx2_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
#ifdef BCM_VLAN
dev->vlan_rx_register = bnx2_vlan_rx_register;
dev->vlan_rx_kill_vid = bnx2_vlan_rx_kill_vid;
#endif
dev->poll = bnx2_poll;
dev->ethtool_ops = &bnx2_ethtool_ops;
dev->weight = 64;
bp = netdev_priv(dev);
#if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
dev->poll_controller = poll_bnx2;
#endif
if ((rc = register_netdev(dev))) {
dev_err(&pdev->dev, "Cannot register net device\n");
if (bp->regview)
iounmap(bp->regview);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
return rc;
}
pci_set_drvdata(pdev, dev);
memcpy(dev->dev_addr, bp->mac_addr, 6);
memcpy(dev->perm_addr, bp->mac_addr, 6);
bp->name = board_info[ent->driver_data].name,
printk(KERN_INFO "%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, "
"IRQ %d, ",
dev->name,
bp->name,
((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
((CHIP_ID(bp) & 0x0ff0) >> 4),
((bp->flags & PCIX_FLAG) ? "-X" : ""),
((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
bp->bus_speed_mhz,
dev->base_addr,
bp->pdev->irq);
printk("node addr ");
for (i = 0; i < 6; i++)
printk("%2.2x", dev->dev_addr[i]);
printk("\n");
dev->features |= NETIF_F_SG;
if (bp->flags & USING_DAC_FLAG)
dev->features |= NETIF_F_HIGHDMA;
dev->features |= NETIF_F_IP_CSUM;
#ifdef BCM_VLAN
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
#endif
#ifdef BCM_TSO
dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
#endif
netif_carrier_off(bp->dev);
return 0;
}
static void __devexit
bnx2_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
flush_scheduled_work();
unregister_netdev(dev);
if (bp->regview)
iounmap(bp->regview);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static int
bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
u32 reset_code;
if (!netif_running(dev))
return 0;
flush_scheduled_work();
bnx2_netif_stop(bp);
netif_device_detach(dev);
del_timer_sync(&bp->timer);
if (bp->flags & NO_WOL_FLAG)
reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
else if (bp->wol)
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
else
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
bnx2_reset_chip(bp, reset_code);
bnx2_free_skbs(bp);
bnx2_set_power_state(bp, pci_choose_state(pdev, state));
return 0;
}
static int
bnx2_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
if (!netif_running(dev))
return 0;
bnx2_set_power_state(bp, PCI_D0);
netif_device_attach(dev);
bnx2_init_nic(bp);
bnx2_netif_start(bp);
return 0;
}
static struct pci_driver bnx2_pci_driver = {
.name = DRV_MODULE_NAME,
.id_table = bnx2_pci_tbl,
.probe = bnx2_init_one,
.remove = __devexit_p(bnx2_remove_one),
.suspend = bnx2_suspend,
.resume = bnx2_resume,
};
static int __init bnx2_init(void)
{
return pci_module_init(&bnx2_pci_driver);
}
static void __exit bnx2_cleanup(void)
{
pci_unregister_driver(&bnx2_pci_driver);
}
module_init(bnx2_init);
module_exit(bnx2_cleanup);