linux/drivers/net/ethernet/sfc/ef10.c
Andrew Rybchenko b071c3a222 sfc: Move last mc_promisc flag to EF10 filter table state
It is used for EF10 only and logically belongs to EF10 filter table state.
It is OK that it is reset to false on filter table recreation since all
filters are removed on destruction.

Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-15 22:26:24 -07:00

4936 lines
143 KiB
C

/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2012-2013 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "net_driver.h"
#include "ef10_regs.h"
#include "io.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "nic.h"
#include "workarounds.h"
#include "selftest.h"
#include "ef10_sriov.h"
#include <linux/in.h>
#include <linux/jhash.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
/* Hardware control for EF10 architecture including 'Huntington'. */
#define EFX_EF10_DRVGEN_EV 7
enum {
EFX_EF10_TEST = 1,
EFX_EF10_REFILL,
};
/* The reserved RSS context value */
#define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
/* The maximum size of a shared RSS context */
/* TODO: this should really be from the mcdi protocol export */
#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
/* The filter table(s) are managed by firmware and we have write-only
* access. When removing filters we must identify them to the
* firmware by a 64-bit handle, but this is too wide for Linux kernel
* interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
* be able to tell in advance whether a requested insertion will
* replace an existing filter. Therefore we maintain a software hash
* table, which should be at least as large as the hardware hash
* table.
*
* Huntington has a single 8K filter table shared between all filter
* types and both ports.
*/
#define HUNT_FILTER_TBL_ROWS 8192
#define EFX_EF10_FILTER_ID_INVALID 0xffff
struct efx_ef10_dev_addr {
u8 addr[ETH_ALEN];
u16 id;
};
struct efx_ef10_filter_table {
/* The RX match field masks supported by this fw & hw, in order of priority */
enum efx_filter_match_flags rx_match_flags[
MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
unsigned int rx_match_count;
struct {
unsigned long spec; /* pointer to spec plus flag bits */
/* BUSY flag indicates that an update is in progress. AUTO_OLD is
* used to mark and sweep MAC filters for the device address lists.
*/
#define EFX_EF10_FILTER_FLAG_BUSY 1UL
#define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
#define EFX_EF10_FILTER_FLAGS 3UL
u64 handle; /* firmware handle */
} *entry;
wait_queue_head_t waitq;
/* Shadow of net_device address lists, guarded by mac_lock */
#define EFX_EF10_FILTER_DEV_UC_MAX 32
#define EFX_EF10_FILTER_DEV_MC_MAX 256
struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
int dev_uc_count;
int dev_mc_count;
/* Indices (like efx_ef10_dev_addr.id) for promisc/allmulti filters */
u16 ucdef_id;
u16 bcast_id;
u16 mcdef_id;
/* Whether in multicast promiscuous mode when last changed */
bool mc_promisc_last;
};
/* An arbitrary search limit for the software hash table */
#define EFX_EF10_FILTER_SEARCH_LIMIT 200
static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
static void efx_ef10_filter_table_remove(struct efx_nic *efx);
static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
{
efx_dword_t reg;
efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
}
static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
{
int bar;
bar = efx->type->mem_bar;
return resource_size(&efx->pci_dev->resource[bar]);
}
static bool efx_ef10_is_vf(struct efx_nic *efx)
{
return efx->type->is_vf;
}
static int efx_ef10_get_pf_index(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < sizeof(outbuf))
return -EIO;
nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
return 0;
}
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_get_vf_index(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < sizeof(outbuf))
return -EIO;
nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
return 0;
}
#endif
static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < sizeof(outbuf)) {
netif_err(efx, drv, efx->net_dev,
"unable to read datapath firmware capabilities\n");
return -EIO;
}
nic_data->datapath_caps =
MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
/* record the DPCPU firmware IDs to determine VEB vswitching support.
*/
nic_data->rx_dpcpu_fw_id =
MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
nic_data->tx_dpcpu_fw_id =
MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
if (!(nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
netif_err(efx, probe, efx->net_dev,
"current firmware does not support an RX prefix\n");
return -ENODEV;
}
return 0;
}
static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
outbuf, sizeof(outbuf), NULL);
if (rc)
return rc;
rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
return rc > 0 ? rc : -ERANGE;
}
static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
return -EIO;
ether_addr_copy(mac_address,
MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
return 0;
}
static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
size_t outlen;
int num_addrs, rc;
MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
EVB_PORT_ID_ASSIGNED);
rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
return -EIO;
num_addrs = MCDI_DWORD(outbuf,
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
WARN_ON(num_addrs != 1);
ether_addr_copy(mac_address,
MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
return 0;
}
static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
return sprintf(buf, "%d\n",
((efx->mcdi->fn_flags) &
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
? 1 : 0);
}
static ssize_t efx_ef10_show_primary_flag(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
return sprintf(buf, "%d\n",
((efx->mcdi->fn_flags) &
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
? 1 : 0);
}
static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
NULL);
static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
static int efx_ef10_probe(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data;
struct net_device *net_dev = efx->net_dev;
int i, rc;
/* We can have one VI for each 8K region. However, until we
* use TX option descriptors we need two TX queues per channel.
*/
efx->max_channels = min_t(unsigned int,
EFX_MAX_CHANNELS,
efx_ef10_mem_map_size(efx) /
(EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
efx->max_tx_channels = efx->max_channels;
if (WARN_ON(efx->max_channels == 0))
return -EIO;
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
if (!nic_data)
return -ENOMEM;
efx->nic_data = nic_data;
/* we assume later that we can copy from this buffer in dwords */
BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
if (rc)
goto fail1;
/* Get the MC's warm boot count. In case it's rebooting right
* now, be prepared to retry.
*/
i = 0;
for (;;) {
rc = efx_ef10_get_warm_boot_count(efx);
if (rc >= 0)
break;
if (++i == 5)
goto fail2;
ssleep(1);
}
nic_data->warm_boot_count = rc;
nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
/* In case we're recovering from a crash (kexec), we want to
* cancel any outstanding request by the previous user of this
* function. We send a special message using the least
* significant bits of the 'high' (doorbell) register.
*/
_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
rc = efx_mcdi_init(efx);
if (rc)
goto fail2;
/* Reset (most) configuration for this function */
rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
if (rc)
goto fail3;
/* Enable event logging */
rc = efx_mcdi_log_ctrl(efx, true, false, 0);
if (rc)
goto fail3;
rc = device_create_file(&efx->pci_dev->dev,
&dev_attr_link_control_flag);
if (rc)
goto fail3;
rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
if (rc)
goto fail4;
rc = efx_ef10_get_pf_index(efx);
if (rc)
goto fail5;
rc = efx_ef10_init_datapath_caps(efx);
if (rc < 0)
goto fail5;
efx->rx_packet_len_offset =
ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
rc = efx_mcdi_port_get_number(efx);
if (rc < 0)
goto fail5;
efx->port_num = rc;
net_dev->dev_port = rc;
rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
if (rc)
goto fail5;
rc = efx_ef10_get_sysclk_freq(efx);
if (rc < 0)
goto fail5;
efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
/* Check whether firmware supports bug 35388 workaround.
* First try to enable it, then if we get EPERM, just
* ask if it's already enabled
*/
rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true, NULL);
if (rc == 0) {
nic_data->workaround_35388 = true;
} else if (rc == -EPERM) {
unsigned int enabled;
rc = efx_mcdi_get_workarounds(efx, NULL, &enabled);
if (rc)
goto fail3;
nic_data->workaround_35388 = enabled &
MC_CMD_GET_WORKAROUNDS_OUT_BUG35388;
} else if (rc != -ENOSYS && rc != -ENOENT) {
goto fail5;
}
netif_dbg(efx, probe, efx->net_dev,
"workaround for bug 35388 is %sabled\n",
nic_data->workaround_35388 ? "en" : "dis");
rc = efx_mcdi_mon_probe(efx);
if (rc && rc != -EPERM)
goto fail5;
efx_ptp_probe(efx, NULL);
#ifdef CONFIG_SFC_SRIOV
if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
} else
#endif
ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
return 0;
fail5:
device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
fail4:
device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
fail3:
efx_mcdi_fini(efx);
fail2:
efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
fail1:
kfree(nic_data);
efx->nic_data = NULL;
return rc;
}
static int efx_ef10_free_vis(struct efx_nic *efx)
{
MCDI_DECLARE_BUF_ERR(outbuf);
size_t outlen;
int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
/* -EALREADY means nothing to free, so ignore */
if (rc == -EALREADY)
rc = 0;
if (rc)
efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
rc);
return rc;
}
#ifdef EFX_USE_PIO
static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
unsigned int i;
int rc;
BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
for (i = 0; i < nic_data->n_piobufs; i++) {
MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
nic_data->piobuf_handle[i]);
rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
NULL, 0, NULL);
WARN_ON(rc);
}
nic_data->n_piobufs = 0;
}
static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
unsigned int i;
size_t outlen;
int rc = 0;
BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
for (i = 0; i < n; i++) {
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc) {
/* Don't display the MC error if we didn't have space
* for a VF.
*/
if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
0, outbuf, outlen, rc);
break;
}
if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
rc = -EIO;
break;
}
nic_data->piobuf_handle[i] =
MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
netif_dbg(efx, probe, efx->net_dev,
"allocated PIO buffer %u handle %x\n", i,
nic_data->piobuf_handle[i]);
}
nic_data->n_piobufs = i;
if (rc)
efx_ef10_free_piobufs(efx);
return rc;
}
static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
_MCDI_DECLARE_BUF(inbuf,
max(MC_CMD_LINK_PIOBUF_IN_LEN,
MC_CMD_UNLINK_PIOBUF_IN_LEN));
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
unsigned int offset, index;
int rc;
BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
memset(inbuf, 0, sizeof(inbuf));
/* Link a buffer to each VI in the write-combining mapping */
for (index = 0; index < nic_data->n_piobufs; ++index) {
MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
nic_data->piobuf_handle[index]);
MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
nic_data->pio_write_vi_base + index);
rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
NULL, 0, NULL);
if (rc) {
netif_err(efx, drv, efx->net_dev,
"failed to link VI %u to PIO buffer %u (%d)\n",
nic_data->pio_write_vi_base + index, index,
rc);
goto fail;
}
netif_dbg(efx, probe, efx->net_dev,
"linked VI %u to PIO buffer %u\n",
nic_data->pio_write_vi_base + index, index);
}
/* Link a buffer to each TX queue */
efx_for_each_channel(channel, efx) {
efx_for_each_channel_tx_queue(tx_queue, channel) {
/* We assign the PIO buffers to queues in
* reverse order to allow for the following
* special case.
*/
offset = ((efx->tx_channel_offset + efx->n_tx_channels -
tx_queue->channel->channel - 1) *
efx_piobuf_size);
index = offset / ER_DZ_TX_PIOBUF_SIZE;
offset = offset % ER_DZ_TX_PIOBUF_SIZE;
/* When the host page size is 4K, the first
* host page in the WC mapping may be within
* the same VI page as the last TX queue. We
* can only link one buffer to each VI.
*/
if (tx_queue->queue == nic_data->pio_write_vi_base) {
BUG_ON(index != 0);
rc = 0;
} else {
MCDI_SET_DWORD(inbuf,
LINK_PIOBUF_IN_PIOBUF_HANDLE,
nic_data->piobuf_handle[index]);
MCDI_SET_DWORD(inbuf,
LINK_PIOBUF_IN_TXQ_INSTANCE,
tx_queue->queue);
rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
NULL, 0, NULL);
}
if (rc) {
/* This is non-fatal; the TX path just
* won't use PIO for this queue
*/
netif_err(efx, drv, efx->net_dev,
"failed to link VI %u to PIO buffer %u (%d)\n",
tx_queue->queue, index, rc);
tx_queue->piobuf = NULL;
} else {
tx_queue->piobuf =
nic_data->pio_write_base +
index * EFX_VI_PAGE_SIZE + offset;
tx_queue->piobuf_offset = offset;
netif_dbg(efx, probe, efx->net_dev,
"linked VI %u to PIO buffer %u offset %x addr %p\n",
tx_queue->queue, index,
tx_queue->piobuf_offset,
tx_queue->piobuf);
}
}
}
return 0;
fail:
while (index--) {
MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
nic_data->pio_write_vi_base + index);
efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
NULL, 0, NULL);
}
return rc;
}
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
/* All our existing PIO buffers went away */
efx_for_each_channel(channel, efx)
efx_for_each_channel_tx_queue(tx_queue, channel)
tx_queue->piobuf = NULL;
}
#else /* !EFX_USE_PIO */
static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
return n == 0 ? 0 : -ENOBUFS;
}
static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
return 0;
}
static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
}
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
}
#endif /* EFX_USE_PIO */
static void efx_ef10_remove(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc;
#ifdef CONFIG_SFC_SRIOV
struct efx_ef10_nic_data *nic_data_pf;
struct pci_dev *pci_dev_pf;
struct efx_nic *efx_pf;
struct ef10_vf *vf;
if (efx->pci_dev->is_virtfn) {
pci_dev_pf = efx->pci_dev->physfn;
if (pci_dev_pf) {
efx_pf = pci_get_drvdata(pci_dev_pf);
nic_data_pf = efx_pf->nic_data;
vf = nic_data_pf->vf + nic_data->vf_index;
vf->efx = NULL;
} else
netif_info(efx, drv, efx->net_dev,
"Could not get the PF id from VF\n");
}
#endif
efx_ptp_remove(efx);
efx_mcdi_mon_remove(efx);
efx_ef10_rx_free_indir_table(efx);
if (nic_data->wc_membase)
iounmap(nic_data->wc_membase);
rc = efx_ef10_free_vis(efx);
WARN_ON(rc != 0);
if (!nic_data->must_restore_piobufs)
efx_ef10_free_piobufs(efx);
device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
efx_mcdi_fini(efx);
efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
kfree(nic_data);
}
static int efx_ef10_probe_pf(struct efx_nic *efx)
{
return efx_ef10_probe(efx);
}
int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
int efx_ef10_vport_add_mac(struct efx_nic *efx,
unsigned int port_id, u8 *mac)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
sizeof(inbuf), NULL, 0, NULL);
}
int efx_ef10_vport_del_mac(struct efx_nic *efx,
unsigned int port_id, u8 *mac)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
sizeof(inbuf), NULL, 0, NULL);
}
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_probe_vf(struct efx_nic *efx)
{
int rc;
struct pci_dev *pci_dev_pf;
/* If the parent PF has no VF data structure, it doesn't know about this
* VF so fail probe. The VF needs to be re-created. This can happen
* if the PF driver is unloaded while the VF is assigned to a guest.
*/
pci_dev_pf = efx->pci_dev->physfn;
if (pci_dev_pf) {
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
if (!nic_data_pf->vf) {
netif_info(efx, drv, efx->net_dev,
"The VF cannot link to its parent PF; "
"please destroy and re-create the VF\n");
return -EBUSY;
}
}
rc = efx_ef10_probe(efx);
if (rc)
return rc;
rc = efx_ef10_get_vf_index(efx);
if (rc)
goto fail;
if (efx->pci_dev->is_virtfn) {
if (efx->pci_dev->physfn) {
struct efx_nic *efx_pf =
pci_get_drvdata(efx->pci_dev->physfn);
struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
nic_data_p->vf[nic_data->vf_index].efx = efx;
nic_data_p->vf[nic_data->vf_index].pci_dev =
efx->pci_dev;
} else
netif_info(efx, drv, efx->net_dev,
"Could not get the PF id from VF\n");
}
return 0;
fail:
efx_ef10_remove(efx);
return rc;
}
#else
static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
{
return 0;
}
#endif
static int efx_ef10_alloc_vis(struct efx_nic *efx,
unsigned int min_vis, unsigned int max_vis)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc != 0)
return rc;
if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
return -EIO;
netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
return 0;
}
/* Note that the failure path of this function does not free
* resources, as this will be done by efx_ef10_remove().
*/
static int efx_ef10_dimension_resources(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
unsigned int uc_mem_map_size, wc_mem_map_size;
unsigned int min_vis = max(EFX_TXQ_TYPES,
efx_separate_tx_channels ? 2 : 1);
unsigned int channel_vis, pio_write_vi_base, max_vis;
void __iomem *membase;
int rc;
channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
#ifdef EFX_USE_PIO
/* Try to allocate PIO buffers if wanted and if the full
* number of PIO buffers would be sufficient to allocate one
* copy-buffer per TX channel. Failure is non-fatal, as there
* are only a small number of PIO buffers shared between all
* functions of the controller.
*/
if (efx_piobuf_size != 0 &&
ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
efx->n_tx_channels) {
unsigned int n_piobufs =
DIV_ROUND_UP(efx->n_tx_channels,
ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
if (rc)
netif_err(efx, probe, efx->net_dev,
"failed to allocate PIO buffers (%d)\n", rc);
else
netif_dbg(efx, probe, efx->net_dev,
"allocated %u PIO buffers\n", n_piobufs);
}
#else
nic_data->n_piobufs = 0;
#endif
/* PIO buffers should be mapped with write-combining enabled,
* and we want to make single UC and WC mappings rather than
* several of each (in fact that's the only option if host
* page size is >4K). So we may allocate some extra VIs just
* for writing PIO buffers through.
*
* The UC mapping contains (channel_vis - 1) complete VIs and the
* first half of the next VI. Then the WC mapping begins with
* the second half of this last VI.
*/
uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
ER_DZ_TX_PIOBUF);
if (nic_data->n_piobufs) {
/* pio_write_vi_base rounds down to give the number of complete
* VIs inside the UC mapping.
*/
pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
nic_data->n_piobufs) *
EFX_VI_PAGE_SIZE) -
uc_mem_map_size);
max_vis = pio_write_vi_base + nic_data->n_piobufs;
} else {
pio_write_vi_base = 0;
wc_mem_map_size = 0;
max_vis = channel_vis;
}
/* In case the last attached driver failed to free VIs, do it now */
rc = efx_ef10_free_vis(efx);
if (rc != 0)
return rc;
rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
if (rc != 0)
return rc;
if (nic_data->n_allocated_vis < channel_vis) {
netif_info(efx, drv, efx->net_dev,
"Could not allocate enough VIs to satisfy RSS"
" requirements. Performance may not be optimal.\n");
/* We didn't get the VIs to populate our channels.
* We could keep what we got but then we'd have more
* interrupts than we need.
* Instead calculate new max_channels and restart
*/
efx->max_channels = nic_data->n_allocated_vis;
efx->max_tx_channels =
nic_data->n_allocated_vis / EFX_TXQ_TYPES;
efx_ef10_free_vis(efx);
return -EAGAIN;
}
/* If we didn't get enough VIs to map all the PIO buffers, free the
* PIO buffers
*/
if (nic_data->n_piobufs &&
nic_data->n_allocated_vis <
pio_write_vi_base + nic_data->n_piobufs) {
netif_dbg(efx, probe, efx->net_dev,
"%u VIs are not sufficient to map %u PIO buffers\n",
nic_data->n_allocated_vis, nic_data->n_piobufs);
efx_ef10_free_piobufs(efx);
}
/* Shrink the original UC mapping of the memory BAR */
membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
if (!membase) {
netif_err(efx, probe, efx->net_dev,
"could not shrink memory BAR to %x\n",
uc_mem_map_size);
return -ENOMEM;
}
iounmap(efx->membase);
efx->membase = membase;
/* Set up the WC mapping if needed */
if (wc_mem_map_size) {
nic_data->wc_membase = ioremap_wc(efx->membase_phys +
uc_mem_map_size,
wc_mem_map_size);
if (!nic_data->wc_membase) {
netif_err(efx, probe, efx->net_dev,
"could not allocate WC mapping of size %x\n",
wc_mem_map_size);
return -ENOMEM;
}
nic_data->pio_write_vi_base = pio_write_vi_base;
nic_data->pio_write_base =
nic_data->wc_membase +
(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
uc_mem_map_size);
rc = efx_ef10_link_piobufs(efx);
if (rc)
efx_ef10_free_piobufs(efx);
}
netif_dbg(efx, probe, efx->net_dev,
"memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
&efx->membase_phys, efx->membase, uc_mem_map_size,
nic_data->wc_membase, wc_mem_map_size);
return 0;
}
static int efx_ef10_init_nic(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc;
if (nic_data->must_check_datapath_caps) {
rc = efx_ef10_init_datapath_caps(efx);
if (rc)
return rc;
nic_data->must_check_datapath_caps = false;
}
if (nic_data->must_realloc_vis) {
/* We cannot let the number of VIs change now */
rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
nic_data->n_allocated_vis);
if (rc)
return rc;
nic_data->must_realloc_vis = false;
}
if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
if (rc == 0) {
rc = efx_ef10_link_piobufs(efx);
if (rc)
efx_ef10_free_piobufs(efx);
}
/* Log an error on failure, but this is non-fatal */
if (rc)
netif_err(efx, drv, efx->net_dev,
"failed to restore PIO buffers (%d)\n", rc);
nic_data->must_restore_piobufs = false;
}
/* don't fail init if RSS setup doesn't work */
efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
return 0;
}
static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
#ifdef CONFIG_SFC_SRIOV
unsigned int i;
#endif
/* All our allocations have been reset */
nic_data->must_realloc_vis = true;
nic_data->must_restore_filters = true;
nic_data->must_restore_piobufs = true;
efx_ef10_forget_old_piobufs(efx);
nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
/* Driver-created vswitches and vports must be re-created */
nic_data->must_probe_vswitching = true;
nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
#ifdef CONFIG_SFC_SRIOV
if (nic_data->vf)
for (i = 0; i < efx->vf_count; i++)
nic_data->vf[i].vport_id = 0;
#endif
}
static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
{
if (reason == RESET_TYPE_MC_FAILURE)
return RESET_TYPE_DATAPATH;
return efx_mcdi_map_reset_reason(reason);
}
static int efx_ef10_map_reset_flags(u32 *flags)
{
enum {
EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
ETH_RESET_SHARED_SHIFT),
EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
ETH_RESET_OFFLOAD | ETH_RESET_MAC |
ETH_RESET_PHY | ETH_RESET_MGMT) <<
ETH_RESET_SHARED_SHIFT)
};
/* We assume for now that our PCI function is permitted to
* reset everything.
*/
if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
*flags &= ~EF10_RESET_MC;
return RESET_TYPE_WORLD;
}
if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
*flags &= ~EF10_RESET_PORT;
return RESET_TYPE_ALL;
}
/* no invisible reset implemented */
return -EINVAL;
}
static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
{
int rc = efx_mcdi_reset(efx, reset_type);
/* Unprivileged functions return -EPERM, but need to return success
* here so that the datapath is brought back up.
*/
if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
rc = 0;
/* If it was a port reset, trigger reallocation of MC resources.
* Note that on an MC reset nothing needs to be done now because we'll
* detect the MC reset later and handle it then.
* For an FLR, we never get an MC reset event, but the MC has reset all
* resources assigned to us, so we have to trigger reallocation now.
*/
if ((reset_type == RESET_TYPE_ALL ||
reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
efx_ef10_reset_mc_allocations(efx);
return rc;
}
#define EF10_DMA_STAT(ext_name, mcdi_name) \
[EF10_STAT_ ## ext_name] = \
{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
[EF10_STAT_ ## int_name] = \
{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_OTHER_STAT(ext_name) \
[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
#define GENERIC_SW_STAT(ext_name) \
[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
EF10_DMA_STAT(port_tx_packets, TX_PKTS),
EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
EF10_OTHER_STAT(port_rx_good_bytes),
EF10_OTHER_STAT(port_rx_bad_bytes),
EF10_DMA_STAT(port_rx_packets, RX_PKTS),
EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
GENERIC_SW_STAT(rx_nodesc_trunc),
GENERIC_SW_STAT(rx_noskb_drops),
EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
};
#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
(1ULL << EF10_STAT_port_tx_packets) | \
(1ULL << EF10_STAT_port_tx_pause) | \
(1ULL << EF10_STAT_port_tx_unicast) | \
(1ULL << EF10_STAT_port_tx_multicast) | \
(1ULL << EF10_STAT_port_tx_broadcast) | \
(1ULL << EF10_STAT_port_rx_bytes) | \
(1ULL << \
EF10_STAT_port_rx_bytes_minus_good_bytes) | \
(1ULL << EF10_STAT_port_rx_good_bytes) | \
(1ULL << EF10_STAT_port_rx_bad_bytes) | \
(1ULL << EF10_STAT_port_rx_packets) | \
(1ULL << EF10_STAT_port_rx_good) | \
(1ULL << EF10_STAT_port_rx_bad) | \
(1ULL << EF10_STAT_port_rx_pause) | \
(1ULL << EF10_STAT_port_rx_control) | \
(1ULL << EF10_STAT_port_rx_unicast) | \
(1ULL << EF10_STAT_port_rx_multicast) | \
(1ULL << EF10_STAT_port_rx_broadcast) | \
(1ULL << EF10_STAT_port_rx_lt64) | \
(1ULL << EF10_STAT_port_rx_64) | \
(1ULL << EF10_STAT_port_rx_65_to_127) | \
(1ULL << EF10_STAT_port_rx_128_to_255) | \
(1ULL << EF10_STAT_port_rx_256_to_511) | \
(1ULL << EF10_STAT_port_rx_512_to_1023) |\
(1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
(1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
(1ULL << EF10_STAT_port_rx_gtjumbo) | \
(1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
(1ULL << EF10_STAT_port_rx_overflow) | \
(1ULL << EF10_STAT_port_rx_nodesc_drops) |\
(1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
(1ULL << GENERIC_STAT_rx_noskb_drops))
/* These statistics are only provided by the 10G MAC. For a 10G/40G
* switchable port we do not expose these because they might not
* include all the packets they should.
*/
#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
(1ULL << EF10_STAT_port_tx_lt64) | \
(1ULL << EF10_STAT_port_tx_64) | \
(1ULL << EF10_STAT_port_tx_65_to_127) |\
(1ULL << EF10_STAT_port_tx_128_to_255) |\
(1ULL << EF10_STAT_port_tx_256_to_511) |\
(1ULL << EF10_STAT_port_tx_512_to_1023) |\
(1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
(1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
/* These statistics are only provided by the 40G MAC. For a 10G/40G
* switchable port we do expose these because the errors will otherwise
* be silent.
*/
#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
(1ULL << EF10_STAT_port_rx_length_error))
/* These statistics are only provided if the firmware supports the
* capability PM_AND_RXDP_COUNTERS.
*/
#define HUNT_PM_AND_RXDP_STAT_MASK ( \
(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
(1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
(1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
(1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
{
u64 raw_mask = HUNT_COMMON_STAT_MASK;
u32 port_caps = efx_mcdi_phy_get_caps(efx);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
if (!(efx->mcdi->fn_flags &
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
return 0;
if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
else
raw_mask |= HUNT_10G_ONLY_STAT_MASK;
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
return raw_mask;
}
static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u64 raw_mask[2];
raw_mask[0] = efx_ef10_raw_stat_mask(efx);
/* Only show vadaptor stats when EVB capability is present */
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
} else {
raw_mask[1] = 0;
}
#if BITS_PER_LONG == 64
mask[0] = raw_mask[0];
mask[1] = raw_mask[1];
#else
mask[0] = raw_mask[0] & 0xffffffff;
mask[1] = raw_mask[0] >> 32;
mask[2] = raw_mask[1] & 0xffffffff;
mask[3] = raw_mask[1] >> 32;
#endif
}
static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
{
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
efx_ef10_get_stat_mask(efx, mask);
return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
mask, names);
}
static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u64 *stats = nic_data->stats;
size_t stats_count = 0, index;
efx_ef10_get_stat_mask(efx, mask);
if (full_stats) {
for_each_set_bit(index, mask, EF10_STAT_COUNT) {
if (efx_ef10_stat_desc[index].name) {
*full_stats++ = stats[index];
++stats_count;
}
}
}
if (!core_stats)
return stats_count;
if (nic_data->datapath_caps &
1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
/* Use vadaptor stats. */
core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
stats[EF10_STAT_rx_multicast] +
stats[EF10_STAT_rx_broadcast];
core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
stats[EF10_STAT_tx_multicast] +
stats[EF10_STAT_tx_broadcast];
core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
stats[EF10_STAT_rx_multicast_bytes] +
stats[EF10_STAT_rx_broadcast_bytes];
core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
stats[EF10_STAT_tx_multicast_bytes] +
stats[EF10_STAT_tx_broadcast_bytes];
core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
stats[GENERIC_STAT_rx_noskb_drops];
core_stats->multicast = stats[EF10_STAT_rx_multicast];
core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
core_stats->rx_errors = core_stats->rx_crc_errors;
core_stats->tx_errors = stats[EF10_STAT_tx_bad];
} else {
/* Use port stats. */
core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
stats[GENERIC_STAT_rx_nodesc_trunc] +
stats[GENERIC_STAT_rx_noskb_drops];
core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
core_stats->rx_length_errors =
stats[EF10_STAT_port_rx_gtjumbo] +
stats[EF10_STAT_port_rx_length_error];
core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
core_stats->rx_frame_errors =
stats[EF10_STAT_port_rx_align_error];
core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
core_stats->rx_errors = (core_stats->rx_length_errors +
core_stats->rx_crc_errors +
core_stats->rx_frame_errors);
}
return stats_count;
}
static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
__le64 generation_start, generation_end;
u64 *stats = nic_data->stats;
__le64 *dma_stats;
efx_ef10_get_stat_mask(efx, mask);
dma_stats = efx->stats_buffer.addr;
nic_data = efx->nic_data;
generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
return 0;
rmb();
efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
stats, efx->stats_buffer.addr, false);
rmb();
generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
if (generation_end != generation_start)
return -EAGAIN;
/* Update derived statistics */
efx_nic_fix_nodesc_drop_stat(efx,
&stats[EF10_STAT_port_rx_nodesc_drops]);
stats[EF10_STAT_port_rx_good_bytes] =
stats[EF10_STAT_port_rx_bytes] -
stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
efx_update_sw_stats(efx, stats);
return 0;
}
static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
int retry;
/* If we're unlucky enough to read statistics during the DMA, wait
* up to 10ms for it to finish (typically takes <500us)
*/
for (retry = 0; retry < 100; ++retry) {
if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
break;
udelay(100);
}
return efx_ef10_update_stats_common(efx, full_stats, core_stats);
}
static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
__le64 generation_start, generation_end;
u64 *stats = nic_data->stats;
u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
struct efx_buffer stats_buf;
__le64 *dma_stats;
int rc;
spin_unlock_bh(&efx->stats_lock);
if (in_interrupt()) {
/* If in atomic context, cannot update stats. Just update the
* software stats and return so the caller can continue.
*/
spin_lock_bh(&efx->stats_lock);
efx_update_sw_stats(efx, stats);
return 0;
}
efx_ef10_get_stat_mask(efx, mask);
rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
if (rc) {
spin_lock_bh(&efx->stats_lock);
return rc;
}
dma_stats = stats_buf.addr;
dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
MAC_STATS_IN_DMA, 1);
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
NULL, 0, NULL);
spin_lock_bh(&efx->stats_lock);
if (rc) {
/* Expect ENOENT if DMA queues have not been set up */
if (rc != -ENOENT || atomic_read(&efx->active_queues))
efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
sizeof(inbuf), NULL, 0, rc);
goto out;
}
generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
WARN_ON_ONCE(1);
goto out;
}
rmb();
efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
stats, stats_buf.addr, false);
rmb();
generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
if (generation_end != generation_start) {
rc = -EAGAIN;
goto out;
}
efx_update_sw_stats(efx, stats);
out:
efx_nic_free_buffer(efx, &stats_buf);
return rc;
}
static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
if (efx_ef10_try_update_nic_stats_vf(efx))
return 0;
return efx_ef10_update_stats_common(efx, full_stats, core_stats);
}
static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
unsigned int mode, value;
efx_dword_t timer_cmd;
if (channel->irq_moderation) {
mode = 3;
value = channel->irq_moderation - 1;
} else {
mode = 0;
value = 0;
}
if (EFX_EF10_WORKAROUND_35388(efx)) {
EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
EFE_DD_EVQ_IND_TIMER_FLAGS,
ERF_DD_EVQ_IND_TIMER_MODE, mode,
ERF_DD_EVQ_IND_TIMER_VAL, value);
efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
channel->channel);
} else {
EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
ERF_DZ_TC_TIMER_VAL, value);
efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
channel->channel);
}
}
static void efx_ef10_get_wol_vf(struct efx_nic *efx,
struct ethtool_wolinfo *wol) {}
static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
{
return -EOPNOTSUPP;
}
static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
{
wol->supported = 0;
wol->wolopts = 0;
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
{
if (type != 0)
return -EINVAL;
return 0;
}
static void efx_ef10_mcdi_request(struct efx_nic *efx,
const efx_dword_t *hdr, size_t hdr_len,
const efx_dword_t *sdu, size_t sdu_len)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u8 *pdu = nic_data->mcdi_buf.addr;
memcpy(pdu, hdr, hdr_len);
memcpy(pdu + hdr_len, sdu, sdu_len);
wmb();
/* The hardware provides 'low' and 'high' (doorbell) registers
* for passing the 64-bit address of an MCDI request to
* firmware. However the dwords are swapped by firmware. The
* least significant bits of the doorbell are then 0 for all
* MCDI requests due to alignment.
*/
_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
ER_DZ_MC_DB_LWRD);
_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
ER_DZ_MC_DB_HWRD);
}
static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
rmb();
return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
}
static void
efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
size_t offset, size_t outlen)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
const u8 *pdu = nic_data->mcdi_buf.addr;
memcpy(outbuf, pdu + offset, outlen);
}
static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
/* All our allocations have been reset */
efx_ef10_reset_mc_allocations(efx);
/* The datapath firmware might have been changed */
nic_data->must_check_datapath_caps = true;
/* MAC statistics have been cleared on the NIC; clear the local
* statistic that we update with efx_update_diff_stat().
*/
nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
}
static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc;
rc = efx_ef10_get_warm_boot_count(efx);
if (rc < 0) {
/* The firmware is presumably in the process of
* rebooting. However, we are supposed to report each
* reboot just once, so we must only do that once we
* can read and store the updated warm boot count.
*/
return 0;
}
if (rc == nic_data->warm_boot_count)
return 0;
nic_data->warm_boot_count = rc;
efx_ef10_mcdi_reboot_detected(efx);
return -EIO;
}
/* Handle an MSI interrupt
*
* Handle an MSI hardware interrupt. This routine schedules event
* queue processing. No interrupt acknowledgement cycle is necessary.
* Also, we never need to check that the interrupt is for us, since
* MSI interrupts cannot be shared.
*/
static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
{
struct efx_msi_context *context = dev_id;
struct efx_nic *efx = context->efx;
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
/* Note test interrupts */
if (context->index == efx->irq_level)
efx->last_irq_cpu = raw_smp_processor_id();
/* Schedule processing of the channel */
efx_schedule_channel_irq(efx->channel[context->index]);
}
return IRQ_HANDLED;
}
static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
{
struct efx_nic *efx = dev_id;
bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
struct efx_channel *channel;
efx_dword_t reg;
u32 queues;
/* Read the ISR which also ACKs the interrupts */
efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
if (queues == 0)
return IRQ_NONE;
if (likely(soft_enabled)) {
/* Note test interrupts */
if (queues & (1U << efx->irq_level))
efx->last_irq_cpu = raw_smp_processor_id();
efx_for_each_channel(channel, efx) {
if (queues & 1)
efx_schedule_channel_irq(channel);
queues >>= 1;
}
}
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
return IRQ_HANDLED;
}
static void efx_ef10_irq_test_generate(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
(void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
inbuf, sizeof(inbuf), NULL, 0, NULL);
}
static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
{
return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
(tx_queue->ptr_mask + 1) *
sizeof(efx_qword_t),
GFP_KERNEL);
}
/* This writes to the TX_DESC_WPTR and also pushes data */
static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
const efx_qword_t *txd)
{
unsigned int write_ptr;
efx_oword_t reg;
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
reg.qword[0] = *txd;
efx_writeo_page(tx_queue->efx, &reg,
ER_DZ_TX_DESC_UPD, tx_queue->queue);
}
static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
EFX_BUF_SIZE));
bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
struct efx_channel *channel = tx_queue->channel;
struct efx_nic *efx = tx_queue->efx;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t inlen;
dma_addr_t dma_addr;
efx_qword_t *txd;
int rc;
int i;
BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
dma_addr = tx_queue->txd.buf.dma_addr;
netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
tx_queue->queue, entries, (u64)dma_addr);
for (i = 0; i < entries; ++i) {
MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
dma_addr += EFX_BUF_SIZE;
}
inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
NULL, 0, NULL);
if (rc)
goto fail;
/* A previous user of this TX queue might have set us up the
* bomb by writing a descriptor to the TX push collector but
* not the doorbell. (Each collector belongs to a port, not a
* queue or function, so cannot easily be reset.) We must
* attempt to push a no-op descriptor in its place.
*/
tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
tx_queue->insert_count = 1;
txd = efx_tx_desc(tx_queue, 0);
EFX_POPULATE_QWORD_4(*txd,
ESF_DZ_TX_DESC_IS_OPT, true,
ESF_DZ_TX_OPTION_TYPE,
ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
tx_queue->write_count = 1;
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
tx_queue->tso_version = 1;
}
wmb();
efx_ef10_push_tx_desc(tx_queue, txd);
return;
fail:
netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
tx_queue->queue);
}
static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
MCDI_DECLARE_BUF_ERR(outbuf);
struct efx_nic *efx = tx_queue->efx;
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
tx_queue->queue);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc && rc != -EALREADY)
goto fail;
return;
fail:
efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
outbuf, outlen, rc);
}
static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
{
efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
}
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
unsigned int write_ptr;
efx_dword_t reg;
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
efx_writed_page(tx_queue->efx, &reg,
ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
}
static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
{
unsigned int old_write_count = tx_queue->write_count;
struct efx_tx_buffer *buffer;
unsigned int write_ptr;
efx_qword_t *txd;
tx_queue->xmit_more_available = false;
if (unlikely(tx_queue->write_count == tx_queue->insert_count))
return;
do {
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
buffer = &tx_queue->buffer[write_ptr];
txd = efx_tx_desc(tx_queue, write_ptr);
++tx_queue->write_count;
/* Create TX descriptor ring entry */
if (buffer->flags & EFX_TX_BUF_OPTION) {
*txd = buffer->option;
} else {
BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
EFX_POPULATE_QWORD_3(
*txd,
ESF_DZ_TX_KER_CONT,
buffer->flags & EFX_TX_BUF_CONT,
ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
}
} while (tx_queue->write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
txd = efx_tx_desc(tx_queue,
old_write_count & tx_queue->ptr_mask);
efx_ef10_push_tx_desc(tx_queue, txd);
++tx_queue->pushes;
} else {
efx_ef10_notify_tx_desc(tx_queue);
}
}
static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
bool exclusive, unsigned *context_size)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
u32 alloc_type = exclusive ?
MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
unsigned rss_spread = exclusive ?
efx->rss_spread :
min(rounddown_pow_of_two(efx->rss_spread),
EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
if (!exclusive && rss_spread == 1) {
*context = EFX_EF10_RSS_CONTEXT_INVALID;
if (context_size)
*context_size = 1;
return 0;
}
if (nic_data->datapath_caps &
1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
return -EOPNOTSUPP;
MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
nic_data->vport_id);
MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc != 0)
return rc;
if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
return -EIO;
*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
if (context_size)
*context_size = rss_spread;
return 0;
}
static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
int rc;
MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
context);
rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
WARN_ON(rc != 0);
}
static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
const u32 *rx_indir_table)
{
MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
int i, rc;
MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
context);
BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
MCDI_PTR(tablebuf,
RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
(u8) rx_indir_table[i];
rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
sizeof(tablebuf), NULL, 0, NULL);
if (rc != 0)
return rc;
MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
context);
BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
efx->rx_hash_key[i];
return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
sizeof(keybuf), NULL, 0, NULL);
}
static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
}
static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
unsigned *context_size)
{
u32 new_rx_rss_context;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
false, context_size);
if (rc != 0)
return rc;
nic_data->rx_rss_context = new_rx_rss_context;
nic_data->rx_rss_context_exclusive = false;
efx_set_default_rx_indir_table(efx);
return 0;
}
static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
const u32 *rx_indir_table)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc;
u32 new_rx_rss_context;
if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
!nic_data->rx_rss_context_exclusive) {
rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
true, NULL);
if (rc == -EOPNOTSUPP)
return rc;
else if (rc != 0)
goto fail1;
} else {
new_rx_rss_context = nic_data->rx_rss_context;
}
rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
rx_indir_table);
if (rc != 0)
goto fail2;
if (nic_data->rx_rss_context != new_rx_rss_context)
efx_ef10_rx_free_indir_table(efx);
nic_data->rx_rss_context = new_rx_rss_context;
nic_data->rx_rss_context_exclusive = true;
if (rx_indir_table != efx->rx_indir_table)
memcpy(efx->rx_indir_table, rx_indir_table,
sizeof(efx->rx_indir_table));
return 0;
fail2:
if (new_rx_rss_context != nic_data->rx_rss_context)
efx_ef10_free_rss_context(efx, new_rx_rss_context);
fail1:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
const u32 *rx_indir_table)
{
int rc;
if (efx->rss_spread == 1)
return 0;
rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
if (rc == -ENOBUFS && !user) {
unsigned context_size;
bool mismatch = false;
size_t i;
for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
i++)
mismatch = rx_indir_table[i] !=
ethtool_rxfh_indir_default(i, efx->rss_spread);
rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
if (rc == 0) {
if (context_size != efx->rss_spread)
netif_warn(efx, probe, efx->net_dev,
"Could not allocate an exclusive RSS"
" context; allocated a shared one of"
" different size."
" Wanted %u, got %u.\n",
efx->rss_spread, context_size);
else if (mismatch)
netif_warn(efx, probe, efx->net_dev,
"Could not allocate an exclusive RSS"
" context; allocated a shared one but"
" could not apply custom"
" indirection.\n");
else
netif_info(efx, probe, efx->net_dev,
"Could not allocate an exclusive RSS"
" context; allocated a shared one.\n");
}
}
return rc;
}
static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
const u32 *rx_indir_table
__attribute__ ((unused)))
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
if (user)
return -EOPNOTSUPP;
if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
return 0;
return efx_ef10_rx_push_shared_rss_config(efx, NULL);
}
static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
{
return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
(rx_queue->ptr_mask + 1) *
sizeof(efx_qword_t),
GFP_KERNEL);
}
static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
{
MCDI_DECLARE_BUF(inbuf,
MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
EFX_BUF_SIZE));
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
struct efx_nic *efx = rx_queue->efx;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t inlen;
dma_addr_t dma_addr;
int rc;
int i;
BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
rx_queue->scatter_n = 0;
rx_queue->scatter_len = 0;
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
efx_rx_queue_index(rx_queue));
MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
INIT_RXQ_IN_FLAG_PREFIX, 1,
INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
dma_addr = rx_queue->rxd.buf.dma_addr;
netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
for (i = 0; i < entries; ++i) {
MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
dma_addr += EFX_BUF_SIZE;
}
inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
NULL, 0, NULL);
if (rc)
netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
efx_rx_queue_index(rx_queue));
}
static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
MCDI_DECLARE_BUF_ERR(outbuf);
struct efx_nic *efx = rx_queue->efx;
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
efx_rx_queue_index(rx_queue));
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc && rc != -EALREADY)
goto fail;
return;
fail:
efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
outbuf, outlen, rc);
}
static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
{
efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
}
/* This creates an entry in the RX descriptor queue */
static inline void
efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
struct efx_rx_buffer *rx_buf;
efx_qword_t *rxd;
rxd = efx_rx_desc(rx_queue, index);
rx_buf = efx_rx_buffer(rx_queue, index);
EFX_POPULATE_QWORD_2(*rxd,
ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}
static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int write_count;
efx_dword_t reg;
/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
write_count = rx_queue->added_count & ~7;
if (rx_queue->notified_count == write_count)
return;
do
efx_ef10_build_rx_desc(
rx_queue,
rx_queue->notified_count & rx_queue->ptr_mask);
while (++rx_queue->notified_count != write_count);
wmb();
EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
write_count & rx_queue->ptr_mask);
efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
efx_rx_queue_index(rx_queue));
}
static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
{
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
efx_qword_t event;
EFX_POPULATE_QWORD_2(event,
ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
ESF_DZ_EV_DATA, EFX_EF10_REFILL);
MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
* already swapped the data to little-endian order.
*/
memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
sizeof(efx_qword_t));
efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
inbuf, sizeof(inbuf), 0,
efx_ef10_rx_defer_refill_complete, 0);
}
static void
efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
int rc, efx_dword_t *outbuf,
size_t outlen_actual)
{
/* nothing to do */
}
static int efx_ef10_ev_probe(struct efx_channel *channel)
{
return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
(channel->eventq_mask + 1) *
sizeof(efx_qword_t),
GFP_KERNEL);
}
static void efx_ef10_ev_fini(struct efx_channel *channel)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
MCDI_DECLARE_BUF_ERR(outbuf);
struct efx_nic *efx = channel->efx;
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc && rc != -EALREADY)
goto fail;
return;
fail:
efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
outbuf, outlen, rc);
}
static int efx_ef10_ev_init(struct efx_channel *channel)
{
MCDI_DECLARE_BUF(inbuf,
MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
EFX_BUF_SIZE));
MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
struct efx_nic *efx = channel->efx;
struct efx_ef10_nic_data *nic_data;
bool supports_rx_merge;
size_t inlen, outlen;
unsigned int enabled, implemented;
dma_addr_t dma_addr;
int rc;
int i;
nic_data = efx->nic_data;
supports_rx_merge =
!!(nic_data->datapath_caps &
1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
/* Fill event queue with all ones (i.e. empty events) */
memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
/* INIT_EVQ expects index in vector table, not absolute */
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
INIT_EVQ_IN_FLAG_RX_MERGE, 1,
INIT_EVQ_IN_FLAG_TX_MERGE, 1,
INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
dma_addr = channel->eventq.buf.dma_addr;
for (i = 0; i < entries; ++i) {
MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
dma_addr += EFX_BUF_SIZE;
}
inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
outbuf, sizeof(outbuf), &outlen);
/* IRQ return is ignored */
if (channel->channel || rc)
return rc;
/* Successfully created event queue on channel 0 */
rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
if (rc == -ENOSYS) {
/* GET_WORKAROUNDS was implemented before the bug26807
* workaround, thus the latter must be unavailable in this fw
*/
nic_data->workaround_26807 = false;
rc = 0;
} else if (rc) {
goto fail;
} else {
nic_data->workaround_26807 =
!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
!nic_data->workaround_26807) {
unsigned int flags;
rc = efx_mcdi_set_workaround(efx,
MC_CMD_WORKAROUND_BUG26807,
true, &flags);
if (!rc) {
if (flags &
1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
netif_info(efx, drv, efx->net_dev,
"other functions on NIC have been reset\n");
/* With MCFW v4.6.x and earlier, the
* boot count will have incremented,
* so re-read the warm_boot_count
* value now to ensure this function
* doesn't think it has changed next
* time it checks.
*/
rc = efx_ef10_get_warm_boot_count(efx);
if (rc >= 0) {
nic_data->warm_boot_count = rc;
rc = 0;
}
}
nic_data->workaround_26807 = true;
} else if (rc == -EPERM) {
rc = 0;
}
}
}
if (!rc)
return 0;
fail:
efx_ef10_ev_fini(channel);
return rc;
}
static void efx_ef10_ev_remove(struct efx_channel *channel)
{
efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
}
static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
unsigned int rx_queue_label)
{
struct efx_nic *efx = rx_queue->efx;
netif_info(efx, hw, efx->net_dev,
"rx event arrived on queue %d labeled as queue %u\n",
efx_rx_queue_index(rx_queue), rx_queue_label);
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}
static void
efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
unsigned int actual, unsigned int expected)
{
unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
struct efx_nic *efx = rx_queue->efx;
netif_info(efx, hw, efx->net_dev,
"dropped %d events (index=%d expected=%d)\n",
dropped, actual, expected);
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}
/* partially received RX was aborted. clean up. */
static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
{
unsigned int rx_desc_ptr;
netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
"scattered RX aborted (dropping %u buffers)\n",
rx_queue->scatter_n);
rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
0, EFX_RX_PKT_DISCARD);
rx_queue->removed_count += rx_queue->scatter_n;
rx_queue->scatter_n = 0;
rx_queue->scatter_len = 0;
++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
}
static int efx_ef10_handle_rx_event(struct efx_channel *channel,
const efx_qword_t *event)
{
unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
unsigned int n_descs, n_packets, i;
struct efx_nic *efx = channel->efx;
struct efx_rx_queue *rx_queue;
bool rx_cont;
u16 flags = 0;
if (unlikely(ACCESS_ONCE(efx->reset_pending)))
return 0;
/* Basic packet information */
rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*event));
rx_queue = efx_channel_get_rx_queue(channel);
if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
if (n_descs != rx_queue->scatter_n + 1) {
struct efx_ef10_nic_data *nic_data = efx->nic_data;
/* detect rx abort */
if (unlikely(n_descs == rx_queue->scatter_n)) {
if (rx_queue->scatter_n == 0 || rx_bytes != 0)
netdev_WARN(efx->net_dev,
"invalid RX abort: scatter_n=%u event="
EFX_QWORD_FMT "\n",
rx_queue->scatter_n,
EFX_QWORD_VAL(*event));
efx_ef10_handle_rx_abort(rx_queue);
return 0;
}
/* Check that RX completion merging is valid, i.e.
* the current firmware supports it and this is a
* non-scattered packet.
*/
if (!(nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
rx_queue->scatter_n != 0 || rx_cont) {
efx_ef10_handle_rx_bad_lbits(
rx_queue, next_ptr_lbits,
(rx_queue->removed_count +
rx_queue->scatter_n + 1) &
((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
return 0;
}
/* Merged completion for multiple non-scattered packets */
rx_queue->scatter_n = 1;
rx_queue->scatter_len = 0;
n_packets = n_descs;
++channel->n_rx_merge_events;
channel->n_rx_merge_packets += n_packets;
flags |= EFX_RX_PKT_PREFIX_LEN;
} else {
++rx_queue->scatter_n;
rx_queue->scatter_len += rx_bytes;
if (rx_cont)
return 0;
n_packets = 1;
}
if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
flags |= EFX_RX_PKT_DISCARD;
if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
channel->n_rx_ip_hdr_chksum_err += n_packets;
} else if (unlikely(EFX_QWORD_FIELD(*event,
ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
channel->n_rx_tcp_udp_chksum_err += n_packets;
} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
flags |= EFX_RX_PKT_CSUMMED;
}
if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
flags |= EFX_RX_PKT_TCP;
channel->irq_mod_score += 2 * n_packets;
/* Handle received packet(s) */
for (i = 0; i < n_packets; i++) {
efx_rx_packet(rx_queue,
rx_queue->removed_count & rx_queue->ptr_mask,
rx_queue->scatter_n, rx_queue->scatter_len,
flags);
rx_queue->removed_count += rx_queue->scatter_n;
}
rx_queue->scatter_n = 0;
rx_queue->scatter_len = 0;
return n_packets;
}
static int
efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
struct efx_tx_queue *tx_queue;
unsigned int tx_ev_desc_ptr;
unsigned int tx_ev_q_label;
int tx_descs = 0;
if (unlikely(ACCESS_ONCE(efx->reset_pending)))
return 0;
if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
return 0;
/* Transmit completion */
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
tx_queue = efx_channel_get_tx_queue(channel,
tx_ev_q_label % EFX_TXQ_TYPES);
tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
tx_queue->ptr_mask);
efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
return tx_descs;
}
static void
efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
int subcode;
subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
switch (subcode) {
case ESE_DZ_DRV_TIMER_EV:
case ESE_DZ_DRV_WAKE_UP_EV:
break;
case ESE_DZ_DRV_START_UP_EV:
/* event queue init complete. ok. */
break;
default:
netif_err(efx, hw, efx->net_dev,
"channel %d unknown driver event type %d"
" (data " EFX_QWORD_FMT ")\n",
channel->channel, subcode,
EFX_QWORD_VAL(*event));
}
}
static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
u32 subcode;
subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
switch (subcode) {
case EFX_EF10_TEST:
channel->event_test_cpu = raw_smp_processor_id();
break;
case EFX_EF10_REFILL:
/* The queue must be empty, so we won't receive any rx
* events, so efx_process_channel() won't refill the
* queue. Refill it here
*/
efx_fast_push_rx_descriptors(&channel->rx_queue, true);
break;
default:
netif_err(efx, hw, efx->net_dev,
"channel %d unknown driver event type %u"
" (data " EFX_QWORD_FMT ")\n",
channel->channel, (unsigned) subcode,
EFX_QWORD_VAL(*event));
}
}
static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
{
struct efx_nic *efx = channel->efx;
efx_qword_t event, *p_event;
unsigned int read_ptr;
int ev_code;
int tx_descs = 0;
int spent = 0;
if (quota <= 0)
return spent;
read_ptr = channel->eventq_read_ptr;
for (;;) {
p_event = efx_event(channel, read_ptr);
event = *p_event;
if (!efx_event_present(&event))
break;
EFX_SET_QWORD(*p_event);
++read_ptr;
ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
netif_vdbg(efx, drv, efx->net_dev,
"processing event on %d " EFX_QWORD_FMT "\n",
channel->channel, EFX_QWORD_VAL(event));
switch (ev_code) {
case ESE_DZ_EV_CODE_MCDI_EV:
efx_mcdi_process_event(channel, &event);
break;
case ESE_DZ_EV_CODE_RX_EV:
spent += efx_ef10_handle_rx_event(channel, &event);
if (spent >= quota) {
/* XXX can we split a merged event to
* avoid going over-quota?
*/
spent = quota;
goto out;
}
break;
case ESE_DZ_EV_CODE_TX_EV:
tx_descs += efx_ef10_handle_tx_event(channel, &event);
if (tx_descs > efx->txq_entries) {
spent = quota;
goto out;
} else if (++spent == quota) {
goto out;
}
break;
case ESE_DZ_EV_CODE_DRIVER_EV:
efx_ef10_handle_driver_event(channel, &event);
if (++spent == quota)
goto out;
break;
case EFX_EF10_DRVGEN_EV:
efx_ef10_handle_driver_generated_event(channel, &event);
break;
default:
netif_err(efx, hw, efx->net_dev,
"channel %d unknown event type %d"
" (data " EFX_QWORD_FMT ")\n",
channel->channel, ev_code,
EFX_QWORD_VAL(event));
}
}
out:
channel->eventq_read_ptr = read_ptr;
return spent;
}
static void efx_ef10_ev_read_ack(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
efx_dword_t rptr;
if (EFX_EF10_WORKAROUND_35388(efx)) {
BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
(1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
(1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
ERF_DD_EVQ_IND_RPTR,
(channel->eventq_read_ptr &
channel->eventq_mask) >>
ERF_DD_EVQ_IND_RPTR_WIDTH);
efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
channel->channel);
EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
ERF_DD_EVQ_IND_RPTR,
channel->eventq_read_ptr &
((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
channel->channel);
} else {
EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
channel->eventq_read_ptr &
channel->eventq_mask);
efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
}
}
static void efx_ef10_ev_test_generate(struct efx_channel *channel)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
struct efx_nic *efx = channel->efx;
efx_qword_t event;
int rc;
EFX_POPULATE_QWORD_2(event,
ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
ESF_DZ_EV_DATA, EFX_EF10_TEST);
MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
* already swapped the data to little-endian order.
*/
memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
sizeof(efx_qword_t));
rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc != 0)
goto fail;
return;
fail:
WARN_ON(true);
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
}
void efx_ef10_handle_drain_event(struct efx_nic *efx)
{
if (atomic_dec_and_test(&efx->active_queues))
wake_up(&efx->flush_wq);
WARN_ON(atomic_read(&efx->active_queues) < 0);
}
static int efx_ef10_fini_dmaq(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int pending;
/* If the MC has just rebooted, the TX/RX queues will have already been
* torn down, but efx->active_queues needs to be set to zero.
*/
if (nic_data->must_realloc_vis) {
atomic_set(&efx->active_queues, 0);
return 0;
}
/* Do not attempt to write to the NIC during EEH recovery */
if (efx->state != STATE_RECOVERY) {
efx_for_each_channel(channel, efx) {
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_ef10_rx_fini(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_ef10_tx_fini(tx_queue);
}
wait_event_timeout(efx->flush_wq,
atomic_read(&efx->active_queues) == 0,
msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
pending = atomic_read(&efx->active_queues);
if (pending) {
netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
pending);
return -ETIMEDOUT;
}
}
return 0;
}
static void efx_ef10_prepare_flr(struct efx_nic *efx)
{
atomic_set(&efx->active_queues, 0);
}
static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
const struct efx_filter_spec *right)
{
if ((left->match_flags ^ right->match_flags) |
((left->flags ^ right->flags) &
(EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
return false;
return memcmp(&left->outer_vid, &right->outer_vid,
sizeof(struct efx_filter_spec) -
offsetof(struct efx_filter_spec, outer_vid)) == 0;
}
static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
{
BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
return jhash2((const u32 *)&spec->outer_vid,
(sizeof(struct efx_filter_spec) -
offsetof(struct efx_filter_spec, outer_vid)) / 4,
0);
/* XXX should we randomise the initval? */
}
/* Decide whether a filter should be exclusive or else should allow
* delivery to additional recipients. Currently we decide that
* filters for specific local unicast MAC and IP addresses are
* exclusive.
*/
static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
{
if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
!is_multicast_ether_addr(spec->loc_mac))
return true;
if ((spec->match_flags &
(EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
(EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
if (spec->ether_type == htons(ETH_P_IP) &&
!ipv4_is_multicast(spec->loc_host[0]))
return true;
if (spec->ether_type == htons(ETH_P_IPV6) &&
((const u8 *)spec->loc_host)[0] != 0xff)
return true;
}
return false;
}
static struct efx_filter_spec *
efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
unsigned int filter_idx)
{
return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
~EFX_EF10_FILTER_FLAGS);
}
static unsigned int
efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
unsigned int filter_idx)
{
return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
}
static void
efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
unsigned int filter_idx,
const struct efx_filter_spec *spec,
unsigned int flags)
{
table->entry[filter_idx].spec = (unsigned long)spec | flags;
}
static void efx_ef10_filter_push_prep(struct efx_nic *efx,
const struct efx_filter_spec *spec,
efx_dword_t *inbuf, u64 handle,
bool replacing)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u32 flags = spec->flags;
memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
/* Remove RSS flag if we don't have an RSS context. */
if (flags & EFX_FILTER_FLAG_RX_RSS &&
spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
flags &= ~EFX_FILTER_FLAG_RX_RSS;
if (replacing) {
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
MC_CMD_FILTER_OP_IN_OP_REPLACE);
MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
} else {
u32 match_fields = 0;
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
efx_ef10_filter_is_exclusive(spec) ?
MC_CMD_FILTER_OP_IN_OP_INSERT :
MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
/* Convert match flags and values. Unlike almost
* everything else in MCDI, these fields are in
* network byte order.
*/
if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
match_fields |=
is_multicast_ether_addr(spec->loc_mac) ?
1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
#define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
match_fields |= \
1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
mcdi_field ## _LBN; \
BUILD_BUG_ON( \
MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
sizeof(spec->gen_field)); \
memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
&spec->gen_field, sizeof(spec->gen_field)); \
}
COPY_FIELD(REM_HOST, rem_host, SRC_IP);
COPY_FIELD(LOC_HOST, loc_host, DST_IP);
COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
#undef COPY_FIELD
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
match_fields);
}
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
0 : spec->dmaq_id);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
(flags & EFX_FILTER_FLAG_RX_RSS) ?
MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
if (flags & EFX_FILTER_FLAG_RX_RSS)
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
spec->rss_context !=
EFX_FILTER_RSS_CONTEXT_DEFAULT ?
spec->rss_context : nic_data->rx_rss_context);
}
static int efx_ef10_filter_push(struct efx_nic *efx,
const struct efx_filter_spec *spec,
u64 *handle, bool replacing)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
int rc;
efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
if (rc == 0)
*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
if (rc == -ENOSPC)
rc = -EBUSY; /* to match efx_farch_filter_insert() */
return rc;
}
static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
enum efx_filter_match_flags match_flags)
{
unsigned int match_pri;
for (match_pri = 0;
match_pri < table->rx_match_count;
match_pri++)
if (table->rx_match_flags[match_pri] == match_flags)
return match_pri;
return -EPROTONOSUPPORT;
}
static s32 efx_ef10_filter_insert(struct efx_nic *efx,
struct efx_filter_spec *spec,
bool replace_equal)
{
struct efx_ef10_filter_table *table = efx->filter_state;
DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
struct efx_filter_spec *saved_spec;
unsigned int match_pri, hash;
unsigned int priv_flags;
bool replacing = false;
int ins_index = -1;
DEFINE_WAIT(wait);
bool is_mc_recip;
s32 rc;
/* For now, only support RX filters */
if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
EFX_FILTER_FLAG_RX)
return -EINVAL;
rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
if (rc < 0)
return rc;
match_pri = rc;
hash = efx_ef10_filter_hash(spec);
is_mc_recip = efx_filter_is_mc_recipient(spec);
if (is_mc_recip)
bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
/* Find any existing filters with the same match tuple or
* else a free slot to insert at. If any of them are busy,
* we have to wait and retry.
*/
for (;;) {
unsigned int depth = 1;
unsigned int i;
spin_lock_bh(&efx->filter_lock);
for (;;) {
i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
saved_spec = efx_ef10_filter_entry_spec(table, i);
if (!saved_spec) {
if (ins_index < 0)
ins_index = i;
} else if (efx_ef10_filter_equal(spec, saved_spec)) {
if (table->entry[i].spec &
EFX_EF10_FILTER_FLAG_BUSY)
break;
if (spec->priority < saved_spec->priority &&
spec->priority != EFX_FILTER_PRI_AUTO) {
rc = -EPERM;
goto out_unlock;
}
if (!is_mc_recip) {
/* This is the only one */
if (spec->priority ==
saved_spec->priority &&
!replace_equal) {
rc = -EEXIST;
goto out_unlock;
}
ins_index = i;
goto found;
} else if (spec->priority >
saved_spec->priority ||
(spec->priority ==
saved_spec->priority &&
replace_equal)) {
if (ins_index < 0)
ins_index = i;
else
__set_bit(depth, mc_rem_map);
}
}
/* Once we reach the maximum search depth, use
* the first suitable slot or return -EBUSY if
* there was none
*/
if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
if (ins_index < 0) {
rc = -EBUSY;
goto out_unlock;
}
goto found;
}
++depth;
}
prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock_bh(&efx->filter_lock);
schedule();
}
found:
/* Create a software table entry if necessary, and mark it
* busy. We might yet fail to insert, but any attempt to
* insert a conflicting filter while we're waiting for the
* firmware must find the busy entry.
*/
saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
if (saved_spec) {
if (spec->priority == EFX_FILTER_PRI_AUTO &&
saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
/* Just make sure it won't be removed */
if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
table->entry[ins_index].spec &=
~EFX_EF10_FILTER_FLAG_AUTO_OLD;
rc = ins_index;
goto out_unlock;
}
replacing = true;
priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
} else {
saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
if (!saved_spec) {
rc = -ENOMEM;
goto out_unlock;
}
*saved_spec = *spec;
priv_flags = 0;
}
efx_ef10_filter_set_entry(table, ins_index, saved_spec,
priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
/* Mark lower-priority multicast recipients busy prior to removal */
if (is_mc_recip) {
unsigned int depth, i;
for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
if (test_bit(depth, mc_rem_map))
table->entry[i].spec |=
EFX_EF10_FILTER_FLAG_BUSY;
}
}
spin_unlock_bh(&efx->filter_lock);
rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
replacing);
/* Finalise the software table entry */
spin_lock_bh(&efx->filter_lock);
if (rc == 0) {
if (replacing) {
/* Update the fields that may differ */
if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
saved_spec->flags |=
EFX_FILTER_FLAG_RX_OVER_AUTO;
saved_spec->priority = spec->priority;
saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
saved_spec->flags |= spec->flags;
saved_spec->rss_context = spec->rss_context;
saved_spec->dmaq_id = spec->dmaq_id;
}
} else if (!replacing) {
kfree(saved_spec);
saved_spec = NULL;
}
efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
/* Remove and finalise entries for lower-priority multicast
* recipients
*/
if (is_mc_recip) {
MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
unsigned int depth, i;
memset(inbuf, 0, sizeof(inbuf));
for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
if (!test_bit(depth, mc_rem_map))
continue;
i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
saved_spec = efx_ef10_filter_entry_spec(table, i);
priv_flags = efx_ef10_filter_entry_flags(table, i);
if (rc == 0) {
spin_unlock_bh(&efx->filter_lock);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
table->entry[i].handle);
rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
inbuf, sizeof(inbuf),
NULL, 0, NULL);
spin_lock_bh(&efx->filter_lock);
}
if (rc == 0) {
kfree(saved_spec);
saved_spec = NULL;
priv_flags = 0;
} else {
priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
}
efx_ef10_filter_set_entry(table, i, saved_spec,
priv_flags);
}
}
/* If successful, return the inserted filter ID */
if (rc == 0)
rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
wake_up_all(&table->waitq);
out_unlock:
spin_unlock_bh(&efx->filter_lock);
finish_wait(&table->waitq, &wait);
return rc;
}
static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
{
/* no need to do anything here on EF10 */
}
/* Remove a filter.
* If !by_index, remove by ID
* If by_index, remove by index
* Filter ID may come from userland and must be range-checked.
*/
static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
unsigned int priority_mask,
u32 filter_id, bool by_index)
{
unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
struct efx_ef10_filter_table *table = efx->filter_state;
MCDI_DECLARE_BUF(inbuf,
MC_CMD_FILTER_OP_IN_HANDLE_OFST +
MC_CMD_FILTER_OP_IN_HANDLE_LEN);
struct efx_filter_spec *spec;
DEFINE_WAIT(wait);
int rc;
/* Find the software table entry and mark it busy. Don't
* remove it yet; any attempt to update while we're waiting
* for the firmware must find the busy entry.
*/
for (;;) {
spin_lock_bh(&efx->filter_lock);
if (!(table->entry[filter_idx].spec &
EFX_EF10_FILTER_FLAG_BUSY))
break;
prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock_bh(&efx->filter_lock);
schedule();
}
spec = efx_ef10_filter_entry_spec(table, filter_idx);
if (!spec ||
(!by_index &&
efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
filter_id / HUNT_FILTER_TBL_ROWS)) {
rc = -ENOENT;
goto out_unlock;
}
if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
/* Just remove flags */
spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
rc = 0;
goto out_unlock;
}
if (!(priority_mask & (1U << spec->priority))) {
rc = -ENOENT;
goto out_unlock;
}
table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
spin_unlock_bh(&efx->filter_lock);
if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
/* Reset to an automatic filter */
struct efx_filter_spec new_spec = *spec;
new_spec.priority = EFX_FILTER_PRI_AUTO;
new_spec.flags = (EFX_FILTER_FLAG_RX |
(efx_rss_enabled(efx) ?
EFX_FILTER_FLAG_RX_RSS : 0));
new_spec.dmaq_id = 0;
new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
rc = efx_ef10_filter_push(efx, &new_spec,
&table->entry[filter_idx].handle,
true);
spin_lock_bh(&efx->filter_lock);
if (rc == 0)
*spec = new_spec;
} else {
/* Really remove the filter */
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
efx_ef10_filter_is_exclusive(spec) ?
MC_CMD_FILTER_OP_IN_OP_REMOVE :
MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
table->entry[filter_idx].handle);
rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
inbuf, sizeof(inbuf), NULL, 0, NULL);
spin_lock_bh(&efx->filter_lock);
if (rc == 0) {
kfree(spec);
efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
}
}
table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
wake_up_all(&table->waitq);
out_unlock:
spin_unlock_bh(&efx->filter_lock);
finish_wait(&table->waitq, &wait);
return rc;
}
static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id)
{
return efx_ef10_filter_remove_internal(efx, 1U << priority,
filter_id, false);
}
static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
{
return filter_id % HUNT_FILTER_TBL_ROWS;
}
static int efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id)
{
return efx_ef10_filter_remove_internal(efx, 1U << priority,
filter_id, true);
}
static int efx_ef10_filter_get_safe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id, struct efx_filter_spec *spec)
{
unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
struct efx_ef10_filter_table *table = efx->filter_state;
const struct efx_filter_spec *saved_spec;
int rc;
spin_lock_bh(&efx->filter_lock);
saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
if (saved_spec && saved_spec->priority == priority &&
efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
filter_id / HUNT_FILTER_TBL_ROWS) {
*spec = *saved_spec;
rc = 0;
} else {
rc = -ENOENT;
}
spin_unlock_bh(&efx->filter_lock);
return rc;
}
static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
enum efx_filter_priority priority)
{
unsigned int priority_mask;
unsigned int i;
int rc;
priority_mask = (((1U << (priority + 1)) - 1) &
~(1U << EFX_FILTER_PRI_AUTO));
for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
rc = efx_ef10_filter_remove_internal(efx, priority_mask,
i, true);
if (rc && rc != -ENOENT)
return rc;
}
return 0;
}
static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
enum efx_filter_priority priority)
{
struct efx_ef10_filter_table *table = efx->filter_state;
unsigned int filter_idx;
s32 count = 0;
spin_lock_bh(&efx->filter_lock);
for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
if (table->entry[filter_idx].spec &&
efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
priority)
++count;
}
spin_unlock_bh(&efx->filter_lock);
return count;
}
static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
}
static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 *buf, u32 size)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_filter_spec *spec;
unsigned int filter_idx;
s32 count = 0;
spin_lock_bh(&efx->filter_lock);
for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
spec = efx_ef10_filter_entry_spec(table, filter_idx);
if (spec && spec->priority == priority) {
if (count == size) {
count = -EMSGSIZE;
break;
}
buf[count++] = (efx_ef10_filter_rx_match_pri(
table, spec->match_flags) *
HUNT_FILTER_TBL_ROWS +
filter_idx);
}
}
spin_unlock_bh(&efx->filter_lock);
return count;
}
#ifdef CONFIG_RFS_ACCEL
static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
struct efx_filter_spec *spec)
{
struct efx_ef10_filter_table *table = efx->filter_state;
MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
struct efx_filter_spec *saved_spec;
unsigned int hash, i, depth = 1;
bool replacing = false;
int ins_index = -1;
u64 cookie;
s32 rc;
/* Must be an RX filter without RSS and not for a multicast
* destination address (RFS only works for connected sockets).
* These restrictions allow us to pass only a tiny amount of
* data through to the completion function.
*/
EFX_WARN_ON_PARANOID(spec->flags !=
(EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
hash = efx_ef10_filter_hash(spec);
spin_lock_bh(&efx->filter_lock);
/* Find any existing filter with the same match tuple or else
* a free slot to insert at. If an existing filter is busy,
* we have to give up.
*/
for (;;) {
i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
saved_spec = efx_ef10_filter_entry_spec(table, i);
if (!saved_spec) {
if (ins_index < 0)
ins_index = i;
} else if (efx_ef10_filter_equal(spec, saved_spec)) {
if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
rc = -EBUSY;
goto fail_unlock;
}
if (spec->priority < saved_spec->priority) {
rc = -EPERM;
goto fail_unlock;
}
ins_index = i;
break;
}
/* Once we reach the maximum search depth, use the
* first suitable slot or return -EBUSY if there was
* none
*/
if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
if (ins_index < 0) {
rc = -EBUSY;
goto fail_unlock;
}
break;
}
++depth;
}
/* Create a software table entry if necessary, and mark it
* busy. We might yet fail to insert, but any attempt to
* insert a conflicting filter while we're waiting for the
* firmware must find the busy entry.
*/
saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
if (saved_spec) {
replacing = true;
} else {
saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
if (!saved_spec) {
rc = -ENOMEM;
goto fail_unlock;
}
*saved_spec = *spec;
}
efx_ef10_filter_set_entry(table, ins_index, saved_spec,
EFX_EF10_FILTER_FLAG_BUSY);
spin_unlock_bh(&efx->filter_lock);
/* Pack up the variables needed on completion */
cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
efx_ef10_filter_push_prep(efx, spec, inbuf,
table->entry[ins_index].handle, replacing);
efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
MC_CMD_FILTER_OP_OUT_LEN,
efx_ef10_filter_rfs_insert_complete, cookie);
return ins_index;
fail_unlock:
spin_unlock_bh(&efx->filter_lock);
return rc;
}
static void
efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
int rc, efx_dword_t *outbuf,
size_t outlen_actual)
{
struct efx_ef10_filter_table *table = efx->filter_state;
unsigned int ins_index, dmaq_id;
struct efx_filter_spec *spec;
bool replacing;
/* Unpack the cookie */
replacing = cookie >> 31;
ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
dmaq_id = cookie & 0xffff;
spin_lock_bh(&efx->filter_lock);
spec = efx_ef10_filter_entry_spec(table, ins_index);
if (rc == 0) {
table->entry[ins_index].handle =
MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
if (replacing)
spec->dmaq_id = dmaq_id;
} else if (!replacing) {
kfree(spec);
spec = NULL;
}
efx_ef10_filter_set_entry(table, ins_index, spec, 0);
spin_unlock_bh(&efx->filter_lock);
wake_up_all(&table->waitq);
}
static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
unsigned long filter_idx,
int rc, efx_dword_t *outbuf,
size_t outlen_actual);
static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
unsigned int filter_idx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_filter_spec *spec =
efx_ef10_filter_entry_spec(table, filter_idx);
MCDI_DECLARE_BUF(inbuf,
MC_CMD_FILTER_OP_IN_HANDLE_OFST +
MC_CMD_FILTER_OP_IN_HANDLE_LEN);
if (!spec ||
(table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
spec->priority != EFX_FILTER_PRI_HINT ||
!rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
flow_id, filter_idx))
return false;
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
MC_CMD_FILTER_OP_IN_OP_REMOVE);
MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
table->entry[filter_idx].handle);
if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
efx_ef10_filter_rfs_expire_complete, filter_idx))
return false;
table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
return true;
}
static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
unsigned long filter_idx,
int rc, efx_dword_t *outbuf,
size_t outlen_actual)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_filter_spec *spec =
efx_ef10_filter_entry_spec(table, filter_idx);
spin_lock_bh(&efx->filter_lock);
if (rc == 0) {
kfree(spec);
efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
}
table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
wake_up_all(&table->waitq);
spin_unlock_bh(&efx->filter_lock);
}
#endif /* CONFIG_RFS_ACCEL */
static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
{
int match_flags = 0;
#define MAP_FLAG(gen_flag, mcdi_field) { \
u32 old_mcdi_flags = mcdi_flags; \
mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
mcdi_field ## _LBN); \
if (mcdi_flags != old_mcdi_flags) \
match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
}
MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
MAP_FLAG(REM_HOST, SRC_IP);
MAP_FLAG(LOC_HOST, DST_IP);
MAP_FLAG(REM_MAC, SRC_MAC);
MAP_FLAG(REM_PORT, SRC_PORT);
MAP_FLAG(LOC_MAC, DST_MAC);
MAP_FLAG(LOC_PORT, DST_PORT);
MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
MAP_FLAG(INNER_VID, INNER_VLAN);
MAP_FLAG(OUTER_VID, OUTER_VLAN);
MAP_FLAG(IP_PROTO, IP_PROTO);
#undef MAP_FLAG
/* Did we map them all? */
if (mcdi_flags)
return -EINVAL;
return match_flags;
}
static int efx_ef10_filter_table_probe(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
unsigned int pd_match_pri, pd_match_count;
struct efx_ef10_filter_table *table;
size_t outlen;
int rc;
table = kzalloc(sizeof(*table), GFP_KERNEL);
if (!table)
return -ENOMEM;
/* Find out which RX filter types are supported, and their priorities */
MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
&outlen);
if (rc)
goto fail;
pd_match_count = MCDI_VAR_ARRAY_LEN(
outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
table->rx_match_count = 0;
for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
u32 mcdi_flags =
MCDI_ARRAY_DWORD(
outbuf,
GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
pd_match_pri);
rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
if (rc < 0) {
netif_dbg(efx, probe, efx->net_dev,
"%s: fw flags %#x pri %u not supported in driver\n",
__func__, mcdi_flags, pd_match_pri);
} else {
netif_dbg(efx, probe, efx->net_dev,
"%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
__func__, mcdi_flags, pd_match_pri,
rc, table->rx_match_count);
table->rx_match_flags[table->rx_match_count++] = rc;
}
}
table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
if (!table->entry) {
rc = -ENOMEM;
goto fail;
}
table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
table->mc_promisc_last = false;
efx->filter_state = table;
init_waitqueue_head(&table->waitq);
return 0;
fail:
kfree(table);
return rc;
}
/* Caller must hold efx->filter_sem for read if race against
* efx_ef10_filter_table_remove() is possible
*/
static void efx_ef10_filter_table_restore(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_filter_spec *spec;
unsigned int filter_idx;
bool failed = false;
int rc;
WARN_ON(!rwsem_is_locked(&efx->filter_sem));
if (!nic_data->must_restore_filters)
return;
if (!table)
return;
spin_lock_bh(&efx->filter_lock);
for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
spec = efx_ef10_filter_entry_spec(table, filter_idx);
if (!spec)
continue;
table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
spin_unlock_bh(&efx->filter_lock);
rc = efx_ef10_filter_push(efx, spec,
&table->entry[filter_idx].handle,
false);
if (rc)
failed = true;
spin_lock_bh(&efx->filter_lock);
if (rc) {
kfree(spec);
efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
} else {
table->entry[filter_idx].spec &=
~EFX_EF10_FILTER_FLAG_BUSY;
}
}
spin_unlock_bh(&efx->filter_lock);
if (failed)
netif_err(efx, hw, efx->net_dev,
"unable to restore all filters\n");
else
nic_data->must_restore_filters = false;
}
/* Caller must hold efx->filter_sem for write */
static void efx_ef10_filter_table_remove(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
struct efx_filter_spec *spec;
unsigned int filter_idx;
int rc;
efx->filter_state = NULL;
if (!table)
return;
for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
spec = efx_ef10_filter_entry_spec(table, filter_idx);
if (!spec)
continue;
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
efx_ef10_filter_is_exclusive(spec) ?
MC_CMD_FILTER_OP_IN_OP_REMOVE :
MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
table->entry[filter_idx].handle);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
sizeof(inbuf), NULL, 0, NULL);
if (rc)
netif_info(efx, drv, efx->net_dev,
"%s: filter %04x remove failed\n",
__func__, filter_idx);
kfree(spec);
}
vfree(table->entry);
kfree(table);
}
#define EFX_EF10_FILTER_DO_MARK_OLD(id) \
if (id != EFX_EF10_FILTER_ID_INVALID) { \
filter_idx = efx_ef10_filter_get_unsafe_id(efx, id); \
if (!table->entry[filter_idx].spec) \
netif_dbg(efx, drv, efx->net_dev, \
"%s: marked null spec old %04x:%04x\n", \
__func__, id, filter_idx); \
table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;\
}
static void efx_ef10_filter_mark_old(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
unsigned int filter_idx, i;
if (!table)
return;
/* Mark old filters that may need to be removed */
spin_lock_bh(&efx->filter_lock);
for (i = 0; i < table->dev_uc_count; i++)
EFX_EF10_FILTER_DO_MARK_OLD(table->dev_uc_list[i].id);
for (i = 0; i < table->dev_mc_count; i++)
EFX_EF10_FILTER_DO_MARK_OLD(table->dev_mc_list[i].id);
EFX_EF10_FILTER_DO_MARK_OLD(table->ucdef_id);
EFX_EF10_FILTER_DO_MARK_OLD(table->bcast_id);
EFX_EF10_FILTER_DO_MARK_OLD(table->mcdef_id);
spin_unlock_bh(&efx->filter_lock);
}
#undef EFX_EF10_FILTER_DO_MARK_OLD
static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx, bool *promisc)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct net_device *net_dev = efx->net_dev;
struct netdev_hw_addr *uc;
int addr_count;
unsigned int i;
table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
addr_count = netdev_uc_count(net_dev);
if (net_dev->flags & IFF_PROMISC)
*promisc = true;
table->dev_uc_count = 1 + addr_count;
ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
i = 1;
netdev_for_each_uc_addr(uc, net_dev) {
if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
*promisc = true;
break;
}
ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
table->dev_uc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
i++;
}
}
static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx, bool *promisc)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct net_device *net_dev = efx->net_dev;
struct netdev_hw_addr *mc;
unsigned int i, addr_count;
table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI))
*promisc = true;
addr_count = netdev_mc_count(net_dev);
i = 0;
netdev_for_each_mc_addr(mc, net_dev) {
if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
*promisc = true;
break;
}
ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
table->dev_mc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
i++;
}
table->dev_mc_count = i;
}
static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
bool multicast, bool rollback)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_ef10_dev_addr *addr_list;
enum efx_filter_flags filter_flags;
struct efx_filter_spec spec;
u8 baddr[ETH_ALEN];
unsigned int i, j;
int addr_count;
int rc;
if (multicast) {
addr_list = table->dev_mc_list;
addr_count = table->dev_mc_count;
} else {
addr_list = table->dev_uc_list;
addr_count = table->dev_uc_count;
}
filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
/* Insert/renew filters */
for (i = 0; i < addr_count; i++) {
efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
addr_list[i].addr);
rc = efx_ef10_filter_insert(efx, &spec, true);
if (rc < 0) {
if (rollback) {
netif_info(efx, drv, efx->net_dev,
"efx_ef10_filter_insert failed rc=%d\n",
rc);
/* Fall back to promiscuous */
for (j = 0; j < i; j++) {
if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
continue;
efx_ef10_filter_remove_unsafe(
efx, EFX_FILTER_PRI_AUTO,
addr_list[j].id);
addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
}
return rc;
} else {
/* mark as not inserted, and carry on */
rc = EFX_EF10_FILTER_ID_INVALID;
}
}
addr_list[i].id = efx_ef10_filter_get_unsafe_id(efx, rc);
}
if (multicast && rollback) {
/* Also need an Ethernet broadcast filter */
efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
eth_broadcast_addr(baddr);
efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, baddr);
rc = efx_ef10_filter_insert(efx, &spec, true);
if (rc < 0) {
netif_warn(efx, drv, efx->net_dev,
"Broadcast filter insert failed rc=%d\n", rc);
/* Fall back to promiscuous */
for (j = 0; j < i; j++) {
if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
continue;
efx_ef10_filter_remove_unsafe(
efx, EFX_FILTER_PRI_AUTO,
addr_list[j].id);
addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
}
return rc;
} else {
table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
}
}
return 0;
}
static int efx_ef10_filter_insert_def(struct efx_nic *efx, bool multicast,
bool rollback)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
enum efx_filter_flags filter_flags;
struct efx_filter_spec spec;
u8 baddr[ETH_ALEN];
int rc;
filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
if (multicast)
efx_filter_set_mc_def(&spec);
else
efx_filter_set_uc_def(&spec);
rc = efx_ef10_filter_insert(efx, &spec, true);
if (rc < 0) {
netif_printk(efx, drv, rc == -EPERM ? KERN_DEBUG : KERN_WARNING,
efx->net_dev,
"%scast mismatch filter insert failed rc=%d\n",
multicast ? "Multi" : "Uni", rc);
} else if (multicast) {
table->mcdef_id = efx_ef10_filter_get_unsafe_id(efx, rc);
if (!nic_data->workaround_26807) {
/* Also need an Ethernet broadcast filter */
efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
filter_flags, 0);
eth_broadcast_addr(baddr);
efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
baddr);
rc = efx_ef10_filter_insert(efx, &spec, true);
if (rc < 0) {
netif_warn(efx, drv, efx->net_dev,
"Broadcast filter insert failed rc=%d\n",
rc);
if (rollback) {
/* Roll back the mc_def filter */
efx_ef10_filter_remove_unsafe(
efx, EFX_FILTER_PRI_AUTO,
table->mcdef_id);
table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
return rc;
}
} else {
table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
}
}
rc = 0;
} else {
table->ucdef_id = rc;
rc = 0;
}
return rc;
}
/* Remove filters that weren't renewed. Since nothing else changes the AUTO_OLD
* flag or removes these filters, we don't need to hold the filter_lock while
* scanning for these filters.
*/
static void efx_ef10_filter_remove_old(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
int remove_failed = 0;
int remove_noent = 0;
int rc;
int i;
for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
if (ACCESS_ONCE(table->entry[i].spec) &
EFX_EF10_FILTER_FLAG_AUTO_OLD) {
rc = efx_ef10_filter_remove_internal(efx,
1U << EFX_FILTER_PRI_AUTO, i, true);
if (rc == -ENOENT)
remove_noent++;
else if (rc)
remove_failed++;
}
}
if (remove_failed)
netif_info(efx, drv, efx->net_dev,
"%s: failed to remove %d filters\n",
__func__, remove_failed);
if (remove_noent)
netif_info(efx, drv, efx->net_dev,
"%s: failed to remove %d non-existent filters\n",
__func__, remove_noent);
}
static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u8 mac_old[ETH_ALEN];
int rc, rc2;
/* Only reconfigure a PF-created vport */
if (is_zero_ether_addr(nic_data->vport_mac))
return 0;
efx_device_detach_sync(efx);
efx_net_stop(efx->net_dev);
down_write(&efx->filter_sem);
efx_ef10_filter_table_remove(efx);
up_write(&efx->filter_sem);
rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
if (rc)
goto restore_filters;
ether_addr_copy(mac_old, nic_data->vport_mac);
rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
nic_data->vport_mac);
if (rc)
goto restore_vadaptor;
rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
efx->net_dev->dev_addr);
if (!rc) {
ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
} else {
rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
if (rc2) {
/* Failed to add original MAC, so clear vport_mac */
eth_zero_addr(nic_data->vport_mac);
goto reset_nic;
}
}
restore_vadaptor:
rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
if (rc2)
goto reset_nic;
restore_filters:
down_write(&efx->filter_sem);
rc2 = efx_ef10_filter_table_probe(efx);
up_write(&efx->filter_sem);
if (rc2)
goto reset_nic;
rc2 = efx_net_open(efx->net_dev);
if (rc2)
goto reset_nic;
netif_device_attach(efx->net_dev);
return rc;
reset_nic:
netif_err(efx, drv, efx->net_dev,
"Failed to restore when changing MAC address - scheduling reset\n");
efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
return rc ? rc : rc2;
}
/* Caller must hold efx->filter_sem for read if race against
* efx_ef10_filter_table_remove() is possible
*/
static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct net_device *net_dev = efx->net_dev;
bool uc_promisc = false, mc_promisc = false;
if (!efx_dev_registered(efx))
return;
if (!table)
return;
efx_ef10_filter_mark_old(efx);
/* Copy/convert the address lists; add the primary station
* address and broadcast address
*/
netif_addr_lock_bh(net_dev);
efx_ef10_filter_uc_addr_list(efx, &uc_promisc);
efx_ef10_filter_mc_addr_list(efx, &mc_promisc);
netif_addr_unlock_bh(net_dev);
/* Insert/renew unicast filters */
if (uc_promisc) {
efx_ef10_filter_insert_def(efx, false, false);
efx_ef10_filter_insert_addr_list(efx, false, false);
} else {
/* If any of the filters failed to insert, fall back to
* promiscuous mode - add in the uc_def filter. But keep
* our individual unicast filters.
*/
if (efx_ef10_filter_insert_addr_list(efx, false, false))
efx_ef10_filter_insert_def(efx, false, false);
}
/* Insert/renew multicast filters */
/* If changing promiscuous state with cascaded multicast filters, remove
* old filters first, so that packets are dropped rather than duplicated
*/
if (nic_data->workaround_26807 && table->mc_promisc_last != mc_promisc)
efx_ef10_filter_remove_old(efx);
if (mc_promisc) {
if (nic_data->workaround_26807) {
/* If we failed to insert promiscuous filters, rollback
* and fall back to individual multicast filters
*/
if (efx_ef10_filter_insert_def(efx, true, true)) {
/* Changing promisc state, so remove old filters */
efx_ef10_filter_remove_old(efx);
efx_ef10_filter_insert_addr_list(efx, true, false);
}
} else {
/* If we failed to insert promiscuous filters, don't
* rollback. Regardless, also insert the mc_list
*/
efx_ef10_filter_insert_def(efx, true, false);
efx_ef10_filter_insert_addr_list(efx, true, false);
}
} else {
/* If any filters failed to insert, rollback and fall back to
* promiscuous mode - mc_def filter and maybe broadcast. If
* that fails, roll back again and insert as many of our
* individual multicast filters as we can.
*/
if (efx_ef10_filter_insert_addr_list(efx, true, true)) {
/* Changing promisc state, so remove old filters */
if (nic_data->workaround_26807)
efx_ef10_filter_remove_old(efx);
if (efx_ef10_filter_insert_def(efx, true, true))
efx_ef10_filter_insert_addr_list(efx, true, false);
}
}
efx_ef10_filter_remove_old(efx);
table->mc_promisc_last = mc_promisc;
}
static int efx_ef10_set_mac_address(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
bool was_enabled = efx->port_enabled;
int rc;
efx_device_detach_sync(efx);
efx_net_stop(efx->net_dev);
down_write(&efx->filter_sem);
efx_ef10_filter_table_remove(efx);
ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
efx->net_dev->dev_addr);
MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
nic_data->vport_id);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
sizeof(inbuf), NULL, 0, NULL);
efx_ef10_filter_table_probe(efx);
up_write(&efx->filter_sem);
if (was_enabled)
efx_net_open(efx->net_dev);
netif_device_attach(efx->net_dev);
#ifdef CONFIG_SFC_SRIOV
if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
if (rc == -EPERM) {
struct efx_nic *efx_pf;
/* Switch to PF and change MAC address on vport */
efx_pf = pci_get_drvdata(pci_dev_pf);
rc = efx_ef10_sriov_set_vf_mac(efx_pf,
nic_data->vf_index,
efx->net_dev->dev_addr);
} else if (!rc) {
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
unsigned int i;
/* MAC address successfully changed by VF (with MAC
* spoofing) so update the parent PF if possible.
*/
for (i = 0; i < efx_pf->vf_count; ++i) {
struct ef10_vf *vf = nic_data->vf + i;
if (vf->efx == efx) {
ether_addr_copy(vf->mac,
efx->net_dev->dev_addr);
return 0;
}
}
}
} else
#endif
if (rc == -EPERM) {
netif_err(efx, drv, efx->net_dev,
"Cannot change MAC address; use sfboot to enable"
" mac-spoofing on this interface\n");
} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
* fall-back to the method of changing the MAC address on the
* vport. This only applies to PFs because such versions of
* MCFW do not support VFs.
*/
rc = efx_ef10_vport_set_mac_address(efx);
} else {
efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
sizeof(inbuf), NULL, 0, rc);
}
return rc;
}
static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
{
efx_ef10_filter_sync_rx_mode(efx);
return efx_mcdi_set_mac(efx);
}
static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
{
efx_ef10_filter_sync_rx_mode(efx);
return 0;
}
static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
/* MC BISTs follow a different poll mechanism to phy BISTs.
* The BIST is done in the poll handler on the MC, and the MCDI command
* will block until the BIST is done.
*/
static int efx_ef10_poll_bist(struct efx_nic *efx)
{
int rc;
MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
size_t outlen;
u32 result;
rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc != 0)
return rc;
if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
return -EIO;
result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
switch (result) {
case MC_CMD_POLL_BIST_PASSED:
netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
return 0;
case MC_CMD_POLL_BIST_TIMEOUT:
netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
return -EIO;
case MC_CMD_POLL_BIST_FAILED:
netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
return -EIO;
default:
netif_err(efx, hw, efx->net_dev,
"BIST returned unknown result %u", result);
return -EIO;
}
}
static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
{
int rc;
netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
rc = efx_ef10_start_bist(efx, bist_type);
if (rc != 0)
return rc;
return efx_ef10_poll_bist(efx);
}
static int
efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
{
int rc, rc2;
efx_reset_down(efx, RESET_TYPE_WORLD);
rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
NULL, 0, NULL, 0, NULL);
if (rc != 0)
goto out;
tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
out:
if (rc == -EPERM)
rc = 0;
rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
return rc ? rc : rc2;
}
#ifdef CONFIG_SFC_MTD
struct efx_ef10_nvram_type_info {
u16 type, type_mask;
u8 port;
const char *name;
};
static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
{ NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
{ NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
{ NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
{ NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
};
static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
struct efx_mcdi_mtd_partition *part,
unsigned int type)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
const struct efx_ef10_nvram_type_info *info;
size_t size, erase_size, outlen;
bool protected;
int rc;
for (info = efx_ef10_nvram_types; ; info++) {
if (info ==
efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
return -ENODEV;
if ((type & ~info->type_mask) == info->type)
break;
}
if (info->port != efx_port_num(efx))
return -ENODEV;
rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
if (rc)
return rc;
if (protected)
return -ENODEV; /* hide it */
part->nvram_type = type;
MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
return -EIO;
if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
(1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
part->fw_subtype = MCDI_DWORD(outbuf,
NVRAM_METADATA_OUT_SUBTYPE);
part->common.dev_type_name = "EF10 NVRAM manager";
part->common.type_name = info->name;
part->common.mtd.type = MTD_NORFLASH;
part->common.mtd.flags = MTD_CAP_NORFLASH;
part->common.mtd.size = size;
part->common.mtd.erasesize = erase_size;
return 0;
}
static int efx_ef10_mtd_probe(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
struct efx_mcdi_mtd_partition *parts;
size_t outlen, n_parts_total, i, n_parts;
unsigned int type;
int rc;
ASSERT_RTNL();
BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
return -EIO;
n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
if (n_parts_total >
MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
return -EIO;
parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
n_parts = 0;
for (i = 0; i < n_parts_total; i++) {
type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
i);
rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
if (rc == 0)
n_parts++;
else if (rc != -ENODEV)
goto fail;
}
rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
fail:
if (rc)
kfree(parts);
return rc;
}
#endif /* CONFIG_SFC_MTD */
static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
{
_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
}
static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
u32 host_time) {}
static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
bool temp)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
int rc;
if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
channel->sync_events_state == SYNC_EVENTS_VALID ||
(temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
return 0;
channel->sync_events_state = SYNC_EVENTS_REQUESTED;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
channel->channel);
rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
inbuf, sizeof(inbuf), NULL, 0, NULL);
if (rc != 0)
channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
SYNC_EVENTS_DISABLED;
return rc;
}
static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
bool temp)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
int rc;
if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
(temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
return 0;
if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
channel->sync_events_state = SYNC_EVENTS_DISABLED;
return 0;
}
channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
SYNC_EVENTS_DISABLED;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
channel->channel);
rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
inbuf, sizeof(inbuf), NULL, 0, NULL);
return rc;
}
static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
bool temp)
{
int (*set)(struct efx_channel *channel, bool temp);
struct efx_channel *channel;
set = en ?
efx_ef10_rx_enable_timestamping :
efx_ef10_rx_disable_timestamping;
efx_for_each_channel(channel, efx) {
int rc = set(channel, temp);
if (en && rc != 0) {
efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
return rc;
}
}
return 0;
}
static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
struct hwtstamp_config *init)
{
return -EOPNOTSUPP;
}
static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
struct hwtstamp_config *init)
{
int rc;
switch (init->rx_filter) {
case HWTSTAMP_FILTER_NONE:
efx_ef10_ptp_set_ts_sync_events(efx, false, false);
/* if TX timestamping is still requested then leave PTP on */
return efx_ptp_change_mode(efx,
init->tx_type != HWTSTAMP_TX_OFF, 0);
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
init->rx_filter = HWTSTAMP_FILTER_ALL;
rc = efx_ptp_change_mode(efx, true, 0);
if (!rc)
rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
if (rc)
efx_ptp_change_mode(efx, false, 0);
return rc;
default:
return -ERANGE;
}
}
#define EF10_OFFLOAD_FEATURES \
(NETIF_F_IP_CSUM | \
NETIF_F_IPV6_CSUM | \
NETIF_F_RXHASH | \
NETIF_F_NTUPLE)
const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
.is_vf = true,
.mem_bar = EFX_MEM_VF_BAR,
.mem_map_size = efx_ef10_mem_map_size,
.probe = efx_ef10_probe_vf,
.remove = efx_ef10_remove,
.dimension_resources = efx_ef10_dimension_resources,
.init = efx_ef10_init_nic,
.fini = efx_port_dummy_op_void,
.map_reset_reason = efx_ef10_map_reset_reason,
.map_reset_flags = efx_ef10_map_reset_flags,
.reset = efx_ef10_reset,
.probe_port = efx_mcdi_port_probe,
.remove_port = efx_mcdi_port_remove,
.fini_dmaq = efx_ef10_fini_dmaq,
.prepare_flr = efx_ef10_prepare_flr,
.finish_flr = efx_port_dummy_op_void,
.describe_stats = efx_ef10_describe_stats,
.update_stats = efx_ef10_update_stats_vf,
.start_stats = efx_port_dummy_op_void,
.pull_stats = efx_port_dummy_op_void,
.stop_stats = efx_port_dummy_op_void,
.set_id_led = efx_mcdi_set_id_led,
.push_irq_moderation = efx_ef10_push_irq_moderation,
.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
.check_mac_fault = efx_mcdi_mac_check_fault,
.reconfigure_port = efx_mcdi_port_reconfigure,
.get_wol = efx_ef10_get_wol_vf,
.set_wol = efx_ef10_set_wol_vf,
.resume_wol = efx_port_dummy_op_void,
.mcdi_request = efx_ef10_mcdi_request,
.mcdi_poll_response = efx_ef10_mcdi_poll_response,
.mcdi_read_response = efx_ef10_mcdi_read_response,
.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
.irq_enable_master = efx_port_dummy_op_void,
.irq_test_generate = efx_ef10_irq_test_generate,
.irq_disable_non_ev = efx_port_dummy_op_void,
.irq_handle_msi = efx_ef10_msi_interrupt,
.irq_handle_legacy = efx_ef10_legacy_interrupt,
.tx_probe = efx_ef10_tx_probe,
.tx_init = efx_ef10_tx_init,
.tx_remove = efx_ef10_tx_remove,
.tx_write = efx_ef10_tx_write,
.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
.rx_probe = efx_ef10_rx_probe,
.rx_init = efx_ef10_rx_init,
.rx_remove = efx_ef10_rx_remove,
.rx_write = efx_ef10_rx_write,
.rx_defer_refill = efx_ef10_rx_defer_refill,
.ev_probe = efx_ef10_ev_probe,
.ev_init = efx_ef10_ev_init,
.ev_fini = efx_ef10_ev_fini,
.ev_remove = efx_ef10_ev_remove,
.ev_process = efx_ef10_ev_process,
.ev_read_ack = efx_ef10_ev_read_ack,
.ev_test_generate = efx_ef10_ev_test_generate,
.filter_table_probe = efx_ef10_filter_table_probe,
.filter_table_restore = efx_ef10_filter_table_restore,
.filter_table_remove = efx_ef10_filter_table_remove,
.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
.filter_insert = efx_ef10_filter_insert,
.filter_remove_safe = efx_ef10_filter_remove_safe,
.filter_get_safe = efx_ef10_filter_get_safe,
.filter_clear_rx = efx_ef10_filter_clear_rx,
.filter_count_rx_used = efx_ef10_filter_count_rx_used,
.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
.filter_rfs_insert = efx_ef10_filter_rfs_insert,
.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
.mtd_probe = efx_port_dummy_op_int,
#endif
.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
#ifdef CONFIG_SFC_SRIOV
.vswitching_probe = efx_ef10_vswitching_probe_vf,
.vswitching_restore = efx_ef10_vswitching_restore_vf,
.vswitching_remove = efx_ef10_vswitching_remove_vf,
.sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
#endif
.get_mac_address = efx_ef10_get_mac_address_vf,
.set_mac_address = efx_ef10_set_mac_address,
.revision = EFX_REV_HUNT_A0,
.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
.can_rx_scatter = true,
.always_rx_scatter = true,
.max_interrupt_mode = EFX_INT_MODE_MSIX,
.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
.offload_features = EF10_OFFLOAD_FEATURES,
.mcdi_max_ver = 2,
.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
1 << HWTSTAMP_FILTER_ALL,
};
const struct efx_nic_type efx_hunt_a0_nic_type = {
.is_vf = false,
.mem_bar = EFX_MEM_BAR,
.mem_map_size = efx_ef10_mem_map_size,
.probe = efx_ef10_probe_pf,
.remove = efx_ef10_remove,
.dimension_resources = efx_ef10_dimension_resources,
.init = efx_ef10_init_nic,
.fini = efx_port_dummy_op_void,
.map_reset_reason = efx_ef10_map_reset_reason,
.map_reset_flags = efx_ef10_map_reset_flags,
.reset = efx_ef10_reset,
.probe_port = efx_mcdi_port_probe,
.remove_port = efx_mcdi_port_remove,
.fini_dmaq = efx_ef10_fini_dmaq,
.prepare_flr = efx_ef10_prepare_flr,
.finish_flr = efx_port_dummy_op_void,
.describe_stats = efx_ef10_describe_stats,
.update_stats = efx_ef10_update_stats_pf,
.start_stats = efx_mcdi_mac_start_stats,
.pull_stats = efx_mcdi_mac_pull_stats,
.stop_stats = efx_mcdi_mac_stop_stats,
.set_id_led = efx_mcdi_set_id_led,
.push_irq_moderation = efx_ef10_push_irq_moderation,
.reconfigure_mac = efx_ef10_mac_reconfigure,
.check_mac_fault = efx_mcdi_mac_check_fault,
.reconfigure_port = efx_mcdi_port_reconfigure,
.get_wol = efx_ef10_get_wol,
.set_wol = efx_ef10_set_wol,
.resume_wol = efx_port_dummy_op_void,
.test_chip = efx_ef10_test_chip,
.test_nvram = efx_mcdi_nvram_test_all,
.mcdi_request = efx_ef10_mcdi_request,
.mcdi_poll_response = efx_ef10_mcdi_poll_response,
.mcdi_read_response = efx_ef10_mcdi_read_response,
.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
.irq_enable_master = efx_port_dummy_op_void,
.irq_test_generate = efx_ef10_irq_test_generate,
.irq_disable_non_ev = efx_port_dummy_op_void,
.irq_handle_msi = efx_ef10_msi_interrupt,
.irq_handle_legacy = efx_ef10_legacy_interrupt,
.tx_probe = efx_ef10_tx_probe,
.tx_init = efx_ef10_tx_init,
.tx_remove = efx_ef10_tx_remove,
.tx_write = efx_ef10_tx_write,
.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
.rx_probe = efx_ef10_rx_probe,
.rx_init = efx_ef10_rx_init,
.rx_remove = efx_ef10_rx_remove,
.rx_write = efx_ef10_rx_write,
.rx_defer_refill = efx_ef10_rx_defer_refill,
.ev_probe = efx_ef10_ev_probe,
.ev_init = efx_ef10_ev_init,
.ev_fini = efx_ef10_ev_fini,
.ev_remove = efx_ef10_ev_remove,
.ev_process = efx_ef10_ev_process,
.ev_read_ack = efx_ef10_ev_read_ack,
.ev_test_generate = efx_ef10_ev_test_generate,
.filter_table_probe = efx_ef10_filter_table_probe,
.filter_table_restore = efx_ef10_filter_table_restore,
.filter_table_remove = efx_ef10_filter_table_remove,
.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
.filter_insert = efx_ef10_filter_insert,
.filter_remove_safe = efx_ef10_filter_remove_safe,
.filter_get_safe = efx_ef10_filter_get_safe,
.filter_clear_rx = efx_ef10_filter_clear_rx,
.filter_count_rx_used = efx_ef10_filter_count_rx_used,
.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
.filter_rfs_insert = efx_ef10_filter_rfs_insert,
.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
.mtd_probe = efx_ef10_mtd_probe,
.mtd_rename = efx_mcdi_mtd_rename,
.mtd_read = efx_mcdi_mtd_read,
.mtd_erase = efx_mcdi_mtd_erase,
.mtd_write = efx_mcdi_mtd_write,
.mtd_sync = efx_mcdi_mtd_sync,
#endif
.ptp_write_host_time = efx_ef10_ptp_write_host_time,
.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
#ifdef CONFIG_SFC_SRIOV
.sriov_configure = efx_ef10_sriov_configure,
.sriov_init = efx_ef10_sriov_init,
.sriov_fini = efx_ef10_sriov_fini,
.sriov_wanted = efx_ef10_sriov_wanted,
.sriov_reset = efx_ef10_sriov_reset,
.sriov_flr = efx_ef10_sriov_flr,
.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
.vswitching_probe = efx_ef10_vswitching_probe_pf,
.vswitching_restore = efx_ef10_vswitching_restore_pf,
.vswitching_remove = efx_ef10_vswitching_remove_pf,
#endif
.get_mac_address = efx_ef10_get_mac_address_pf,
.set_mac_address = efx_ef10_set_mac_address,
.revision = EFX_REV_HUNT_A0,
.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
.can_rx_scatter = true,
.always_rx_scatter = true,
.max_interrupt_mode = EFX_INT_MODE_MSIX,
.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
.offload_features = EF10_OFFLOAD_FEATURES,
.mcdi_max_ver = 2,
.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
1 << HWTSTAMP_FILTER_ALL,
};