67086e32b5
PFs are enumerated on PCI bus, while VFs are created by PF's driver. In EEH recovery, it has two cases: 1. Device and driver is EEH aware, error handlers are called. 2. Device and driver is not EEH aware, un-plug the device and plug it again by enumerating it. The special thing happens on the second case. For a PF, we could use the original pci core to enumerate the bus, while for VF we need to record the VFs which aer un-plugged then plug it again. Also The patch caches the VF index in pci_dn, which can be used to calculate VF's bus, device and function number. Those information helps to locate the VF's PCI device instance when doing hotplug during EEH recovery if necessary. Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com> Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
492 lines
12 KiB
C
492 lines
12 KiB
C
/*
|
|
* pci_dn.c
|
|
*
|
|
* Copyright (C) 2001 Todd Inglett, IBM Corporation
|
|
*
|
|
* PCI manipulation via device_nodes.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/string.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/ppc-pci.h>
|
|
#include <asm/firmware.h>
|
|
|
|
/*
|
|
* The function is used to find the firmware data of one
|
|
* specific PCI device, which is attached to the indicated
|
|
* PCI bus. For VFs, their firmware data is linked to that
|
|
* one of PF's bridge. For other devices, their firmware
|
|
* data is linked to that of their bridge.
|
|
*/
|
|
static struct pci_dn *pci_bus_to_pdn(struct pci_bus *bus)
|
|
{
|
|
struct pci_bus *pbus;
|
|
struct device_node *dn;
|
|
struct pci_dn *pdn;
|
|
|
|
/*
|
|
* We probably have virtual bus which doesn't
|
|
* have associated bridge.
|
|
*/
|
|
pbus = bus;
|
|
while (pbus) {
|
|
if (pci_is_root_bus(pbus) || pbus->self)
|
|
break;
|
|
|
|
pbus = pbus->parent;
|
|
}
|
|
|
|
/*
|
|
* Except virtual bus, all PCI buses should
|
|
* have device nodes.
|
|
*/
|
|
dn = pci_bus_to_OF_node(pbus);
|
|
pdn = dn ? PCI_DN(dn) : NULL;
|
|
|
|
return pdn;
|
|
}
|
|
|
|
struct pci_dn *pci_get_pdn_by_devfn(struct pci_bus *bus,
|
|
int devfn)
|
|
{
|
|
struct device_node *dn = NULL;
|
|
struct pci_dn *parent, *pdn;
|
|
struct pci_dev *pdev = NULL;
|
|
|
|
/* Fast path: fetch from PCI device */
|
|
list_for_each_entry(pdev, &bus->devices, bus_list) {
|
|
if (pdev->devfn == devfn) {
|
|
if (pdev->dev.archdata.pci_data)
|
|
return pdev->dev.archdata.pci_data;
|
|
|
|
dn = pci_device_to_OF_node(pdev);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Fast path: fetch from device node */
|
|
pdn = dn ? PCI_DN(dn) : NULL;
|
|
if (pdn)
|
|
return pdn;
|
|
|
|
/* Slow path: fetch from firmware data hierarchy */
|
|
parent = pci_bus_to_pdn(bus);
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
list_for_each_entry(pdn, &parent->child_list, list) {
|
|
if (pdn->busno == bus->number &&
|
|
pdn->devfn == devfn)
|
|
return pdn;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct pci_dn *pci_get_pdn(struct pci_dev *pdev)
|
|
{
|
|
struct device_node *dn;
|
|
struct pci_dn *parent, *pdn;
|
|
|
|
/* Search device directly */
|
|
if (pdev->dev.archdata.pci_data)
|
|
return pdev->dev.archdata.pci_data;
|
|
|
|
/* Check device node */
|
|
dn = pci_device_to_OF_node(pdev);
|
|
pdn = dn ? PCI_DN(dn) : NULL;
|
|
if (pdn)
|
|
return pdn;
|
|
|
|
/*
|
|
* VFs don't have device nodes. We hook their
|
|
* firmware data to PF's bridge.
|
|
*/
|
|
parent = pci_bus_to_pdn(pdev->bus);
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
list_for_each_entry(pdn, &parent->child_list, list) {
|
|
if (pdn->busno == pdev->bus->number &&
|
|
pdn->devfn == pdev->devfn)
|
|
return pdn;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
static struct pci_dn *add_one_dev_pci_data(struct pci_dn *parent,
|
|
struct pci_dev *pdev,
|
|
int vf_index,
|
|
int busno, int devfn)
|
|
{
|
|
struct pci_dn *pdn;
|
|
|
|
/* Except PHB, we always have the parent */
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
pdn = kzalloc(sizeof(*pdn), GFP_KERNEL);
|
|
if (!pdn) {
|
|
dev_warn(&pdev->dev, "%s: Out of memory!\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
pdn->phb = parent->phb;
|
|
pdn->parent = parent;
|
|
pdn->busno = busno;
|
|
pdn->devfn = devfn;
|
|
#ifdef CONFIG_PPC_POWERNV
|
|
pdn->vf_index = vf_index;
|
|
pdn->pe_number = IODA_INVALID_PE;
|
|
#endif
|
|
INIT_LIST_HEAD(&pdn->child_list);
|
|
INIT_LIST_HEAD(&pdn->list);
|
|
list_add_tail(&pdn->list, &parent->child_list);
|
|
|
|
/*
|
|
* If we already have PCI device instance, lets
|
|
* bind them.
|
|
*/
|
|
if (pdev)
|
|
pdev->dev.archdata.pci_data = pdn;
|
|
|
|
return pdn;
|
|
}
|
|
#endif
|
|
|
|
struct pci_dn *add_dev_pci_data(struct pci_dev *pdev)
|
|
{
|
|
#ifdef CONFIG_PCI_IOV
|
|
struct pci_dn *parent, *pdn;
|
|
struct eeh_dev *edev;
|
|
int i;
|
|
|
|
/* Only support IOV for now */
|
|
if (!pdev->is_physfn)
|
|
return pci_get_pdn(pdev);
|
|
|
|
/* Check if VFs have been populated */
|
|
pdn = pci_get_pdn(pdev);
|
|
if (!pdn || (pdn->flags & PCI_DN_FLAG_IOV_VF))
|
|
return NULL;
|
|
|
|
pdn->flags |= PCI_DN_FLAG_IOV_VF;
|
|
parent = pci_bus_to_pdn(pdev->bus);
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
for (i = 0; i < pci_sriov_get_totalvfs(pdev); i++) {
|
|
pdn = add_one_dev_pci_data(parent, NULL, i,
|
|
pci_iov_virtfn_bus(pdev, i),
|
|
pci_iov_virtfn_devfn(pdev, i));
|
|
if (!pdn) {
|
|
dev_warn(&pdev->dev, "%s: Cannot create firmware data for VF#%d\n",
|
|
__func__, i);
|
|
return NULL;
|
|
}
|
|
|
|
/* Create the EEH device for the VF */
|
|
eeh_dev_init(pdn, pci_bus_to_host(pdev->bus));
|
|
edev = pdn_to_eeh_dev(pdn);
|
|
BUG_ON(!edev);
|
|
edev->physfn = pdev;
|
|
}
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
return pci_get_pdn(pdev);
|
|
}
|
|
|
|
void remove_dev_pci_data(struct pci_dev *pdev)
|
|
{
|
|
#ifdef CONFIG_PCI_IOV
|
|
struct pci_dn *parent;
|
|
struct pci_dn *pdn, *tmp;
|
|
struct eeh_dev *edev;
|
|
int i;
|
|
|
|
/*
|
|
* VF and VF PE are created/released dynamically, so we need to
|
|
* bind/unbind them. Otherwise the VF and VF PE would be mismatched
|
|
* when re-enabling SR-IOV.
|
|
*/
|
|
if (pdev->is_virtfn) {
|
|
pdn = pci_get_pdn(pdev);
|
|
#ifdef CONFIG_PPC_POWERNV
|
|
pdn->pe_number = IODA_INVALID_PE;
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/* Only support IOV PF for now */
|
|
if (!pdev->is_physfn)
|
|
return;
|
|
|
|
/* Check if VFs have been populated */
|
|
pdn = pci_get_pdn(pdev);
|
|
if (!pdn || !(pdn->flags & PCI_DN_FLAG_IOV_VF))
|
|
return;
|
|
|
|
pdn->flags &= ~PCI_DN_FLAG_IOV_VF;
|
|
parent = pci_bus_to_pdn(pdev->bus);
|
|
if (!parent)
|
|
return;
|
|
|
|
/*
|
|
* We might introduce flag to pci_dn in future
|
|
* so that we can release VF's firmware data in
|
|
* a batch mode.
|
|
*/
|
|
for (i = 0; i < pci_sriov_get_totalvfs(pdev); i++) {
|
|
list_for_each_entry_safe(pdn, tmp,
|
|
&parent->child_list, list) {
|
|
if (pdn->busno != pci_iov_virtfn_bus(pdev, i) ||
|
|
pdn->devfn != pci_iov_virtfn_devfn(pdev, i))
|
|
continue;
|
|
|
|
/* Release EEH device for the VF */
|
|
edev = pdn_to_eeh_dev(pdn);
|
|
if (edev) {
|
|
pdn->edev = NULL;
|
|
kfree(edev);
|
|
}
|
|
|
|
if (!list_empty(&pdn->list))
|
|
list_del(&pdn->list);
|
|
|
|
kfree(pdn);
|
|
}
|
|
}
|
|
#endif /* CONFIG_PCI_IOV */
|
|
}
|
|
|
|
/*
|
|
* Traverse_func that inits the PCI fields of the device node.
|
|
* NOTE: this *must* be done before read/write config to the device.
|
|
*/
|
|
void *update_dn_pci_info(struct device_node *dn, void *data)
|
|
{
|
|
struct pci_controller *phb = data;
|
|
const __be32 *type = of_get_property(dn, "ibm,pci-config-space-type", NULL);
|
|
const __be32 *regs;
|
|
struct device_node *parent;
|
|
struct pci_dn *pdn;
|
|
|
|
pdn = zalloc_maybe_bootmem(sizeof(*pdn), GFP_KERNEL);
|
|
if (pdn == NULL)
|
|
return NULL;
|
|
dn->data = pdn;
|
|
pdn->node = dn;
|
|
pdn->phb = phb;
|
|
#ifdef CONFIG_PPC_POWERNV
|
|
pdn->pe_number = IODA_INVALID_PE;
|
|
#endif
|
|
regs = of_get_property(dn, "reg", NULL);
|
|
if (regs) {
|
|
u32 addr = of_read_number(regs, 1);
|
|
|
|
/* First register entry is addr (00BBSS00) */
|
|
pdn->busno = (addr >> 16) & 0xff;
|
|
pdn->devfn = (addr >> 8) & 0xff;
|
|
}
|
|
|
|
/* vendor/device IDs and class code */
|
|
regs = of_get_property(dn, "vendor-id", NULL);
|
|
pdn->vendor_id = regs ? of_read_number(regs, 1) : 0;
|
|
regs = of_get_property(dn, "device-id", NULL);
|
|
pdn->device_id = regs ? of_read_number(regs, 1) : 0;
|
|
regs = of_get_property(dn, "class-code", NULL);
|
|
pdn->class_code = regs ? of_read_number(regs, 1) : 0;
|
|
|
|
/* Extended config space */
|
|
pdn->pci_ext_config_space = (type && of_read_number(type, 1) == 1);
|
|
|
|
/* Attach to parent node */
|
|
INIT_LIST_HEAD(&pdn->child_list);
|
|
INIT_LIST_HEAD(&pdn->list);
|
|
parent = of_get_parent(dn);
|
|
pdn->parent = parent ? PCI_DN(parent) : NULL;
|
|
if (pdn->parent)
|
|
list_add_tail(&pdn->list, &pdn->parent->child_list);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Traverse a device tree stopping each PCI device in the tree.
|
|
* This is done depth first. As each node is processed, a "pre"
|
|
* function is called and the children are processed recursively.
|
|
*
|
|
* The "pre" func returns a value. If non-zero is returned from
|
|
* the "pre" func, the traversal stops and this value is returned.
|
|
* This return value is useful when using traverse as a method of
|
|
* finding a device.
|
|
*
|
|
* NOTE: we do not run the func for devices that do not appear to
|
|
* be PCI except for the start node which we assume (this is good
|
|
* because the start node is often a phb which may be missing PCI
|
|
* properties).
|
|
* We use the class-code as an indicator. If we run into
|
|
* one of these nodes we also assume its siblings are non-pci for
|
|
* performance.
|
|
*/
|
|
void *traverse_pci_devices(struct device_node *start, traverse_func pre,
|
|
void *data)
|
|
{
|
|
struct device_node *dn, *nextdn;
|
|
void *ret;
|
|
|
|
/* We started with a phb, iterate all childs */
|
|
for (dn = start->child; dn; dn = nextdn) {
|
|
const __be32 *classp;
|
|
u32 class = 0;
|
|
|
|
nextdn = NULL;
|
|
classp = of_get_property(dn, "class-code", NULL);
|
|
if (classp)
|
|
class = of_read_number(classp, 1);
|
|
|
|
if (pre && ((ret = pre(dn, data)) != NULL))
|
|
return ret;
|
|
|
|
/* If we are a PCI bridge, go down */
|
|
if (dn->child && ((class >> 8) == PCI_CLASS_BRIDGE_PCI ||
|
|
(class >> 8) == PCI_CLASS_BRIDGE_CARDBUS))
|
|
/* Depth first...do children */
|
|
nextdn = dn->child;
|
|
else if (dn->sibling)
|
|
/* ok, try next sibling instead. */
|
|
nextdn = dn->sibling;
|
|
if (!nextdn) {
|
|
/* Walk up to next valid sibling. */
|
|
do {
|
|
dn = dn->parent;
|
|
if (dn == start)
|
|
return NULL;
|
|
} while (dn->sibling == NULL);
|
|
nextdn = dn->sibling;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct pci_dn *pci_dn_next_one(struct pci_dn *root,
|
|
struct pci_dn *pdn)
|
|
{
|
|
struct list_head *next = pdn->child_list.next;
|
|
|
|
if (next != &pdn->child_list)
|
|
return list_entry(next, struct pci_dn, list);
|
|
|
|
while (1) {
|
|
if (pdn == root)
|
|
return NULL;
|
|
|
|
next = pdn->list.next;
|
|
if (next != &pdn->parent->child_list)
|
|
break;
|
|
|
|
pdn = pdn->parent;
|
|
}
|
|
|
|
return list_entry(next, struct pci_dn, list);
|
|
}
|
|
|
|
void *traverse_pci_dn(struct pci_dn *root,
|
|
void *(*fn)(struct pci_dn *, void *),
|
|
void *data)
|
|
{
|
|
struct pci_dn *pdn = root;
|
|
void *ret;
|
|
|
|
/* Only scan the child nodes */
|
|
for (pdn = pci_dn_next_one(root, pdn); pdn;
|
|
pdn = pci_dn_next_one(root, pdn)) {
|
|
ret = fn(pdn, data);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* pci_devs_phb_init_dynamic - setup pci devices under this PHB
|
|
* phb: pci-to-host bridge (top-level bridge connecting to cpu)
|
|
*
|
|
* This routine is called both during boot, (before the memory
|
|
* subsystem is set up, before kmalloc is valid) and during the
|
|
* dynamic lpar operation of adding a PHB to a running system.
|
|
*/
|
|
void pci_devs_phb_init_dynamic(struct pci_controller *phb)
|
|
{
|
|
struct device_node *dn = phb->dn;
|
|
struct pci_dn *pdn;
|
|
|
|
/* PHB nodes themselves must not match */
|
|
update_dn_pci_info(dn, phb);
|
|
pdn = dn->data;
|
|
if (pdn) {
|
|
pdn->devfn = pdn->busno = -1;
|
|
pdn->vendor_id = pdn->device_id = pdn->class_code = 0;
|
|
pdn->phb = phb;
|
|
phb->pci_data = pdn;
|
|
}
|
|
|
|
/* Update dn->phb ptrs for new phb and children devices */
|
|
traverse_pci_devices(dn, update_dn_pci_info, phb);
|
|
}
|
|
|
|
/**
|
|
* pci_devs_phb_init - Initialize phbs and pci devs under them.
|
|
*
|
|
* This routine walks over all phb's (pci-host bridges) on the
|
|
* system, and sets up assorted pci-related structures
|
|
* (including pci info in the device node structs) for each
|
|
* pci device found underneath. This routine runs once,
|
|
* early in the boot sequence.
|
|
*/
|
|
void __init pci_devs_phb_init(void)
|
|
{
|
|
struct pci_controller *phb, *tmp;
|
|
|
|
/* This must be done first so the device nodes have valid pci info! */
|
|
list_for_each_entry_safe(phb, tmp, &hose_list, list_node)
|
|
pci_devs_phb_init_dynamic(phb);
|
|
}
|
|
|
|
static void pci_dev_pdn_setup(struct pci_dev *pdev)
|
|
{
|
|
struct pci_dn *pdn;
|
|
|
|
if (pdev->dev.archdata.pci_data)
|
|
return;
|
|
|
|
/* Setup the fast path */
|
|
pdn = pci_get_pdn(pdev);
|
|
pdev->dev.archdata.pci_data = pdn;
|
|
}
|
|
DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pci_dev_pdn_setup);
|