linux/drivers/net/wireless/ath/ath9k/ar9003_calib.c
Sujith Manoharan e3d7556b77 ath9k: Calculate IQ-CAL median
This patch adds a routine to calculate the median IQ correction
values for AR955x, which is used for outlier detection.
The normal method which is used for all other chips is
bypassed for AR955x.

Signed-off-by: Sujith Manoharan <c_manoha@qca.qualcomm.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2014-02-12 15:36:08 -05:00

1684 lines
46 KiB
C

/*
* Copyright (c) 2010-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "hw.h"
#include "hw-ops.h"
#include "ar9003_phy.h"
#include "ar9003_rtt.h"
#include "ar9003_mci.h"
#define MAX_MEASUREMENT MAX_IQCAL_MEASUREMENT
#define MAX_MAG_DELTA 11
#define MAX_PHS_DELTA 10
#define MAXIQCAL 3
struct coeff {
int mag_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT][MAXIQCAL];
int phs_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT][MAXIQCAL];
int iqc_coeff[2];
};
enum ar9003_cal_types {
IQ_MISMATCH_CAL = BIT(0),
};
static void ar9003_hw_setup_calibration(struct ath_hw *ah,
struct ath9k_cal_list *currCal)
{
struct ath_common *common = ath9k_hw_common(ah);
/* Select calibration to run */
switch (currCal->calData->calType) {
case IQ_MISMATCH_CAL:
/*
* Start calibration with
* 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples
*/
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX,
currCal->calData->calCountMax);
REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
ath_dbg(common, CALIBRATE,
"starting IQ Mismatch Calibration\n");
/* Kick-off cal */
REG_SET_BIT(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
break;
default:
ath_err(common, "Invalid calibration type\n");
break;
}
}
/*
* Generic calibration routine.
* Recalibrate the lower PHY chips to account for temperature/environment
* changes.
*/
static bool ar9003_hw_per_calibration(struct ath_hw *ah,
struct ath9k_channel *ichan,
u8 rxchainmask,
struct ath9k_cal_list *currCal)
{
struct ath9k_hw_cal_data *caldata = ah->caldata;
/* Cal is assumed not done until explicitly set below */
bool iscaldone = false;
/* Calibration in progress. */
if (currCal->calState == CAL_RUNNING) {
/* Check to see if it has finished. */
if (!(REG_READ(ah, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
/*
* Accumulate cal measures for active chains
*/
currCal->calData->calCollect(ah);
ah->cal_samples++;
if (ah->cal_samples >=
currCal->calData->calNumSamples) {
unsigned int i, numChains = 0;
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (rxchainmask & (1 << i))
numChains++;
}
/*
* Process accumulated data
*/
currCal->calData->calPostProc(ah, numChains);
/* Calibration has finished. */
caldata->CalValid |= currCal->calData->calType;
currCal->calState = CAL_DONE;
iscaldone = true;
} else {
/*
* Set-up collection of another sub-sample until we
* get desired number
*/
ar9003_hw_setup_calibration(ah, currCal);
}
}
} else if (!(caldata->CalValid & currCal->calData->calType)) {
/* If current cal is marked invalid in channel, kick it off */
ath9k_hw_reset_calibration(ah, currCal);
}
return iscaldone;
}
static bool ar9003_hw_calibrate(struct ath_hw *ah,
struct ath9k_channel *chan,
u8 rxchainmask,
bool longcal)
{
bool iscaldone = true;
struct ath9k_cal_list *currCal = ah->cal_list_curr;
/*
* For given calibration:
* 1. Call generic cal routine
* 2. When this cal is done (isCalDone) if we have more cals waiting
* (eg after reset), mask this to upper layers by not propagating
* isCalDone if it is set to TRUE.
* Instead, change isCalDone to FALSE and setup the waiting cal(s)
* to be run.
*/
if (currCal &&
(currCal->calState == CAL_RUNNING ||
currCal->calState == CAL_WAITING)) {
iscaldone = ar9003_hw_per_calibration(ah, chan,
rxchainmask, currCal);
if (iscaldone) {
ah->cal_list_curr = currCal = currCal->calNext;
if (currCal->calState == CAL_WAITING) {
iscaldone = false;
ath9k_hw_reset_calibration(ah, currCal);
}
}
}
/*
* Do NF cal only at longer intervals. Get the value from
* the previous NF cal and update history buffer.
*/
if (longcal && ath9k_hw_getnf(ah, chan)) {
/*
* Load the NF from history buffer of the current channel.
* NF is slow time-variant, so it is OK to use a historical
* value.
*/
ath9k_hw_loadnf(ah, ah->curchan);
/* start NF calibration, without updating BB NF register */
ath9k_hw_start_nfcal(ah, false);
}
return iscaldone;
}
static void ar9003_hw_iqcal_collect(struct ath_hw *ah)
{
int i;
/* Accumulate IQ cal measures for active chains */
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (ah->txchainmask & BIT(i)) {
ah->totalPowerMeasI[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
ah->totalPowerMeasQ[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
ah->totalIqCorrMeas[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
ath_dbg(ath9k_hw_common(ah), CALIBRATE,
"%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n",
ah->cal_samples, i, ah->totalPowerMeasI[i],
ah->totalPowerMeasQ[i],
ah->totalIqCorrMeas[i]);
}
}
}
static void ar9003_hw_iqcalibrate(struct ath_hw *ah, u8 numChains)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 powerMeasQ, powerMeasI, iqCorrMeas;
u32 qCoffDenom, iCoffDenom;
int32_t qCoff, iCoff;
int iqCorrNeg, i;
static const u_int32_t offset_array[3] = {
AR_PHY_RX_IQCAL_CORR_B0,
AR_PHY_RX_IQCAL_CORR_B1,
AR_PHY_RX_IQCAL_CORR_B2,
};
for (i = 0; i < numChains; i++) {
powerMeasI = ah->totalPowerMeasI[i];
powerMeasQ = ah->totalPowerMeasQ[i];
iqCorrMeas = ah->totalIqCorrMeas[i];
ath_dbg(common, CALIBRATE,
"Starting IQ Cal and Correction for Chain %d\n", i);
ath_dbg(common, CALIBRATE,
"Original: Chn %d iq_corr_meas = 0x%08x\n",
i, ah->totalIqCorrMeas[i]);
iqCorrNeg = 0;
if (iqCorrMeas > 0x80000000) {
iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
iqCorrNeg = 1;
}
ath_dbg(common, CALIBRATE, "Chn %d pwr_meas_i = 0x%08x\n",
i, powerMeasI);
ath_dbg(common, CALIBRATE, "Chn %d pwr_meas_q = 0x%08x\n",
i, powerMeasQ);
ath_dbg(common, CALIBRATE, "iqCorrNeg is 0x%08x\n", iqCorrNeg);
iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 256;
qCoffDenom = powerMeasQ / 64;
if ((iCoffDenom != 0) && (qCoffDenom != 0)) {
iCoff = iqCorrMeas / iCoffDenom;
qCoff = powerMeasI / qCoffDenom - 64;
ath_dbg(common, CALIBRATE, "Chn %d iCoff = 0x%08x\n",
i, iCoff);
ath_dbg(common, CALIBRATE, "Chn %d qCoff = 0x%08x\n",
i, qCoff);
/* Force bounds on iCoff */
if (iCoff >= 63)
iCoff = 63;
else if (iCoff <= -63)
iCoff = -63;
/* Negate iCoff if iqCorrNeg == 0 */
if (iqCorrNeg == 0x0)
iCoff = -iCoff;
/* Force bounds on qCoff */
if (qCoff >= 63)
qCoff = 63;
else if (qCoff <= -63)
qCoff = -63;
iCoff = iCoff & 0x7f;
qCoff = qCoff & 0x7f;
ath_dbg(common, CALIBRATE,
"Chn %d : iCoff = 0x%x qCoff = 0x%x\n",
i, iCoff, qCoff);
ath_dbg(common, CALIBRATE,
"Register offset (0x%04x) before update = 0x%x\n",
offset_array[i],
REG_READ(ah, offset_array[i]));
if (AR_SREV_9565(ah) &&
(iCoff == 63 || qCoff == 63 ||
iCoff == -63 || qCoff == -63))
return;
REG_RMW_FIELD(ah, offset_array[i],
AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF,
iCoff);
REG_RMW_FIELD(ah, offset_array[i],
AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF,
qCoff);
ath_dbg(common, CALIBRATE,
"Register offset (0x%04x) QI COFF (bitfields 0x%08x) after update = 0x%x\n",
offset_array[i],
AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF,
REG_READ(ah, offset_array[i]));
ath_dbg(common, CALIBRATE,
"Register offset (0x%04x) QQ COFF (bitfields 0x%08x) after update = 0x%x\n",
offset_array[i],
AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF,
REG_READ(ah, offset_array[i]));
ath_dbg(common, CALIBRATE,
"IQ Cal and Correction done for Chain %d\n", i);
}
}
REG_SET_BIT(ah, AR_PHY_RX_IQCAL_CORR_B0,
AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
ath_dbg(common, CALIBRATE,
"IQ Cal and Correction (offset 0x%04x) enabled (bit position 0x%08x). New Value 0x%08x\n",
(unsigned) (AR_PHY_RX_IQCAL_CORR_B0),
AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE,
REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0));
}
static const struct ath9k_percal_data iq_cal_single_sample = {
IQ_MISMATCH_CAL,
MIN_CAL_SAMPLES,
PER_MAX_LOG_COUNT,
ar9003_hw_iqcal_collect,
ar9003_hw_iqcalibrate
};
static void ar9003_hw_init_cal_settings(struct ath_hw *ah)
{
ah->iq_caldata.calData = &iq_cal_single_sample;
if (AR_SREV_9300_20_OR_LATER(ah)) {
ah->enabled_cals |= TX_IQ_CAL;
if (AR_SREV_9485_OR_LATER(ah) && !AR_SREV_9340(ah))
ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
}
ah->supp_cals = IQ_MISMATCH_CAL;
}
#define OFF_UPPER_LT 24
#define OFF_LOWER_LT 7
static bool ar9003_hw_dynamic_osdac_selection(struct ath_hw *ah,
bool txiqcal_done)
{
struct ath_common *common = ath9k_hw_common(ah);
int ch0_done, osdac_ch0, dc_off_ch0_i1, dc_off_ch0_q1, dc_off_ch0_i2,
dc_off_ch0_q2, dc_off_ch0_i3, dc_off_ch0_q3;
int ch1_done, osdac_ch1, dc_off_ch1_i1, dc_off_ch1_q1, dc_off_ch1_i2,
dc_off_ch1_q2, dc_off_ch1_i3, dc_off_ch1_q3;
int ch2_done, osdac_ch2, dc_off_ch2_i1, dc_off_ch2_q1, dc_off_ch2_i2,
dc_off_ch2_q2, dc_off_ch2_i3, dc_off_ch2_q3;
bool status;
u32 temp, val;
/*
* Clear offset and IQ calibration, run AGC cal.
*/
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_OFFSET_CAL);
REG_CLR_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0,
AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
REG_WRITE(ah, AR_PHY_AGC_CONTROL,
REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_CAL,
0, AH_WAIT_TIMEOUT);
if (!status) {
ath_dbg(common, CALIBRATE,
"AGC cal without offset cal failed to complete in 1ms");
return false;
}
/*
* Allow only offset calibration and disable the others
* (Carrier Leak calibration, TX Filter calibration and
* Peak Detector offset calibration).
*/
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_OFFSET_CAL);
REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL,
AR_PHY_CL_CAL_ENABLE);
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_FLTR_CAL);
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_PKDET_CAL);
ch0_done = 0;
ch1_done = 0;
ch2_done = 0;
while ((ch0_done == 0) || (ch1_done == 0) || (ch2_done == 0)) {
osdac_ch0 = (REG_READ(ah, AR_PHY_65NM_CH0_BB1) >> 30) & 0x3;
osdac_ch1 = (REG_READ(ah, AR_PHY_65NM_CH1_BB1) >> 30) & 0x3;
osdac_ch2 = (REG_READ(ah, AR_PHY_65NM_CH2_BB1) >> 30) & 0x3;
REG_SET_BIT(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
REG_WRITE(ah, AR_PHY_AGC_CONTROL,
REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_CAL,
0, AH_WAIT_TIMEOUT);
if (!status) {
ath_dbg(common, CALIBRATE,
"DC offset cal failed to complete in 1ms");
return false;
}
REG_CLR_BIT(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
/*
* High gain.
*/
REG_WRITE(ah, AR_PHY_65NM_CH0_BB3,
((REG_READ(ah, AR_PHY_65NM_CH0_BB3) & 0xfffffcff) | (1 << 8)));
REG_WRITE(ah, AR_PHY_65NM_CH1_BB3,
((REG_READ(ah, AR_PHY_65NM_CH1_BB3) & 0xfffffcff) | (1 << 8)));
REG_WRITE(ah, AR_PHY_65NM_CH2_BB3,
((REG_READ(ah, AR_PHY_65NM_CH2_BB3) & 0xfffffcff) | (1 << 8)));
temp = REG_READ(ah, AR_PHY_65NM_CH0_BB3);
dc_off_ch0_i1 = (temp >> 26) & 0x1f;
dc_off_ch0_q1 = (temp >> 21) & 0x1f;
temp = REG_READ(ah, AR_PHY_65NM_CH1_BB3);
dc_off_ch1_i1 = (temp >> 26) & 0x1f;
dc_off_ch1_q1 = (temp >> 21) & 0x1f;
temp = REG_READ(ah, AR_PHY_65NM_CH2_BB3);
dc_off_ch2_i1 = (temp >> 26) & 0x1f;
dc_off_ch2_q1 = (temp >> 21) & 0x1f;
/*
* Low gain.
*/
REG_WRITE(ah, AR_PHY_65NM_CH0_BB3,
((REG_READ(ah, AR_PHY_65NM_CH0_BB3) & 0xfffffcff) | (2 << 8)));
REG_WRITE(ah, AR_PHY_65NM_CH1_BB3,
((REG_READ(ah, AR_PHY_65NM_CH1_BB3) & 0xfffffcff) | (2 << 8)));
REG_WRITE(ah, AR_PHY_65NM_CH2_BB3,
((REG_READ(ah, AR_PHY_65NM_CH2_BB3) & 0xfffffcff) | (2 << 8)));
temp = REG_READ(ah, AR_PHY_65NM_CH0_BB3);
dc_off_ch0_i2 = (temp >> 26) & 0x1f;
dc_off_ch0_q2 = (temp >> 21) & 0x1f;
temp = REG_READ(ah, AR_PHY_65NM_CH1_BB3);
dc_off_ch1_i2 = (temp >> 26) & 0x1f;
dc_off_ch1_q2 = (temp >> 21) & 0x1f;
temp = REG_READ(ah, AR_PHY_65NM_CH2_BB3);
dc_off_ch2_i2 = (temp >> 26) & 0x1f;
dc_off_ch2_q2 = (temp >> 21) & 0x1f;
/*
* Loopback.
*/
REG_WRITE(ah, AR_PHY_65NM_CH0_BB3,
((REG_READ(ah, AR_PHY_65NM_CH0_BB3) & 0xfffffcff) | (3 << 8)));
REG_WRITE(ah, AR_PHY_65NM_CH1_BB3,
((REG_READ(ah, AR_PHY_65NM_CH1_BB3) & 0xfffffcff) | (3 << 8)));
REG_WRITE(ah, AR_PHY_65NM_CH2_BB3,
((REG_READ(ah, AR_PHY_65NM_CH2_BB3) & 0xfffffcff) | (3 << 8)));
temp = REG_READ(ah, AR_PHY_65NM_CH0_BB3);
dc_off_ch0_i3 = (temp >> 26) & 0x1f;
dc_off_ch0_q3 = (temp >> 21) & 0x1f;
temp = REG_READ(ah, AR_PHY_65NM_CH1_BB3);
dc_off_ch1_i3 = (temp >> 26) & 0x1f;
dc_off_ch1_q3 = (temp >> 21) & 0x1f;
temp = REG_READ(ah, AR_PHY_65NM_CH2_BB3);
dc_off_ch2_i3 = (temp >> 26) & 0x1f;
dc_off_ch2_q3 = (temp >> 21) & 0x1f;
if ((dc_off_ch0_i1 > OFF_UPPER_LT) || (dc_off_ch0_i1 < OFF_LOWER_LT) ||
(dc_off_ch0_i2 > OFF_UPPER_LT) || (dc_off_ch0_i2 < OFF_LOWER_LT) ||
(dc_off_ch0_i3 > OFF_UPPER_LT) || (dc_off_ch0_i3 < OFF_LOWER_LT) ||
(dc_off_ch0_q1 > OFF_UPPER_LT) || (dc_off_ch0_q1 < OFF_LOWER_LT) ||
(dc_off_ch0_q2 > OFF_UPPER_LT) || (dc_off_ch0_q2 < OFF_LOWER_LT) ||
(dc_off_ch0_q3 > OFF_UPPER_LT) || (dc_off_ch0_q3 < OFF_LOWER_LT)) {
if (osdac_ch0 == 3) {
ch0_done = 1;
} else {
osdac_ch0++;
val = REG_READ(ah, AR_PHY_65NM_CH0_BB1) & 0x3fffffff;
val |= (osdac_ch0 << 30);
REG_WRITE(ah, AR_PHY_65NM_CH0_BB1, val);
ch0_done = 0;
}
} else {
ch0_done = 1;
}
if ((dc_off_ch1_i1 > OFF_UPPER_LT) || (dc_off_ch1_i1 < OFF_LOWER_LT) ||
(dc_off_ch1_i2 > OFF_UPPER_LT) || (dc_off_ch1_i2 < OFF_LOWER_LT) ||
(dc_off_ch1_i3 > OFF_UPPER_LT) || (dc_off_ch1_i3 < OFF_LOWER_LT) ||
(dc_off_ch1_q1 > OFF_UPPER_LT) || (dc_off_ch1_q1 < OFF_LOWER_LT) ||
(dc_off_ch1_q2 > OFF_UPPER_LT) || (dc_off_ch1_q2 < OFF_LOWER_LT) ||
(dc_off_ch1_q3 > OFF_UPPER_LT) || (dc_off_ch1_q3 < OFF_LOWER_LT)) {
if (osdac_ch1 == 3) {
ch1_done = 1;
} else {
osdac_ch1++;
val = REG_READ(ah, AR_PHY_65NM_CH1_BB1) & 0x3fffffff;
val |= (osdac_ch1 << 30);
REG_WRITE(ah, AR_PHY_65NM_CH1_BB1, val);
ch1_done = 0;
}
} else {
ch1_done = 1;
}
if ((dc_off_ch2_i1 > OFF_UPPER_LT) || (dc_off_ch2_i1 < OFF_LOWER_LT) ||
(dc_off_ch2_i2 > OFF_UPPER_LT) || (dc_off_ch2_i2 < OFF_LOWER_LT) ||
(dc_off_ch2_i3 > OFF_UPPER_LT) || (dc_off_ch2_i3 < OFF_LOWER_LT) ||
(dc_off_ch2_q1 > OFF_UPPER_LT) || (dc_off_ch2_q1 < OFF_LOWER_LT) ||
(dc_off_ch2_q2 > OFF_UPPER_LT) || (dc_off_ch2_q2 < OFF_LOWER_LT) ||
(dc_off_ch2_q3 > OFF_UPPER_LT) || (dc_off_ch2_q3 < OFF_LOWER_LT)) {
if (osdac_ch2 == 3) {
ch2_done = 1;
} else {
osdac_ch2++;
val = REG_READ(ah, AR_PHY_65NM_CH2_BB1) & 0x3fffffff;
val |= (osdac_ch2 << 30);
REG_WRITE(ah, AR_PHY_65NM_CH2_BB1, val);
ch2_done = 0;
}
} else {
ch2_done = 1;
}
}
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_OFFSET_CAL);
REG_SET_BIT(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
/*
* We don't need to check txiqcal_done here since it is always
* set for AR9550.
*/
REG_SET_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0,
AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
return true;
}
/*
* solve 4x4 linear equation used in loopback iq cal.
*/
static bool ar9003_hw_solve_iq_cal(struct ath_hw *ah,
s32 sin_2phi_1,
s32 cos_2phi_1,
s32 sin_2phi_2,
s32 cos_2phi_2,
s32 mag_a0_d0,
s32 phs_a0_d0,
s32 mag_a1_d0,
s32 phs_a1_d0,
s32 solved_eq[])
{
s32 f1 = cos_2phi_1 - cos_2phi_2,
f3 = sin_2phi_1 - sin_2phi_2,
f2;
s32 mag_tx, phs_tx, mag_rx, phs_rx;
const s32 result_shift = 1 << 15;
struct ath_common *common = ath9k_hw_common(ah);
f2 = ((f1 >> 3) * (f1 >> 3) + (f3 >> 3) * (f3 >> 3)) >> 9;
if (!f2) {
ath_dbg(common, CALIBRATE, "Divide by 0\n");
return false;
}
/* mag mismatch, tx */
mag_tx = f1 * (mag_a0_d0 - mag_a1_d0) + f3 * (phs_a0_d0 - phs_a1_d0);
/* phs mismatch, tx */
phs_tx = f3 * (-mag_a0_d0 + mag_a1_d0) + f1 * (phs_a0_d0 - phs_a1_d0);
mag_tx = (mag_tx / f2);
phs_tx = (phs_tx / f2);
/* mag mismatch, rx */
mag_rx = mag_a0_d0 - (cos_2phi_1 * mag_tx + sin_2phi_1 * phs_tx) /
result_shift;
/* phs mismatch, rx */
phs_rx = phs_a0_d0 + (sin_2phi_1 * mag_tx - cos_2phi_1 * phs_tx) /
result_shift;
solved_eq[0] = mag_tx;
solved_eq[1] = phs_tx;
solved_eq[2] = mag_rx;
solved_eq[3] = phs_rx;
return true;
}
static s32 ar9003_hw_find_mag_approx(struct ath_hw *ah, s32 in_re, s32 in_im)
{
s32 abs_i = abs(in_re),
abs_q = abs(in_im),
max_abs, min_abs;
if (abs_i > abs_q) {
max_abs = abs_i;
min_abs = abs_q;
} else {
max_abs = abs_q;
min_abs = abs_i;
}
return max_abs - (max_abs / 32) + (min_abs / 8) + (min_abs / 4);
}
#define DELPT 32
static bool ar9003_hw_calc_iq_corr(struct ath_hw *ah,
s32 chain_idx,
const s32 iq_res[],
s32 iqc_coeff[])
{
s32 i2_m_q2_a0_d0, i2_p_q2_a0_d0, iq_corr_a0_d0,
i2_m_q2_a0_d1, i2_p_q2_a0_d1, iq_corr_a0_d1,
i2_m_q2_a1_d0, i2_p_q2_a1_d0, iq_corr_a1_d0,
i2_m_q2_a1_d1, i2_p_q2_a1_d1, iq_corr_a1_d1;
s32 mag_a0_d0, mag_a1_d0, mag_a0_d1, mag_a1_d1,
phs_a0_d0, phs_a1_d0, phs_a0_d1, phs_a1_d1,
sin_2phi_1, cos_2phi_1,
sin_2phi_2, cos_2phi_2;
s32 mag_tx, phs_tx, mag_rx, phs_rx;
s32 solved_eq[4], mag_corr_tx, phs_corr_tx, mag_corr_rx, phs_corr_rx,
q_q_coff, q_i_coff;
const s32 res_scale = 1 << 15;
const s32 delpt_shift = 1 << 8;
s32 mag1, mag2;
struct ath_common *common = ath9k_hw_common(ah);
i2_m_q2_a0_d0 = iq_res[0] & 0xfff;
i2_p_q2_a0_d0 = (iq_res[0] >> 12) & 0xfff;
iq_corr_a0_d0 = ((iq_res[0] >> 24) & 0xff) + ((iq_res[1] & 0xf) << 8);
if (i2_m_q2_a0_d0 > 0x800)
i2_m_q2_a0_d0 = -((0xfff - i2_m_q2_a0_d0) + 1);
if (i2_p_q2_a0_d0 > 0x800)
i2_p_q2_a0_d0 = -((0xfff - i2_p_q2_a0_d0) + 1);
if (iq_corr_a0_d0 > 0x800)
iq_corr_a0_d0 = -((0xfff - iq_corr_a0_d0) + 1);
i2_m_q2_a0_d1 = (iq_res[1] >> 4) & 0xfff;
i2_p_q2_a0_d1 = (iq_res[2] & 0xfff);
iq_corr_a0_d1 = (iq_res[2] >> 12) & 0xfff;
if (i2_m_q2_a0_d1 > 0x800)
i2_m_q2_a0_d1 = -((0xfff - i2_m_q2_a0_d1) + 1);
if (iq_corr_a0_d1 > 0x800)
iq_corr_a0_d1 = -((0xfff - iq_corr_a0_d1) + 1);
i2_m_q2_a1_d0 = ((iq_res[2] >> 24) & 0xff) + ((iq_res[3] & 0xf) << 8);
i2_p_q2_a1_d0 = (iq_res[3] >> 4) & 0xfff;
iq_corr_a1_d0 = iq_res[4] & 0xfff;
if (i2_m_q2_a1_d0 > 0x800)
i2_m_q2_a1_d0 = -((0xfff - i2_m_q2_a1_d0) + 1);
if (i2_p_q2_a1_d0 > 0x800)
i2_p_q2_a1_d0 = -((0xfff - i2_p_q2_a1_d0) + 1);
if (iq_corr_a1_d0 > 0x800)
iq_corr_a1_d0 = -((0xfff - iq_corr_a1_d0) + 1);
i2_m_q2_a1_d1 = (iq_res[4] >> 12) & 0xfff;
i2_p_q2_a1_d1 = ((iq_res[4] >> 24) & 0xff) + ((iq_res[5] & 0xf) << 8);
iq_corr_a1_d1 = (iq_res[5] >> 4) & 0xfff;
if (i2_m_q2_a1_d1 > 0x800)
i2_m_q2_a1_d1 = -((0xfff - i2_m_q2_a1_d1) + 1);
if (i2_p_q2_a1_d1 > 0x800)
i2_p_q2_a1_d1 = -((0xfff - i2_p_q2_a1_d1) + 1);
if (iq_corr_a1_d1 > 0x800)
iq_corr_a1_d1 = -((0xfff - iq_corr_a1_d1) + 1);
if ((i2_p_q2_a0_d0 == 0) || (i2_p_q2_a0_d1 == 0) ||
(i2_p_q2_a1_d0 == 0) || (i2_p_q2_a1_d1 == 0)) {
ath_dbg(common, CALIBRATE,
"Divide by 0:\n"
"a0_d0=%d\n"
"a0_d1=%d\n"
"a2_d0=%d\n"
"a1_d1=%d\n",
i2_p_q2_a0_d0, i2_p_q2_a0_d1,
i2_p_q2_a1_d0, i2_p_q2_a1_d1);
return false;
}
if ((i2_p_q2_a0_d0 < 1024) || (i2_p_q2_a0_d0 > 2047) ||
(i2_p_q2_a1_d0 < 0) || (i2_p_q2_a1_d1 < 0) ||
(i2_p_q2_a0_d0 <= i2_m_q2_a0_d0) ||
(i2_p_q2_a0_d0 <= iq_corr_a0_d0) ||
(i2_p_q2_a0_d1 <= i2_m_q2_a0_d1) ||
(i2_p_q2_a0_d1 <= iq_corr_a0_d1) ||
(i2_p_q2_a1_d0 <= i2_m_q2_a1_d0) ||
(i2_p_q2_a1_d0 <= iq_corr_a1_d0) ||
(i2_p_q2_a1_d1 <= i2_m_q2_a1_d1) ||
(i2_p_q2_a1_d1 <= iq_corr_a1_d1)) {
return false;
}
mag_a0_d0 = (i2_m_q2_a0_d0 * res_scale) / i2_p_q2_a0_d0;
phs_a0_d0 = (iq_corr_a0_d0 * res_scale) / i2_p_q2_a0_d0;
mag_a0_d1 = (i2_m_q2_a0_d1 * res_scale) / i2_p_q2_a0_d1;
phs_a0_d1 = (iq_corr_a0_d1 * res_scale) / i2_p_q2_a0_d1;
mag_a1_d0 = (i2_m_q2_a1_d0 * res_scale) / i2_p_q2_a1_d0;
phs_a1_d0 = (iq_corr_a1_d0 * res_scale) / i2_p_q2_a1_d0;
mag_a1_d1 = (i2_m_q2_a1_d1 * res_scale) / i2_p_q2_a1_d1;
phs_a1_d1 = (iq_corr_a1_d1 * res_scale) / i2_p_q2_a1_d1;
/* w/o analog phase shift */
sin_2phi_1 = (((mag_a0_d0 - mag_a0_d1) * delpt_shift) / DELPT);
/* w/o analog phase shift */
cos_2phi_1 = (((phs_a0_d1 - phs_a0_d0) * delpt_shift) / DELPT);
/* w/ analog phase shift */
sin_2phi_2 = (((mag_a1_d0 - mag_a1_d1) * delpt_shift) / DELPT);
/* w/ analog phase shift */
cos_2phi_2 = (((phs_a1_d1 - phs_a1_d0) * delpt_shift) / DELPT);
/*
* force sin^2 + cos^2 = 1;
* find magnitude by approximation
*/
mag1 = ar9003_hw_find_mag_approx(ah, cos_2phi_1, sin_2phi_1);
mag2 = ar9003_hw_find_mag_approx(ah, cos_2phi_2, sin_2phi_2);
if ((mag1 == 0) || (mag2 == 0)) {
ath_dbg(common, CALIBRATE, "Divide by 0: mag1=%d, mag2=%d\n",
mag1, mag2);
return false;
}
/* normalization sin and cos by mag */
sin_2phi_1 = (sin_2phi_1 * res_scale / mag1);
cos_2phi_1 = (cos_2phi_1 * res_scale / mag1);
sin_2phi_2 = (sin_2phi_2 * res_scale / mag2);
cos_2phi_2 = (cos_2phi_2 * res_scale / mag2);
/* calculate IQ mismatch */
if (!ar9003_hw_solve_iq_cal(ah,
sin_2phi_1, cos_2phi_1,
sin_2phi_2, cos_2phi_2,
mag_a0_d0, phs_a0_d0,
mag_a1_d0,
phs_a1_d0, solved_eq)) {
ath_dbg(common, CALIBRATE,
"Call to ar9003_hw_solve_iq_cal() failed\n");
return false;
}
mag_tx = solved_eq[0];
phs_tx = solved_eq[1];
mag_rx = solved_eq[2];
phs_rx = solved_eq[3];
ath_dbg(common, CALIBRATE,
"chain %d: mag mismatch=%d phase mismatch=%d\n",
chain_idx, mag_tx/res_scale, phs_tx/res_scale);
if (res_scale == mag_tx) {
ath_dbg(common, CALIBRATE,
"Divide by 0: mag_tx=%d, res_scale=%d\n",
mag_tx, res_scale);
return false;
}
/* calculate and quantize Tx IQ correction factor */
mag_corr_tx = (mag_tx * res_scale) / (res_scale - mag_tx);
phs_corr_tx = -phs_tx;
q_q_coff = (mag_corr_tx * 128 / res_scale);
q_i_coff = (phs_corr_tx * 256 / res_scale);
ath_dbg(common, CALIBRATE, "tx chain %d: mag corr=%d phase corr=%d\n",
chain_idx, q_q_coff, q_i_coff);
if (q_i_coff < -63)
q_i_coff = -63;
if (q_i_coff > 63)
q_i_coff = 63;
if (q_q_coff < -63)
q_q_coff = -63;
if (q_q_coff > 63)
q_q_coff = 63;
iqc_coeff[0] = (q_q_coff * 128) + (0x7f & q_i_coff);
ath_dbg(common, CALIBRATE, "tx chain %d: iq corr coeff=%x\n",
chain_idx, iqc_coeff[0]);
if (-mag_rx == res_scale) {
ath_dbg(common, CALIBRATE,
"Divide by 0: mag_rx=%d, res_scale=%d\n",
mag_rx, res_scale);
return false;
}
/* calculate and quantize Rx IQ correction factors */
mag_corr_rx = (-mag_rx * res_scale) / (res_scale + mag_rx);
phs_corr_rx = -phs_rx;
q_q_coff = (mag_corr_rx * 128 / res_scale);
q_i_coff = (phs_corr_rx * 256 / res_scale);
ath_dbg(common, CALIBRATE, "rx chain %d: mag corr=%d phase corr=%d\n",
chain_idx, q_q_coff, q_i_coff);
if (q_i_coff < -63)
q_i_coff = -63;
if (q_i_coff > 63)
q_i_coff = 63;
if (q_q_coff < -63)
q_q_coff = -63;
if (q_q_coff > 63)
q_q_coff = 63;
iqc_coeff[1] = (q_q_coff * 128) + (0x7f & q_i_coff);
ath_dbg(common, CALIBRATE, "rx chain %d: iq corr coeff=%x\n",
chain_idx, iqc_coeff[1]);
return true;
}
static void ar9003_hw_detect_outlier(int mp_coeff[][MAXIQCAL],
int nmeasurement,
int max_delta)
{
int mp_max = -64, max_idx = 0;
int mp_min = 63, min_idx = 0;
int mp_avg = 0, i, outlier_idx = 0, mp_count = 0;
/* find min/max mismatch across all calibrated gains */
for (i = 0; i < nmeasurement; i++) {
if (mp_coeff[i][0] > mp_max) {
mp_max = mp_coeff[i][0];
max_idx = i;
} else if (mp_coeff[i][0] < mp_min) {
mp_min = mp_coeff[i][0];
min_idx = i;
}
}
/* find average (exclude max abs value) */
for (i = 0; i < nmeasurement; i++) {
if ((abs(mp_coeff[i][0]) < abs(mp_max)) ||
(abs(mp_coeff[i][0]) < abs(mp_min))) {
mp_avg += mp_coeff[i][0];
mp_count++;
}
}
/*
* finding mean magnitude/phase if possible, otherwise
* just use the last value as the mean
*/
if (mp_count)
mp_avg /= mp_count;
else
mp_avg = mp_coeff[nmeasurement - 1][0];
/* detect outlier */
if (abs(mp_max - mp_min) > max_delta) {
if (abs(mp_max - mp_avg) > abs(mp_min - mp_avg))
outlier_idx = max_idx;
else
outlier_idx = min_idx;
mp_coeff[outlier_idx][0] = mp_avg;
}
}
static void ar9003_hw_tx_iq_cal_outlier_detection(struct ath_hw *ah,
struct coeff *coeff,
bool is_reusable)
{
int i, im, nmeasurement;
int magnitude, phase;
u32 tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS];
struct ath9k_hw_cal_data *caldata = ah->caldata;
memset(tx_corr_coeff, 0, sizeof(tx_corr_coeff));
for (i = 0; i < MAX_MEASUREMENT / 2; i++) {
tx_corr_coeff[i * 2][0] = tx_corr_coeff[(i * 2) + 1][0] =
AR_PHY_TX_IQCAL_CORR_COEFF_B0(i);
if (!AR_SREV_9485(ah)) {
tx_corr_coeff[i * 2][1] =
tx_corr_coeff[(i * 2) + 1][1] =
AR_PHY_TX_IQCAL_CORR_COEFF_B1(i);
tx_corr_coeff[i * 2][2] =
tx_corr_coeff[(i * 2) + 1][2] =
AR_PHY_TX_IQCAL_CORR_COEFF_B2(i);
}
}
/* Load the average of 2 passes */
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
nmeasurement = REG_READ_FIELD(ah,
AR_PHY_TX_IQCAL_STATUS_B0,
AR_PHY_CALIBRATED_GAINS_0);
if (nmeasurement > MAX_MEASUREMENT)
nmeasurement = MAX_MEASUREMENT;
/*
* Skip normal outlier detection for AR9550.
*/
if (!AR_SREV_9550(ah)) {
/* detect outlier only if nmeasurement > 1 */
if (nmeasurement > 1) {
/* Detect magnitude outlier */
ar9003_hw_detect_outlier(coeff->mag_coeff[i],
nmeasurement,
MAX_MAG_DELTA);
/* Detect phase outlier */
ar9003_hw_detect_outlier(coeff->phs_coeff[i],
nmeasurement,
MAX_PHS_DELTA);
}
}
for (im = 0; im < nmeasurement; im++) {
magnitude = coeff->mag_coeff[i][im][0];
phase = coeff->phs_coeff[i][im][0];
coeff->iqc_coeff[0] =
(phase & 0x7f) | ((magnitude & 0x7f) << 7);
if ((im % 2) == 0)
REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
coeff->iqc_coeff[0]);
else
REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
coeff->iqc_coeff[0]);
if (caldata)
caldata->tx_corr_coeff[im][i] =
coeff->iqc_coeff[0];
}
if (caldata)
caldata->num_measures[i] = nmeasurement;
}
REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);
if (caldata) {
if (is_reusable)
set_bit(TXIQCAL_DONE, &caldata->cal_flags);
else
clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
}
return;
}
static bool ar9003_hw_tx_iq_cal_run(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
u8 tx_gain_forced;
tx_gain_forced = REG_READ_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TXGAIN_FORCE);
if (tx_gain_forced)
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TXGAIN_FORCE, 0);
REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_START,
AR_PHY_TX_IQCAL_START_DO_CAL, 1);
if (!ath9k_hw_wait(ah, AR_PHY_TX_IQCAL_START,
AR_PHY_TX_IQCAL_START_DO_CAL, 0,
AH_WAIT_TIMEOUT)) {
ath_dbg(common, CALIBRATE, "Tx IQ Cal is not completed\n");
return false;
}
return true;
}
static void __ar955x_tx_iq_cal_sort(struct ath_hw *ah,
struct coeff *coeff,
int i, int nmeasurement)
{
struct ath_common *common = ath9k_hw_common(ah);
int im, ix, iy, temp;
for (im = 0; im < nmeasurement; im++) {
for (ix = 0; ix < MAXIQCAL - 1; ix++) {
for (iy = ix + 1; iy <= MAXIQCAL - 1; iy++) {
if (coeff->mag_coeff[i][im][iy] <
coeff->mag_coeff[i][im][ix]) {
temp = coeff->mag_coeff[i][im][ix];
coeff->mag_coeff[i][im][ix] =
coeff->mag_coeff[i][im][iy];
coeff->mag_coeff[i][im][iy] = temp;
}
if (coeff->phs_coeff[i][im][iy] <
coeff->phs_coeff[i][im][ix]) {
temp = coeff->phs_coeff[i][im][ix];
coeff->phs_coeff[i][im][ix] =
coeff->phs_coeff[i][im][iy];
coeff->phs_coeff[i][im][iy] = temp;
}
}
}
coeff->mag_coeff[i][im][0] = coeff->mag_coeff[i][im][MAXIQCAL / 2];
coeff->phs_coeff[i][im][0] = coeff->phs_coeff[i][im][MAXIQCAL / 2];
ath_dbg(common, CALIBRATE,
"IQCAL: Median [ch%d][gain%d]: mag = %d phase = %d\n",
i, im,
coeff->mag_coeff[i][im][0],
coeff->phs_coeff[i][im][0]);
}
}
static bool ar955x_tx_iq_cal_median(struct ath_hw *ah,
struct coeff *coeff,
int iqcal_idx,
int nmeasurement)
{
int i;
if ((iqcal_idx + 1) != MAXIQCAL)
return false;
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
__ar955x_tx_iq_cal_sort(ah, coeff, i, nmeasurement);
}
return true;
}
static void ar9003_hw_tx_iq_cal_post_proc(struct ath_hw *ah,
int iqcal_idx,
bool is_reusable)
{
struct ath_common *common = ath9k_hw_common(ah);
const u32 txiqcal_status[AR9300_MAX_CHAINS] = {
AR_PHY_TX_IQCAL_STATUS_B0,
AR_PHY_TX_IQCAL_STATUS_B1,
AR_PHY_TX_IQCAL_STATUS_B2,
};
const u_int32_t chan_info_tab[] = {
AR_PHY_CHAN_INFO_TAB_0,
AR_PHY_CHAN_INFO_TAB_1,
AR_PHY_CHAN_INFO_TAB_2,
};
static struct coeff coeff;
s32 iq_res[6];
int i, im, j;
int nmeasurement = 0;
bool outlier_detect = true;
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
nmeasurement = REG_READ_FIELD(ah,
AR_PHY_TX_IQCAL_STATUS_B0,
AR_PHY_CALIBRATED_GAINS_0);
if (nmeasurement > MAX_MEASUREMENT)
nmeasurement = MAX_MEASUREMENT;
for (im = 0; im < nmeasurement; im++) {
ath_dbg(common, CALIBRATE,
"Doing Tx IQ Cal for chain %d\n", i);
if (REG_READ(ah, txiqcal_status[i]) &
AR_PHY_TX_IQCAL_STATUS_FAILED) {
ath_dbg(common, CALIBRATE,
"Tx IQ Cal failed for chain %d\n", i);
goto tx_iqcal_fail;
}
for (j = 0; j < 3; j++) {
u32 idx = 2 * j, offset = 4 * (3 * im + j);
REG_RMW_FIELD(ah,
AR_PHY_CHAN_INFO_MEMORY,
AR_PHY_CHAN_INFO_TAB_S2_READ,
0);
/* 32 bits */
iq_res[idx] = REG_READ(ah,
chan_info_tab[i] +
offset);
REG_RMW_FIELD(ah,
AR_PHY_CHAN_INFO_MEMORY,
AR_PHY_CHAN_INFO_TAB_S2_READ,
1);
/* 16 bits */
iq_res[idx + 1] = 0xffff & REG_READ(ah,
chan_info_tab[i] + offset);
ath_dbg(common, CALIBRATE,
"IQ_RES[%d]=0x%x IQ_RES[%d]=0x%x\n",
idx, iq_res[idx], idx + 1,
iq_res[idx + 1]);
}
if (!ar9003_hw_calc_iq_corr(ah, i, iq_res,
coeff.iqc_coeff)) {
ath_dbg(common, CALIBRATE,
"Failed in calculation of IQ correction\n");
goto tx_iqcal_fail;
}
coeff.phs_coeff[i][im][iqcal_idx] =
coeff.iqc_coeff[0] & 0x7f;
coeff.mag_coeff[i][im][iqcal_idx] =
(coeff.iqc_coeff[0] >> 7) & 0x7f;
if (coeff.mag_coeff[i][im][iqcal_idx] > 63)
coeff.mag_coeff[i][im][iqcal_idx] -= 128;
if (coeff.phs_coeff[i][im][iqcal_idx] > 63)
coeff.phs_coeff[i][im][iqcal_idx] -= 128;
}
}
if (AR_SREV_9550(ah))
outlier_detect = ar955x_tx_iq_cal_median(ah, &coeff,
iqcal_idx, nmeasurement);
if (outlier_detect)
ar9003_hw_tx_iq_cal_outlier_detection(ah, &coeff, is_reusable);
return;
tx_iqcal_fail:
ath_dbg(common, CALIBRATE, "Tx IQ Cal failed\n");
return;
}
static void ar9003_hw_tx_iq_cal_reload(struct ath_hw *ah)
{
struct ath9k_hw_cal_data *caldata = ah->caldata;
u32 tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS];
int i, im;
memset(tx_corr_coeff, 0, sizeof(tx_corr_coeff));
for (i = 0; i < MAX_MEASUREMENT / 2; i++) {
tx_corr_coeff[i * 2][0] = tx_corr_coeff[(i * 2) + 1][0] =
AR_PHY_TX_IQCAL_CORR_COEFF_B0(i);
if (!AR_SREV_9485(ah)) {
tx_corr_coeff[i * 2][1] =
tx_corr_coeff[(i * 2) + 1][1] =
AR_PHY_TX_IQCAL_CORR_COEFF_B1(i);
tx_corr_coeff[i * 2][2] =
tx_corr_coeff[(i * 2) + 1][2] =
AR_PHY_TX_IQCAL_CORR_COEFF_B2(i);
}
}
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
for (im = 0; im < caldata->num_measures[i]; im++) {
if ((im % 2) == 0)
REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
caldata->tx_corr_coeff[im][i]);
else
REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
caldata->tx_corr_coeff[im][i]);
}
}
REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);
}
static void ar9003_hw_manual_peak_cal(struct ath_hw *ah, u8 chain, bool is_2g)
{
int offset[8] = {0}, total = 0, test;
int agc_out, i;
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
AR_PHY_65NM_RXRF_GAINSTAGES_RX_OVERRIDE, 0x1);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
AR_PHY_65NM_RXRF_GAINSTAGES_LNAON_CALDC, 0x0);
if (is_2g)
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
AR_PHY_65NM_RXRF_GAINSTAGES_LNA2G_GAIN_OVR, 0x0);
else
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
AR_PHY_65NM_RXRF_GAINSTAGES_LNA5G_GAIN_OVR, 0x0);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain),
AR_PHY_65NM_RXTX2_RXON_OVR, 0x1);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain),
AR_PHY_65NM_RXTX2_RXON, 0x0);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC_OVERRIDE, 0x1);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC_ON_OVR, 0x1);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC_CAL_OVR, 0x1);
if (AR_SREV_9330_11(ah)) {
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR, 0x0);
} else {
if (is_2g)
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC2G_DBDAC_OVR, 0x0);
else
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC5G_DBDAC_OVR, 0x0);
}
for (i = 6; i > 0; i--) {
offset[i] = BIT(i - 1);
test = total + offset[i];
if (is_2g)
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR,
test);
else
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR,
test);
udelay(100);
agc_out = REG_READ_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC_OUT);
offset[i] = (agc_out) ? 0 : 1;
total += (offset[i] << (i - 1));
}
if (is_2g)
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR, total);
else
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR, total);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
AR_PHY_65NM_RXRF_GAINSTAGES_RX_OVERRIDE, 0);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain),
AR_PHY_65NM_RXTX2_RXON_OVR, 0);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC_CAL_OVR, 0);
}
static void ar9003_hw_do_pcoem_manual_peak_cal(struct ath_hw *ah,
struct ath9k_channel *chan,
bool run_rtt_cal)
{
struct ath9k_hw_cal_data *caldata = ah->caldata;
int i;
if (!AR_SREV_9462(ah) && !AR_SREV_9565(ah) && !AR_SREV_9485(ah))
return;
if ((ah->caps.hw_caps & ATH9K_HW_CAP_RTT) && !run_rtt_cal)
return;
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->rxchainmask & (1 << i)))
continue;
ar9003_hw_manual_peak_cal(ah, i, IS_CHAN_2GHZ(chan));
}
if (caldata)
set_bit(SW_PKDET_DONE, &caldata->cal_flags);
if ((ah->caps.hw_caps & ATH9K_HW_CAP_RTT) && caldata) {
if (IS_CHAN_2GHZ(chan)){
caldata->caldac[0] = REG_READ_FIELD(ah,
AR_PHY_65NM_RXRF_AGC(0),
AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR);
caldata->caldac[1] = REG_READ_FIELD(ah,
AR_PHY_65NM_RXRF_AGC(1),
AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR);
} else {
caldata->caldac[0] = REG_READ_FIELD(ah,
AR_PHY_65NM_RXRF_AGC(0),
AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR);
caldata->caldac[1] = REG_READ_FIELD(ah,
AR_PHY_65NM_RXRF_AGC(1),
AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR);
}
}
}
static void ar9003_hw_cl_cal_post_proc(struct ath_hw *ah, bool is_reusable)
{
u32 cl_idx[AR9300_MAX_CHAINS] = { AR_PHY_CL_TAB_0,
AR_PHY_CL_TAB_1,
AR_PHY_CL_TAB_2 };
struct ath9k_hw_cal_data *caldata = ah->caldata;
bool txclcal_done = false;
int i, j;
if (!caldata || !(ah->enabled_cals & TX_CL_CAL))
return;
txclcal_done = !!(REG_READ(ah, AR_PHY_AGC_CONTROL) &
AR_PHY_AGC_CONTROL_CLC_SUCCESS);
if (test_bit(TXCLCAL_DONE, &caldata->cal_flags)) {
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
REG_WRITE(ah, CL_TAB_ENTRY(cl_idx[i]),
caldata->tx_clcal[i][j]);
}
} else if (is_reusable && txclcal_done) {
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
caldata->tx_clcal[i][j] =
REG_READ(ah, CL_TAB_ENTRY(cl_idx[i]));
}
set_bit(TXCLCAL_DONE, &caldata->cal_flags);
}
}
static bool ar9003_hw_init_cal_pcoem(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_cal_data *caldata = ah->caldata;
bool txiqcal_done = false;
bool is_reusable = true, status = true;
bool run_rtt_cal = false, run_agc_cal;
bool rtt = !!(ah->caps.hw_caps & ATH9K_HW_CAP_RTT);
u32 rx_delay = 0;
u32 agc_ctrl = 0, agc_supp_cals = AR_PHY_AGC_CONTROL_OFFSET_CAL |
AR_PHY_AGC_CONTROL_FLTR_CAL |
AR_PHY_AGC_CONTROL_PKDET_CAL;
/* Use chip chainmask only for calibration */
ar9003_hw_set_chain_masks(ah, ah->caps.rx_chainmask, ah->caps.tx_chainmask);
if (rtt) {
if (!ar9003_hw_rtt_restore(ah, chan))
run_rtt_cal = true;
if (run_rtt_cal)
ath_dbg(common, CALIBRATE, "RTT calibration to be done\n");
}
run_agc_cal = run_rtt_cal;
if (run_rtt_cal) {
ar9003_hw_rtt_enable(ah);
ar9003_hw_rtt_set_mask(ah, 0x00);
ar9003_hw_rtt_clear_hist(ah);
}
if (rtt) {
if (!run_rtt_cal) {
agc_ctrl = REG_READ(ah, AR_PHY_AGC_CONTROL);
agc_supp_cals &= agc_ctrl;
agc_ctrl &= ~(AR_PHY_AGC_CONTROL_OFFSET_CAL |
AR_PHY_AGC_CONTROL_FLTR_CAL |
AR_PHY_AGC_CONTROL_PKDET_CAL);
REG_WRITE(ah, AR_PHY_AGC_CONTROL, agc_ctrl);
} else {
if (ah->ah_flags & AH_FASTCC)
run_agc_cal = true;
}
}
if (ah->enabled_cals & TX_CL_CAL) {
if (caldata && test_bit(TXCLCAL_DONE, &caldata->cal_flags))
REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL,
AR_PHY_CL_CAL_ENABLE);
else {
REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL,
AR_PHY_CL_CAL_ENABLE);
run_agc_cal = true;
}
}
if ((IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) ||
!(ah->enabled_cals & TX_IQ_CAL))
goto skip_tx_iqcal;
/* Do Tx IQ Calibration */
REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_1,
AR_PHY_TX_IQCAL_CONTROL_1_IQCORR_I_Q_COFF_DELPT,
DELPT);
/*
* For AR9485 or later chips, TxIQ cal runs as part of
* AGC calibration
*/
if (ah->enabled_cals & TX_IQ_ON_AGC_CAL) {
if (caldata && !test_bit(TXIQCAL_DONE, &caldata->cal_flags))
REG_SET_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0,
AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
else
REG_CLR_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0,
AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
txiqcal_done = run_agc_cal = true;
}
skip_tx_iqcal:
if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal)
ar9003_mci_init_cal_req(ah, &is_reusable);
if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE) {
rx_delay = REG_READ(ah, AR_PHY_RX_DELAY);
/* Disable BB_active */
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
udelay(5);
REG_WRITE(ah, AR_PHY_RX_DELAY, AR_PHY_RX_DELAY_DELAY);
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
}
if (run_agc_cal || !(ah->ah_flags & AH_FASTCC)) {
/* Calibrate the AGC */
REG_WRITE(ah, AR_PHY_AGC_CONTROL,
REG_READ(ah, AR_PHY_AGC_CONTROL) |
AR_PHY_AGC_CONTROL_CAL);
/* Poll for offset calibration complete */
status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_CAL,
0, AH_WAIT_TIMEOUT);
ar9003_hw_do_pcoem_manual_peak_cal(ah, chan, run_rtt_cal);
}
if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE) {
REG_WRITE(ah, AR_PHY_RX_DELAY, rx_delay);
udelay(5);
}
if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal)
ar9003_mci_init_cal_done(ah);
if (rtt && !run_rtt_cal) {
agc_ctrl |= agc_supp_cals;
REG_WRITE(ah, AR_PHY_AGC_CONTROL, agc_ctrl);
}
if (!status) {
if (run_rtt_cal)
ar9003_hw_rtt_disable(ah);
ath_dbg(common, CALIBRATE,
"offset calibration failed to complete in %d ms; noisy environment?\n",
AH_WAIT_TIMEOUT / 1000);
return false;
}
if (txiqcal_done)
ar9003_hw_tx_iq_cal_post_proc(ah, 0, is_reusable);
else if (caldata && test_bit(TXIQCAL_DONE, &caldata->cal_flags))
ar9003_hw_tx_iq_cal_reload(ah);
ar9003_hw_cl_cal_post_proc(ah, is_reusable);
if (run_rtt_cal && caldata) {
if (is_reusable) {
if (!ath9k_hw_rfbus_req(ah)) {
ath_err(ath9k_hw_common(ah),
"Could not stop baseband\n");
} else {
ar9003_hw_rtt_fill_hist(ah);
if (test_bit(SW_PKDET_DONE, &caldata->cal_flags))
ar9003_hw_rtt_load_hist(ah);
}
ath9k_hw_rfbus_done(ah);
}
ar9003_hw_rtt_disable(ah);
}
/* Revert chainmask to runtime parameters */
ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
/* Initialize list pointers */
ah->cal_list = ah->cal_list_last = ah->cal_list_curr = NULL;
INIT_CAL(&ah->iq_caldata);
INSERT_CAL(ah, &ah->iq_caldata);
ath_dbg(common, CALIBRATE, "enabling IQ Calibration\n");
/* Initialize current pointer to first element in list */
ah->cal_list_curr = ah->cal_list;
if (ah->cal_list_curr)
ath9k_hw_reset_calibration(ah, ah->cal_list_curr);
if (caldata)
caldata->CalValid = 0;
return true;
}
static bool do_ar9003_agc_cal(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
bool status;
REG_WRITE(ah, AR_PHY_AGC_CONTROL,
REG_READ(ah, AR_PHY_AGC_CONTROL) |
AR_PHY_AGC_CONTROL_CAL);
status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_CAL,
0, AH_WAIT_TIMEOUT);
if (!status) {
ath_dbg(common, CALIBRATE,
"offset calibration failed to complete in %d ms,"
"noisy environment?\n",
AH_WAIT_TIMEOUT / 1000);
return false;
}
return true;
}
static bool ar9003_hw_init_cal_soc(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_cal_data *caldata = ah->caldata;
bool txiqcal_done = false;
bool status = true;
bool run_agc_cal = false, sep_iq_cal = false;
int i = 0;
/* Use chip chainmask only for calibration */
ar9003_hw_set_chain_masks(ah, ah->caps.rx_chainmask, ah->caps.tx_chainmask);
if (ah->enabled_cals & TX_CL_CAL) {
REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
run_agc_cal = true;
}
if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
goto skip_tx_iqcal;
/* Do Tx IQ Calibration */
REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_1,
AR_PHY_TX_IQCAL_CONTROL_1_IQCORR_I_Q_COFF_DELPT,
DELPT);
/*
* For AR9485 or later chips, TxIQ cal runs as part of
* AGC calibration. Specifically, AR9550 in SoC chips.
*/
if (ah->enabled_cals & TX_IQ_ON_AGC_CAL) {
if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0,
AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL)) {
txiqcal_done = true;
} else {
txiqcal_done = false;
}
run_agc_cal = true;
} else {
sep_iq_cal = true;
run_agc_cal = true;
}
/*
* In the SoC family, this will run for AR9300, AR9331 and AR9340.
*/
if (sep_iq_cal) {
txiqcal_done = ar9003_hw_tx_iq_cal_run(ah);
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
udelay(5);
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
}
if (AR_SREV_9550(ah) && IS_CHAN_2GHZ(chan)) {
if (!ar9003_hw_dynamic_osdac_selection(ah, txiqcal_done))
return false;
}
skip_tx_iqcal:
if (run_agc_cal || !(ah->ah_flags & AH_FASTCC)) {
if (AR_SREV_9330_11(ah))
ar9003_hw_manual_peak_cal(ah, 0, IS_CHAN_2GHZ(chan));
/*
* For non-AR9550 chips, we just trigger AGC calibration
* in the HW, poll for completion and then process
* the results.
*
* For AR955x, we run it multiple times and use
* median IQ correction.
*/
if (!AR_SREV_9550(ah)) {
status = do_ar9003_agc_cal(ah);
if (!status)
return false;
if (txiqcal_done)
ar9003_hw_tx_iq_cal_post_proc(ah, 0, false);
} else {
if (!txiqcal_done) {
status = do_ar9003_agc_cal(ah);
if (!status)
return false;
} else {
for (i = 0; i < MAXIQCAL; i++) {
status = do_ar9003_agc_cal(ah);
if (!status)
return false;
ar9003_hw_tx_iq_cal_post_proc(ah, i, false);
}
}
}
}
/* Revert chainmask to runtime parameters */
ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
/* Initialize list pointers */
ah->cal_list = ah->cal_list_last = ah->cal_list_curr = NULL;
INIT_CAL(&ah->iq_caldata);
INSERT_CAL(ah, &ah->iq_caldata);
ath_dbg(common, CALIBRATE, "enabling IQ Calibration\n");
/* Initialize current pointer to first element in list */
ah->cal_list_curr = ah->cal_list;
if (ah->cal_list_curr)
ath9k_hw_reset_calibration(ah, ah->cal_list_curr);
if (caldata)
caldata->CalValid = 0;
return true;
}
void ar9003_hw_attach_calib_ops(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
struct ath_hw_ops *ops = ath9k_hw_ops(ah);
if (AR_SREV_9485(ah) || AR_SREV_9462(ah) || AR_SREV_9565(ah))
priv_ops->init_cal = ar9003_hw_init_cal_pcoem;
else
priv_ops->init_cal = ar9003_hw_init_cal_soc;
priv_ops->init_cal_settings = ar9003_hw_init_cal_settings;
priv_ops->setup_calibration = ar9003_hw_setup_calibration;
ops->calibrate = ar9003_hw_calibrate;
}