linux/drivers/net/wireless/iwlegacy/common.c
Stanislaw Gruszka 788f7a56fc iwl4965: reset firmware after rfkill off
Using rfkill switch can make firmware unstable, what cause various
Microcode errors and kernel warnings. Reseting firmware just after
rfkill off (radio on) helped with that.

Resolve:
https://bugzilla.redhat.com/show_bug.cgi?id=977053

Reported-and-tested-by: Justin Pearce <whitefox@guardianfox.net>
Cc: stable@vger.kernel.org
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2013-08-02 14:54:04 -04:00

5530 lines
142 KiB
C

/******************************************************************************
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/lockdep.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
#include <net/mac80211.h>
#include "common.h"
int
_il_poll_bit(struct il_priv *il, u32 addr, u32 bits, u32 mask, int timeout)
{
const int interval = 10; /* microseconds */
int t = 0;
do {
if ((_il_rd(il, addr) & mask) == (bits & mask))
return t;
udelay(interval);
t += interval;
} while (t < timeout);
return -ETIMEDOUT;
}
EXPORT_SYMBOL(_il_poll_bit);
void
il_set_bit(struct il_priv *p, u32 r, u32 m)
{
unsigned long reg_flags;
spin_lock_irqsave(&p->reg_lock, reg_flags);
_il_set_bit(p, r, m);
spin_unlock_irqrestore(&p->reg_lock, reg_flags);
}
EXPORT_SYMBOL(il_set_bit);
void
il_clear_bit(struct il_priv *p, u32 r, u32 m)
{
unsigned long reg_flags;
spin_lock_irqsave(&p->reg_lock, reg_flags);
_il_clear_bit(p, r, m);
spin_unlock_irqrestore(&p->reg_lock, reg_flags);
}
EXPORT_SYMBOL(il_clear_bit);
bool
_il_grab_nic_access(struct il_priv *il)
{
int ret;
u32 val;
/* this bit wakes up the NIC */
_il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/*
* These bits say the device is running, and should keep running for
* at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
* but they do not indicate that embedded SRAM is restored yet;
* 3945 and 4965 have volatile SRAM, and must save/restore contents
* to/from host DRAM when sleeping/waking for power-saving.
* Each direction takes approximately 1/4 millisecond; with this
* overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
* series of register accesses are expected (e.g. reading Event Log),
* to keep device from sleeping.
*
* CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
* SRAM is okay/restored. We don't check that here because this call
* is just for hardware register access; but GP1 MAC_SLEEP check is a
* good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
*
*/
ret =
_il_poll_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
(CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
if (unlikely(ret < 0)) {
val = _il_rd(il, CSR_GP_CNTRL);
WARN_ONCE(1, "Timeout waiting for ucode processor access "
"(CSR_GP_CNTRL 0x%08x)\n", val);
_il_wr(il, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(_il_grab_nic_access);
int
il_poll_bit(struct il_priv *il, u32 addr, u32 mask, int timeout)
{
const int interval = 10; /* microseconds */
int t = 0;
do {
if ((il_rd(il, addr) & mask) == mask)
return t;
udelay(interval);
t += interval;
} while (t < timeout);
return -ETIMEDOUT;
}
EXPORT_SYMBOL(il_poll_bit);
u32
il_rd_prph(struct il_priv *il, u32 reg)
{
unsigned long reg_flags;
u32 val;
spin_lock_irqsave(&il->reg_lock, reg_flags);
_il_grab_nic_access(il);
val = _il_rd_prph(il, reg);
_il_release_nic_access(il);
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
return val;
}
EXPORT_SYMBOL(il_rd_prph);
void
il_wr_prph(struct il_priv *il, u32 addr, u32 val)
{
unsigned long reg_flags;
spin_lock_irqsave(&il->reg_lock, reg_flags);
if (likely(_il_grab_nic_access(il))) {
_il_wr_prph(il, addr, val);
_il_release_nic_access(il);
}
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
}
EXPORT_SYMBOL(il_wr_prph);
u32
il_read_targ_mem(struct il_priv *il, u32 addr)
{
unsigned long reg_flags;
u32 value;
spin_lock_irqsave(&il->reg_lock, reg_flags);
_il_grab_nic_access(il);
_il_wr(il, HBUS_TARG_MEM_RADDR, addr);
value = _il_rd(il, HBUS_TARG_MEM_RDAT);
_il_release_nic_access(il);
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
return value;
}
EXPORT_SYMBOL(il_read_targ_mem);
void
il_write_targ_mem(struct il_priv *il, u32 addr, u32 val)
{
unsigned long reg_flags;
spin_lock_irqsave(&il->reg_lock, reg_flags);
if (likely(_il_grab_nic_access(il))) {
_il_wr(il, HBUS_TARG_MEM_WADDR, addr);
_il_wr(il, HBUS_TARG_MEM_WDAT, val);
_il_release_nic_access(il);
}
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
}
EXPORT_SYMBOL(il_write_targ_mem);
const char *
il_get_cmd_string(u8 cmd)
{
switch (cmd) {
IL_CMD(N_ALIVE);
IL_CMD(N_ERROR);
IL_CMD(C_RXON);
IL_CMD(C_RXON_ASSOC);
IL_CMD(C_QOS_PARAM);
IL_CMD(C_RXON_TIMING);
IL_CMD(C_ADD_STA);
IL_CMD(C_REM_STA);
IL_CMD(C_WEPKEY);
IL_CMD(N_3945_RX);
IL_CMD(C_TX);
IL_CMD(C_RATE_SCALE);
IL_CMD(C_LEDS);
IL_CMD(C_TX_LINK_QUALITY_CMD);
IL_CMD(C_CHANNEL_SWITCH);
IL_CMD(N_CHANNEL_SWITCH);
IL_CMD(C_SPECTRUM_MEASUREMENT);
IL_CMD(N_SPECTRUM_MEASUREMENT);
IL_CMD(C_POWER_TBL);
IL_CMD(N_PM_SLEEP);
IL_CMD(N_PM_DEBUG_STATS);
IL_CMD(C_SCAN);
IL_CMD(C_SCAN_ABORT);
IL_CMD(N_SCAN_START);
IL_CMD(N_SCAN_RESULTS);
IL_CMD(N_SCAN_COMPLETE);
IL_CMD(N_BEACON);
IL_CMD(C_TX_BEACON);
IL_CMD(C_TX_PWR_TBL);
IL_CMD(C_BT_CONFIG);
IL_CMD(C_STATS);
IL_CMD(N_STATS);
IL_CMD(N_CARD_STATE);
IL_CMD(N_MISSED_BEACONS);
IL_CMD(C_CT_KILL_CONFIG);
IL_CMD(C_SENSITIVITY);
IL_CMD(C_PHY_CALIBRATION);
IL_CMD(N_RX_PHY);
IL_CMD(N_RX_MPDU);
IL_CMD(N_RX);
IL_CMD(N_COMPRESSED_BA);
default:
return "UNKNOWN";
}
}
EXPORT_SYMBOL(il_get_cmd_string);
#define HOST_COMPLETE_TIMEOUT (HZ / 2)
static void
il_generic_cmd_callback(struct il_priv *il, struct il_device_cmd *cmd,
struct il_rx_pkt *pkt)
{
if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
IL_ERR("Bad return from %s (0x%08X)\n",
il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
return;
}
#ifdef CONFIG_IWLEGACY_DEBUG
switch (cmd->hdr.cmd) {
case C_TX_LINK_QUALITY_CMD:
case C_SENSITIVITY:
D_HC_DUMP("back from %s (0x%08X)\n",
il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
break;
default:
D_HC("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd),
pkt->hdr.flags);
}
#endif
}
static int
il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd)
{
int ret;
BUG_ON(!(cmd->flags & CMD_ASYNC));
/* An asynchronous command can not expect an SKB to be set. */
BUG_ON(cmd->flags & CMD_WANT_SKB);
/* Assign a generic callback if one is not provided */
if (!cmd->callback)
cmd->callback = il_generic_cmd_callback;
if (test_bit(S_EXIT_PENDING, &il->status))
return -EBUSY;
ret = il_enqueue_hcmd(il, cmd);
if (ret < 0) {
IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
il_get_cmd_string(cmd->id), ret);
return ret;
}
return 0;
}
int
il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd)
{
int cmd_idx;
int ret;
lockdep_assert_held(&il->mutex);
BUG_ON(cmd->flags & CMD_ASYNC);
/* A synchronous command can not have a callback set. */
BUG_ON(cmd->callback);
D_INFO("Attempting to send sync command %s\n",
il_get_cmd_string(cmd->id));
set_bit(S_HCMD_ACTIVE, &il->status);
D_INFO("Setting HCMD_ACTIVE for command %s\n",
il_get_cmd_string(cmd->id));
cmd_idx = il_enqueue_hcmd(il, cmd);
if (cmd_idx < 0) {
ret = cmd_idx;
IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
il_get_cmd_string(cmd->id), ret);
goto out;
}
ret = wait_event_timeout(il->wait_command_queue,
!test_bit(S_HCMD_ACTIVE, &il->status),
HOST_COMPLETE_TIMEOUT);
if (!ret) {
if (test_bit(S_HCMD_ACTIVE, &il->status)) {
IL_ERR("Error sending %s: time out after %dms.\n",
il_get_cmd_string(cmd->id),
jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
clear_bit(S_HCMD_ACTIVE, &il->status);
D_INFO("Clearing HCMD_ACTIVE for command %s\n",
il_get_cmd_string(cmd->id));
ret = -ETIMEDOUT;
goto cancel;
}
}
if (test_bit(S_RFKILL, &il->status)) {
IL_ERR("Command %s aborted: RF KILL Switch\n",
il_get_cmd_string(cmd->id));
ret = -ECANCELED;
goto fail;
}
if (test_bit(S_FW_ERROR, &il->status)) {
IL_ERR("Command %s failed: FW Error\n",
il_get_cmd_string(cmd->id));
ret = -EIO;
goto fail;
}
if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) {
IL_ERR("Error: Response NULL in '%s'\n",
il_get_cmd_string(cmd->id));
ret = -EIO;
goto cancel;
}
ret = 0;
goto out;
cancel:
if (cmd->flags & CMD_WANT_SKB) {
/*
* Cancel the CMD_WANT_SKB flag for the cmd in the
* TX cmd queue. Otherwise in case the cmd comes
* in later, it will possibly set an invalid
* address (cmd->meta.source).
*/
il->txq[il->cmd_queue].meta[cmd_idx].flags &= ~CMD_WANT_SKB;
}
fail:
if (cmd->reply_page) {
il_free_pages(il, cmd->reply_page);
cmd->reply_page = 0;
}
out:
return ret;
}
EXPORT_SYMBOL(il_send_cmd_sync);
int
il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd)
{
if (cmd->flags & CMD_ASYNC)
return il_send_cmd_async(il, cmd);
return il_send_cmd_sync(il, cmd);
}
EXPORT_SYMBOL(il_send_cmd);
int
il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data)
{
struct il_host_cmd cmd = {
.id = id,
.len = len,
.data = data,
};
return il_send_cmd_sync(il, &cmd);
}
EXPORT_SYMBOL(il_send_cmd_pdu);
int
il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data,
void (*callback) (struct il_priv *il,
struct il_device_cmd *cmd,
struct il_rx_pkt *pkt))
{
struct il_host_cmd cmd = {
.id = id,
.len = len,
.data = data,
};
cmd.flags |= CMD_ASYNC;
cmd.callback = callback;
return il_send_cmd_async(il, &cmd);
}
EXPORT_SYMBOL(il_send_cmd_pdu_async);
/* default: IL_LED_BLINK(0) using blinking idx table */
static int led_mode;
module_param(led_mode, int, S_IRUGO);
MODULE_PARM_DESC(led_mode,
"0=system default, " "1=On(RF On)/Off(RF Off), 2=blinking");
/* Throughput OFF time(ms) ON time (ms)
* >300 25 25
* >200 to 300 40 40
* >100 to 200 55 55
* >70 to 100 65 65
* >50 to 70 75 75
* >20 to 50 85 85
* >10 to 20 95 95
* >5 to 10 110 110
* >1 to 5 130 130
* >0 to 1 167 167
* <=0 SOLID ON
*/
static const struct ieee80211_tpt_blink il_blink[] = {
{.throughput = 0, .blink_time = 334},
{.throughput = 1 * 1024 - 1, .blink_time = 260},
{.throughput = 5 * 1024 - 1, .blink_time = 220},
{.throughput = 10 * 1024 - 1, .blink_time = 190},
{.throughput = 20 * 1024 - 1, .blink_time = 170},
{.throughput = 50 * 1024 - 1, .blink_time = 150},
{.throughput = 70 * 1024 - 1, .blink_time = 130},
{.throughput = 100 * 1024 - 1, .blink_time = 110},
{.throughput = 200 * 1024 - 1, .blink_time = 80},
{.throughput = 300 * 1024 - 1, .blink_time = 50},
};
/*
* Adjust led blink rate to compensate on a MAC Clock difference on every HW
* Led blink rate analysis showed an average deviation of 0% on 3945,
* 5% on 4965 HW.
* Need to compensate on the led on/off time per HW according to the deviation
* to achieve the desired led frequency
* The calculation is: (100-averageDeviation)/100 * blinkTime
* For code efficiency the calculation will be:
* compensation = (100 - averageDeviation) * 64 / 100
* NewBlinkTime = (compensation * BlinkTime) / 64
*/
static inline u8
il_blink_compensation(struct il_priv *il, u8 time, u16 compensation)
{
if (!compensation) {
IL_ERR("undefined blink compensation: "
"use pre-defined blinking time\n");
return time;
}
return (u8) ((time * compensation) >> 6);
}
/* Set led pattern command */
static int
il_led_cmd(struct il_priv *il, unsigned long on, unsigned long off)
{
struct il_led_cmd led_cmd = {
.id = IL_LED_LINK,
.interval = IL_DEF_LED_INTRVL
};
int ret;
if (!test_bit(S_READY, &il->status))
return -EBUSY;
if (il->blink_on == on && il->blink_off == off)
return 0;
if (off == 0) {
/* led is SOLID_ON */
on = IL_LED_SOLID;
}
D_LED("Led blink time compensation=%u\n",
il->cfg->led_compensation);
led_cmd.on =
il_blink_compensation(il, on,
il->cfg->led_compensation);
led_cmd.off =
il_blink_compensation(il, off,
il->cfg->led_compensation);
ret = il->ops->send_led_cmd(il, &led_cmd);
if (!ret) {
il->blink_on = on;
il->blink_off = off;
}
return ret;
}
static void
il_led_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct il_priv *il = container_of(led_cdev, struct il_priv, led);
unsigned long on = 0;
if (brightness > 0)
on = IL_LED_SOLID;
il_led_cmd(il, on, 0);
}
static int
il_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on,
unsigned long *delay_off)
{
struct il_priv *il = container_of(led_cdev, struct il_priv, led);
return il_led_cmd(il, *delay_on, *delay_off);
}
void
il_leds_init(struct il_priv *il)
{
int mode = led_mode;
int ret;
if (mode == IL_LED_DEFAULT)
mode = il->cfg->led_mode;
il->led.name =
kasprintf(GFP_KERNEL, "%s-led", wiphy_name(il->hw->wiphy));
il->led.brightness_set = il_led_brightness_set;
il->led.blink_set = il_led_blink_set;
il->led.max_brightness = 1;
switch (mode) {
case IL_LED_DEFAULT:
WARN_ON(1);
break;
case IL_LED_BLINK:
il->led.default_trigger =
ieee80211_create_tpt_led_trigger(il->hw,
IEEE80211_TPT_LEDTRIG_FL_CONNECTED,
il_blink,
ARRAY_SIZE(il_blink));
break;
case IL_LED_RF_STATE:
il->led.default_trigger = ieee80211_get_radio_led_name(il->hw);
break;
}
ret = led_classdev_register(&il->pci_dev->dev, &il->led);
if (ret) {
kfree(il->led.name);
return;
}
il->led_registered = true;
}
EXPORT_SYMBOL(il_leds_init);
void
il_leds_exit(struct il_priv *il)
{
if (!il->led_registered)
return;
led_classdev_unregister(&il->led);
kfree(il->led.name);
}
EXPORT_SYMBOL(il_leds_exit);
/************************** EEPROM BANDS ****************************
*
* The il_eeprom_band definitions below provide the mapping from the
* EEPROM contents to the specific channel number supported for each
* band.
*
* For example, il_priv->eeprom.band_3_channels[4] from the band_3
* definition below maps to physical channel 42 in the 5.2GHz spectrum.
* The specific geography and calibration information for that channel
* is contained in the eeprom map itself.
*
* During init, we copy the eeprom information and channel map
* information into il->channel_info_24/52 and il->channel_map_24/52
*
* channel_map_24/52 provides the idx in the channel_info array for a
* given channel. We have to have two separate maps as there is channel
* overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
* band_2
*
* A value of 0xff stored in the channel_map indicates that the channel
* is not supported by the hardware at all.
*
* A value of 0xfe in the channel_map indicates that the channel is not
* valid for Tx with the current hardware. This means that
* while the system can tune and receive on a given channel, it may not
* be able to associate or transmit any frames on that
* channel. There is no corresponding channel information for that
* entry.
*
*********************************************************************/
/* 2.4 GHz */
const u8 il_eeprom_band_1[14] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
};
/* 5.2 GHz bands */
static const u8 il_eeprom_band_2[] = { /* 4915-5080MHz */
183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
};
static const u8 il_eeprom_band_3[] = { /* 5170-5320MHz */
34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
};
static const u8 il_eeprom_band_4[] = { /* 5500-5700MHz */
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
};
static const u8 il_eeprom_band_5[] = { /* 5725-5825MHz */
145, 149, 153, 157, 161, 165
};
static const u8 il_eeprom_band_6[] = { /* 2.4 ht40 channel */
1, 2, 3, 4, 5, 6, 7
};
static const u8 il_eeprom_band_7[] = { /* 5.2 ht40 channel */
36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
};
/******************************************************************************
*
* EEPROM related functions
*
******************************************************************************/
static int
il_eeprom_verify_signature(struct il_priv *il)
{
u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
int ret = 0;
D_EEPROM("EEPROM signature=0x%08x\n", gp);
switch (gp) {
case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
break;
default:
IL_ERR("bad EEPROM signature," "EEPROM_GP=0x%08x\n", gp);
ret = -ENOENT;
break;
}
return ret;
}
const u8 *
il_eeprom_query_addr(const struct il_priv *il, size_t offset)
{
BUG_ON(offset >= il->cfg->eeprom_size);
return &il->eeprom[offset];
}
EXPORT_SYMBOL(il_eeprom_query_addr);
u16
il_eeprom_query16(const struct il_priv *il, size_t offset)
{
if (!il->eeprom)
return 0;
return (u16) il->eeprom[offset] | ((u16) il->eeprom[offset + 1] << 8);
}
EXPORT_SYMBOL(il_eeprom_query16);
/**
* il_eeprom_init - read EEPROM contents
*
* Load the EEPROM contents from adapter into il->eeprom
*
* NOTE: This routine uses the non-debug IO access functions.
*/
int
il_eeprom_init(struct il_priv *il)
{
__le16 *e;
u32 gp = _il_rd(il, CSR_EEPROM_GP);
int sz;
int ret;
u16 addr;
/* allocate eeprom */
sz = il->cfg->eeprom_size;
D_EEPROM("NVM size = %d\n", sz);
il->eeprom = kzalloc(sz, GFP_KERNEL);
if (!il->eeprom) {
ret = -ENOMEM;
goto alloc_err;
}
e = (__le16 *) il->eeprom;
il->ops->apm_init(il);
ret = il_eeprom_verify_signature(il);
if (ret < 0) {
IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp);
ret = -ENOENT;
goto err;
}
/* Make sure driver (instead of uCode) is allowed to read EEPROM */
ret = il->ops->eeprom_acquire_semaphore(il);
if (ret < 0) {
IL_ERR("Failed to acquire EEPROM semaphore.\n");
ret = -ENOENT;
goto err;
}
/* eeprom is an array of 16bit values */
for (addr = 0; addr < sz; addr += sizeof(u16)) {
u32 r;
_il_wr(il, CSR_EEPROM_REG,
CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
ret =
_il_poll_bit(il, CSR_EEPROM_REG,
CSR_EEPROM_REG_READ_VALID_MSK,
CSR_EEPROM_REG_READ_VALID_MSK,
IL_EEPROM_ACCESS_TIMEOUT);
if (ret < 0) {
IL_ERR("Time out reading EEPROM[%d]\n", addr);
goto done;
}
r = _il_rd(il, CSR_EEPROM_REG);
e[addr / 2] = cpu_to_le16(r >> 16);
}
D_EEPROM("NVM Type: %s, version: 0x%x\n", "EEPROM",
il_eeprom_query16(il, EEPROM_VERSION));
ret = 0;
done:
il->ops->eeprom_release_semaphore(il);
err:
if (ret)
il_eeprom_free(il);
/* Reset chip to save power until we load uCode during "up". */
il_apm_stop(il);
alloc_err:
return ret;
}
EXPORT_SYMBOL(il_eeprom_init);
void
il_eeprom_free(struct il_priv *il)
{
kfree(il->eeprom);
il->eeprom = NULL;
}
EXPORT_SYMBOL(il_eeprom_free);
static void
il_init_band_reference(const struct il_priv *il, int eep_band,
int *eeprom_ch_count,
const struct il_eeprom_channel **eeprom_ch_info,
const u8 **eeprom_ch_idx)
{
u32 offset = il->cfg->regulatory_bands[eep_band - 1];
switch (eep_band) {
case 1: /* 2.4GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_1;
break;
case 2: /* 4.9GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_2;
break;
case 3: /* 5.2GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_3;
break;
case 4: /* 5.5GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_4;
break;
case 5: /* 5.7GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_5;
break;
case 6: /* 2.4GHz ht40 channels */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_6;
break;
case 7: /* 5 GHz ht40 channels */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_7;
break;
default:
BUG();
}
}
#define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
? # x " " : "")
/**
* il_mod_ht40_chan_info - Copy ht40 channel info into driver's il.
*
* Does not set up a command, or touch hardware.
*/
static int
il_mod_ht40_chan_info(struct il_priv *il, enum ieee80211_band band, u16 channel,
const struct il_eeprom_channel *eeprom_ch,
u8 clear_ht40_extension_channel)
{
struct il_channel_info *ch_info;
ch_info =
(struct il_channel_info *)il_get_channel_info(il, band, channel);
if (!il_is_channel_valid(ch_info))
return -1;
D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
" Ad-Hoc %ssupported\n", ch_info->channel,
il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE),
CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE),
CHECK_AND_PRINT(DFS), eeprom_ch->flags,
eeprom_ch->max_power_avg,
((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
!(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not ");
ch_info->ht40_eeprom = *eeprom_ch;
ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
ch_info->ht40_flags = eeprom_ch->flags;
if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
ch_info->ht40_extension_channel &=
~clear_ht40_extension_channel;
return 0;
}
#define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
? # x " " : "")
/**
* il_init_channel_map - Set up driver's info for all possible channels
*/
int
il_init_channel_map(struct il_priv *il)
{
int eeprom_ch_count = 0;
const u8 *eeprom_ch_idx = NULL;
const struct il_eeprom_channel *eeprom_ch_info = NULL;
int band, ch;
struct il_channel_info *ch_info;
if (il->channel_count) {
D_EEPROM("Channel map already initialized.\n");
return 0;
}
D_EEPROM("Initializing regulatory info from EEPROM\n");
il->channel_count =
ARRAY_SIZE(il_eeprom_band_1) + ARRAY_SIZE(il_eeprom_band_2) +
ARRAY_SIZE(il_eeprom_band_3) + ARRAY_SIZE(il_eeprom_band_4) +
ARRAY_SIZE(il_eeprom_band_5);
D_EEPROM("Parsing data for %d channels.\n", il->channel_count);
il->channel_info =
kzalloc(sizeof(struct il_channel_info) * il->channel_count,
GFP_KERNEL);
if (!il->channel_info) {
IL_ERR("Could not allocate channel_info\n");
il->channel_count = 0;
return -ENOMEM;
}
ch_info = il->channel_info;
/* Loop through the 5 EEPROM bands adding them in order to the
* channel map we maintain (that contains additional information than
* what just in the EEPROM) */
for (band = 1; band <= 5; band++) {
il_init_band_reference(il, band, &eeprom_ch_count,
&eeprom_ch_info, &eeprom_ch_idx);
/* Loop through each band adding each of the channels */
for (ch = 0; ch < eeprom_ch_count; ch++) {
ch_info->channel = eeprom_ch_idx[ch];
ch_info->band =
(band ==
1) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
/* permanently store EEPROM's channel regulatory flags
* and max power in channel info database. */
ch_info->eeprom = eeprom_ch_info[ch];
/* Copy the run-time flags so they are there even on
* invalid channels */
ch_info->flags = eeprom_ch_info[ch].flags;
/* First write that ht40 is not enabled, and then enable
* one by one */
ch_info->ht40_extension_channel =
IEEE80211_CHAN_NO_HT40;
if (!(il_is_channel_valid(ch_info))) {
D_EEPROM("Ch. %d Flags %x [%sGHz] - "
"No traffic\n", ch_info->channel,
ch_info->flags,
il_is_channel_a_band(ch_info) ? "5.2" :
"2.4");
ch_info++;
continue;
}
/* Initialize regulatory-based run-time data */
ch_info->max_power_avg = ch_info->curr_txpow =
eeprom_ch_info[ch].max_power_avg;
ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
ch_info->min_power = 0;
D_EEPROM("Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):"
" Ad-Hoc %ssupported\n", ch_info->channel,
il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
CHECK_AND_PRINT_I(VALID),
CHECK_AND_PRINT_I(IBSS),
CHECK_AND_PRINT_I(ACTIVE),
CHECK_AND_PRINT_I(RADAR),
CHECK_AND_PRINT_I(WIDE),
CHECK_AND_PRINT_I(DFS),
eeprom_ch_info[ch].flags,
eeprom_ch_info[ch].max_power_avg,
((eeprom_ch_info[ch].
flags & EEPROM_CHANNEL_IBSS) &&
!(eeprom_ch_info[ch].
flags & EEPROM_CHANNEL_RADAR)) ? "" :
"not ");
ch_info++;
}
}
/* Check if we do have HT40 channels */
if (il->cfg->regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 &&
il->cfg->regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40)
return 0;
/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
for (band = 6; band <= 7; band++) {
enum ieee80211_band ieeeband;
il_init_band_reference(il, band, &eeprom_ch_count,
&eeprom_ch_info, &eeprom_ch_idx);
/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
ieeeband =
(band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
/* Loop through each band adding each of the channels */
for (ch = 0; ch < eeprom_ch_count; ch++) {
/* Set up driver's info for lower half */
il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch],
&eeprom_ch_info[ch],
IEEE80211_CHAN_NO_HT40PLUS);
/* Set up driver's info for upper half */
il_mod_ht40_chan_info(il, ieeeband,
eeprom_ch_idx[ch] + 4,
&eeprom_ch_info[ch],
IEEE80211_CHAN_NO_HT40MINUS);
}
}
return 0;
}
EXPORT_SYMBOL(il_init_channel_map);
/*
* il_free_channel_map - undo allocations in il_init_channel_map
*/
void
il_free_channel_map(struct il_priv *il)
{
kfree(il->channel_info);
il->channel_count = 0;
}
EXPORT_SYMBOL(il_free_channel_map);
/**
* il_get_channel_info - Find driver's ilate channel info
*
* Based on band and channel number.
*/
const struct il_channel_info *
il_get_channel_info(const struct il_priv *il, enum ieee80211_band band,
u16 channel)
{
int i;
switch (band) {
case IEEE80211_BAND_5GHZ:
for (i = 14; i < il->channel_count; i++) {
if (il->channel_info[i].channel == channel)
return &il->channel_info[i];
}
break;
case IEEE80211_BAND_2GHZ:
if (channel >= 1 && channel <= 14)
return &il->channel_info[channel - 1];
break;
default:
BUG();
}
return NULL;
}
EXPORT_SYMBOL(il_get_channel_info);
/*
* Setting power level allows the card to go to sleep when not busy.
*
* We calculate a sleep command based on the required latency, which
* we get from mac80211. In order to handle thermal throttling, we can
* also use pre-defined power levels.
*/
/*
* This defines the old power levels. They are still used by default
* (level 1) and for thermal throttle (levels 3 through 5)
*/
struct il_power_vec_entry {
struct il_powertable_cmd cmd;
u8 no_dtim; /* number of skip dtim */
};
static void
il_power_sleep_cam_cmd(struct il_priv *il, struct il_powertable_cmd *cmd)
{
memset(cmd, 0, sizeof(*cmd));
if (il->power_data.pci_pm)
cmd->flags |= IL_POWER_PCI_PM_MSK;
D_POWER("Sleep command for CAM\n");
}
static int
il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd)
{
D_POWER("Sending power/sleep command\n");
D_POWER("Flags value = 0x%08X\n", cmd->flags);
D_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
D_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
D_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n",
le32_to_cpu(cmd->sleep_interval[0]),
le32_to_cpu(cmd->sleep_interval[1]),
le32_to_cpu(cmd->sleep_interval[2]),
le32_to_cpu(cmd->sleep_interval[3]),
le32_to_cpu(cmd->sleep_interval[4]));
return il_send_cmd_pdu(il, C_POWER_TBL,
sizeof(struct il_powertable_cmd), cmd);
}
static int
il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd, bool force)
{
int ret;
bool update_chains;
lockdep_assert_held(&il->mutex);
/* Don't update the RX chain when chain noise calibration is running */
update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE ||
il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE;
if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force)
return 0;
if (!il_is_ready_rf(il))
return -EIO;
/* scan complete use sleep_power_next, need to be updated */
memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd));
if (test_bit(S_SCANNING, &il->status) && !force) {
D_INFO("Defer power set mode while scanning\n");
return 0;
}
if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)
set_bit(S_POWER_PMI, &il->status);
ret = il_set_power(il, cmd);
if (!ret) {
if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK))
clear_bit(S_POWER_PMI, &il->status);
if (il->ops->update_chain_flags && update_chains)
il->ops->update_chain_flags(il);
else if (il->ops->update_chain_flags)
D_POWER("Cannot update the power, chain noise "
"calibration running: %d\n",
il->chain_noise_data.state);
memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd));
} else
IL_ERR("set power fail, ret = %d", ret);
return ret;
}
int
il_power_update_mode(struct il_priv *il, bool force)
{
struct il_powertable_cmd cmd;
il_power_sleep_cam_cmd(il, &cmd);
return il_power_set_mode(il, &cmd, force);
}
EXPORT_SYMBOL(il_power_update_mode);
/* initialize to default */
void
il_power_initialize(struct il_priv *il)
{
u16 lctl;
pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
il->power_data.pci_pm = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
il->power_data.debug_sleep_level_override = -1;
memset(&il->power_data.sleep_cmd, 0, sizeof(il->power_data.sleep_cmd));
}
EXPORT_SYMBOL(il_power_initialize);
/* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after
* sending probe req. This should be set long enough to hear probe responses
* from more than one AP. */
#define IL_ACTIVE_DWELL_TIME_24 (30) /* all times in msec */
#define IL_ACTIVE_DWELL_TIME_52 (20)
#define IL_ACTIVE_DWELL_FACTOR_24GHZ (3)
#define IL_ACTIVE_DWELL_FACTOR_52GHZ (2)
/* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel.
* Must be set longer than active dwell time.
* For the most reliable scan, set > AP beacon interval (typically 100msec). */
#define IL_PASSIVE_DWELL_TIME_24 (20) /* all times in msec */
#define IL_PASSIVE_DWELL_TIME_52 (10)
#define IL_PASSIVE_DWELL_BASE (100)
#define IL_CHANNEL_TUNE_TIME 5
static int
il_send_scan_abort(struct il_priv *il)
{
int ret;
struct il_rx_pkt *pkt;
struct il_host_cmd cmd = {
.id = C_SCAN_ABORT,
.flags = CMD_WANT_SKB,
};
/* Exit instantly with error when device is not ready
* to receive scan abort command or it does not perform
* hardware scan currently */
if (!test_bit(S_READY, &il->status) ||
!test_bit(S_GEO_CONFIGURED, &il->status) ||
!test_bit(S_SCAN_HW, &il->status) ||
test_bit(S_FW_ERROR, &il->status) ||
test_bit(S_EXIT_PENDING, &il->status))
return -EIO;
ret = il_send_cmd_sync(il, &cmd);
if (ret)
return ret;
pkt = (struct il_rx_pkt *)cmd.reply_page;
if (pkt->u.status != CAN_ABORT_STATUS) {
/* The scan abort will return 1 for success or
* 2 for "failure". A failure condition can be
* due to simply not being in an active scan which
* can occur if we send the scan abort before we
* the microcode has notified us that a scan is
* completed. */
D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status);
ret = -EIO;
}
il_free_pages(il, cmd.reply_page);
return ret;
}
static void
il_complete_scan(struct il_priv *il, bool aborted)
{
/* check if scan was requested from mac80211 */
if (il->scan_request) {
D_SCAN("Complete scan in mac80211\n");
ieee80211_scan_completed(il->hw, aborted);
}
il->scan_vif = NULL;
il->scan_request = NULL;
}
void
il_force_scan_end(struct il_priv *il)
{
lockdep_assert_held(&il->mutex);
if (!test_bit(S_SCANNING, &il->status)) {
D_SCAN("Forcing scan end while not scanning\n");
return;
}
D_SCAN("Forcing scan end\n");
clear_bit(S_SCANNING, &il->status);
clear_bit(S_SCAN_HW, &il->status);
clear_bit(S_SCAN_ABORTING, &il->status);
il_complete_scan(il, true);
}
static void
il_do_scan_abort(struct il_priv *il)
{
int ret;
lockdep_assert_held(&il->mutex);
if (!test_bit(S_SCANNING, &il->status)) {
D_SCAN("Not performing scan to abort\n");
return;
}
if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) {
D_SCAN("Scan abort in progress\n");
return;
}
ret = il_send_scan_abort(il);
if (ret) {
D_SCAN("Send scan abort failed %d\n", ret);
il_force_scan_end(il);
} else
D_SCAN("Successfully send scan abort\n");
}
/**
* il_scan_cancel - Cancel any currently executing HW scan
*/
int
il_scan_cancel(struct il_priv *il)
{
D_SCAN("Queuing abort scan\n");
queue_work(il->workqueue, &il->abort_scan);
return 0;
}
EXPORT_SYMBOL(il_scan_cancel);
/**
* il_scan_cancel_timeout - Cancel any currently executing HW scan
* @ms: amount of time to wait (in milliseconds) for scan to abort
*
*/
int
il_scan_cancel_timeout(struct il_priv *il, unsigned long ms)
{
unsigned long timeout = jiffies + msecs_to_jiffies(ms);
lockdep_assert_held(&il->mutex);
D_SCAN("Scan cancel timeout\n");
il_do_scan_abort(il);
while (time_before_eq(jiffies, timeout)) {
if (!test_bit(S_SCAN_HW, &il->status))
break;
msleep(20);
}
return test_bit(S_SCAN_HW, &il->status);
}
EXPORT_SYMBOL(il_scan_cancel_timeout);
/* Service response to C_SCAN (0x80) */
static void
il_hdl_scan(struct il_priv *il, struct il_rx_buf *rxb)
{
#ifdef CONFIG_IWLEGACY_DEBUG
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scanreq_notification *notif =
(struct il_scanreq_notification *)pkt->u.raw;
D_SCAN("Scan request status = 0x%x\n", notif->status);
#endif
}
/* Service N_SCAN_START (0x82) */
static void
il_hdl_scan_start(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scanstart_notification *notif =
(struct il_scanstart_notification *)pkt->u.raw;
il->scan_start_tsf = le32_to_cpu(notif->tsf_low);
D_SCAN("Scan start: " "%d [802.11%s] "
"(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel,
notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high),
le32_to_cpu(notif->tsf_low), notif->status, notif->beacon_timer);
}
/* Service N_SCAN_RESULTS (0x83) */
static void
il_hdl_scan_results(struct il_priv *il, struct il_rx_buf *rxb)
{
#ifdef CONFIG_IWLEGACY_DEBUG
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scanresults_notification *notif =
(struct il_scanresults_notification *)pkt->u.raw;
D_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d "
"elapsed=%lu usec\n", notif->channel, notif->band ? "bg" : "a",
le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low),
le32_to_cpu(notif->stats[0]),
le32_to_cpu(notif->tsf_low) - il->scan_start_tsf);
#endif
}
/* Service N_SCAN_COMPLETE (0x84) */
static void
il_hdl_scan_complete(struct il_priv *il, struct il_rx_buf *rxb)
{
#ifdef CONFIG_IWLEGACY_DEBUG
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw;
#endif
D_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n",
scan_notif->scanned_channels, scan_notif->tsf_low,
scan_notif->tsf_high, scan_notif->status);
/* The HW is no longer scanning */
clear_bit(S_SCAN_HW, &il->status);
D_SCAN("Scan on %sGHz took %dms\n",
(il->scan_band == IEEE80211_BAND_2GHZ) ? "2.4" : "5.2",
jiffies_to_msecs(jiffies - il->scan_start));
queue_work(il->workqueue, &il->scan_completed);
}
void
il_setup_rx_scan_handlers(struct il_priv *il)
{
/* scan handlers */
il->handlers[C_SCAN] = il_hdl_scan;
il->handlers[N_SCAN_START] = il_hdl_scan_start;
il->handlers[N_SCAN_RESULTS] = il_hdl_scan_results;
il->handlers[N_SCAN_COMPLETE] = il_hdl_scan_complete;
}
EXPORT_SYMBOL(il_setup_rx_scan_handlers);
u16
il_get_active_dwell_time(struct il_priv *il, enum ieee80211_band band,
u8 n_probes)
{
if (band == IEEE80211_BAND_5GHZ)
return IL_ACTIVE_DWELL_TIME_52 +
IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1);
else
return IL_ACTIVE_DWELL_TIME_24 +
IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1);
}
EXPORT_SYMBOL(il_get_active_dwell_time);
u16
il_get_passive_dwell_time(struct il_priv *il, enum ieee80211_band band,
struct ieee80211_vif *vif)
{
u16 value;
u16 passive =
(band ==
IEEE80211_BAND_2GHZ) ? IL_PASSIVE_DWELL_BASE +
IL_PASSIVE_DWELL_TIME_24 : IL_PASSIVE_DWELL_BASE +
IL_PASSIVE_DWELL_TIME_52;
if (il_is_any_associated(il)) {
/*
* If we're associated, we clamp the maximum passive
* dwell time to be 98% of the smallest beacon interval
* (minus 2 * channel tune time)
*/
value = il->vif ? il->vif->bss_conf.beacon_int : 0;
if (value > IL_PASSIVE_DWELL_BASE || !value)
value = IL_PASSIVE_DWELL_BASE;
value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2;
passive = min(value, passive);
}
return passive;
}
EXPORT_SYMBOL(il_get_passive_dwell_time);
void
il_init_scan_params(struct il_priv *il)
{
u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1;
if (!il->scan_tx_ant[IEEE80211_BAND_5GHZ])
il->scan_tx_ant[IEEE80211_BAND_5GHZ] = ant_idx;
if (!il->scan_tx_ant[IEEE80211_BAND_2GHZ])
il->scan_tx_ant[IEEE80211_BAND_2GHZ] = ant_idx;
}
EXPORT_SYMBOL(il_init_scan_params);
static int
il_scan_initiate(struct il_priv *il, struct ieee80211_vif *vif)
{
int ret;
lockdep_assert_held(&il->mutex);
cancel_delayed_work(&il->scan_check);
if (!il_is_ready_rf(il)) {
IL_WARN("Request scan called when driver not ready.\n");
return -EIO;
}
if (test_bit(S_SCAN_HW, &il->status)) {
D_SCAN("Multiple concurrent scan requests in parallel.\n");
return -EBUSY;
}
if (test_bit(S_SCAN_ABORTING, &il->status)) {
D_SCAN("Scan request while abort pending.\n");
return -EBUSY;
}
D_SCAN("Starting scan...\n");
set_bit(S_SCANNING, &il->status);
il->scan_start = jiffies;
ret = il->ops->request_scan(il, vif);
if (ret) {
clear_bit(S_SCANNING, &il->status);
return ret;
}
queue_delayed_work(il->workqueue, &il->scan_check,
IL_SCAN_CHECK_WATCHDOG);
return 0;
}
int
il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct cfg80211_scan_request *req)
{
struct il_priv *il = hw->priv;
int ret;
if (req->n_channels == 0) {
IL_ERR("Can not scan on no channels.\n");
return -EINVAL;
}
mutex_lock(&il->mutex);
D_MAC80211("enter\n");
if (test_bit(S_SCANNING, &il->status)) {
D_SCAN("Scan already in progress.\n");
ret = -EAGAIN;
goto out_unlock;
}
/* mac80211 will only ask for one band at a time */
il->scan_request = req;
il->scan_vif = vif;
il->scan_band = req->channels[0]->band;
ret = il_scan_initiate(il, vif);
out_unlock:
D_MAC80211("leave ret %d\n", ret);
mutex_unlock(&il->mutex);
return ret;
}
EXPORT_SYMBOL(il_mac_hw_scan);
static void
il_bg_scan_check(struct work_struct *data)
{
struct il_priv *il =
container_of(data, struct il_priv, scan_check.work);
D_SCAN("Scan check work\n");
/* Since we are here firmware does not finish scan and
* most likely is in bad shape, so we don't bother to
* send abort command, just force scan complete to mac80211 */
mutex_lock(&il->mutex);
il_force_scan_end(il);
mutex_unlock(&il->mutex);
}
/**
* il_fill_probe_req - fill in all required fields and IE for probe request
*/
u16
il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame,
const u8 *ta, const u8 *ies, int ie_len, int left)
{
int len = 0;
u8 *pos = NULL;
/* Make sure there is enough space for the probe request,
* two mandatory IEs and the data */
left -= 24;
if (left < 0)
return 0;
frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
eth_broadcast_addr(frame->da);
memcpy(frame->sa, ta, ETH_ALEN);
eth_broadcast_addr(frame->bssid);
frame->seq_ctrl = 0;
len += 24;
/* ...next IE... */
pos = &frame->u.probe_req.variable[0];
/* fill in our indirect SSID IE */
left -= 2;
if (left < 0)
return 0;
*pos++ = WLAN_EID_SSID;
*pos++ = 0;
len += 2;
if (WARN_ON(left < ie_len))
return len;
if (ies && ie_len) {
memcpy(pos, ies, ie_len);
len += ie_len;
}
return (u16) len;
}
EXPORT_SYMBOL(il_fill_probe_req);
static void
il_bg_abort_scan(struct work_struct *work)
{
struct il_priv *il = container_of(work, struct il_priv, abort_scan);
D_SCAN("Abort scan work\n");
/* We keep scan_check work queued in case when firmware will not
* report back scan completed notification */
mutex_lock(&il->mutex);
il_scan_cancel_timeout(il, 200);
mutex_unlock(&il->mutex);
}
static void
il_bg_scan_completed(struct work_struct *work)
{
struct il_priv *il = container_of(work, struct il_priv, scan_completed);
bool aborted;
D_SCAN("Completed scan.\n");
cancel_delayed_work(&il->scan_check);
mutex_lock(&il->mutex);
aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status);
if (aborted)
D_SCAN("Aborted scan completed.\n");
if (!test_and_clear_bit(S_SCANNING, &il->status)) {
D_SCAN("Scan already completed.\n");
goto out_settings;
}
il_complete_scan(il, aborted);
out_settings:
/* Can we still talk to firmware ? */
if (!il_is_ready_rf(il))
goto out;
/*
* We do not commit power settings while scan is pending,
* do it now if the settings changed.
*/
il_power_set_mode(il, &il->power_data.sleep_cmd_next, false);
il_set_tx_power(il, il->tx_power_next, false);
il->ops->post_scan(il);
out:
mutex_unlock(&il->mutex);
}
void
il_setup_scan_deferred_work(struct il_priv *il)
{
INIT_WORK(&il->scan_completed, il_bg_scan_completed);
INIT_WORK(&il->abort_scan, il_bg_abort_scan);
INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check);
}
EXPORT_SYMBOL(il_setup_scan_deferred_work);
void
il_cancel_scan_deferred_work(struct il_priv *il)
{
cancel_work_sync(&il->abort_scan);
cancel_work_sync(&il->scan_completed);
if (cancel_delayed_work_sync(&il->scan_check)) {
mutex_lock(&il->mutex);
il_force_scan_end(il);
mutex_unlock(&il->mutex);
}
}
EXPORT_SYMBOL(il_cancel_scan_deferred_work);
/* il->sta_lock must be held */
static void
il_sta_ucode_activate(struct il_priv *il, u8 sta_id)
{
if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE))
IL_ERR("ACTIVATE a non DRIVER active station id %u addr %pM\n",
sta_id, il->stations[sta_id].sta.sta.addr);
if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) {
D_ASSOC("STA id %u addr %pM already present"
" in uCode (according to driver)\n", sta_id,
il->stations[sta_id].sta.sta.addr);
} else {
il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE;
D_ASSOC("Added STA id %u addr %pM to uCode\n", sta_id,
il->stations[sta_id].sta.sta.addr);
}
}
static int
il_process_add_sta_resp(struct il_priv *il, struct il_addsta_cmd *addsta,
struct il_rx_pkt *pkt, bool sync)
{
u8 sta_id = addsta->sta.sta_id;
unsigned long flags;
int ret = -EIO;
if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
IL_ERR("Bad return from C_ADD_STA (0x%08X)\n", pkt->hdr.flags);
return ret;
}
D_INFO("Processing response for adding station %u\n", sta_id);
spin_lock_irqsave(&il->sta_lock, flags);
switch (pkt->u.add_sta.status) {
case ADD_STA_SUCCESS_MSK:
D_INFO("C_ADD_STA PASSED\n");
il_sta_ucode_activate(il, sta_id);
ret = 0;
break;
case ADD_STA_NO_ROOM_IN_TBL:
IL_ERR("Adding station %d failed, no room in table.\n", sta_id);
break;
case ADD_STA_NO_BLOCK_ACK_RESOURCE:
IL_ERR("Adding station %d failed, no block ack resource.\n",
sta_id);
break;
case ADD_STA_MODIFY_NON_EXIST_STA:
IL_ERR("Attempting to modify non-existing station %d\n",
sta_id);
break;
default:
D_ASSOC("Received C_ADD_STA:(0x%08X)\n", pkt->u.add_sta.status);
break;
}
D_INFO("%s station id %u addr %pM\n",
il->stations[sta_id].sta.mode ==
STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", sta_id,
il->stations[sta_id].sta.sta.addr);
/*
* XXX: The MAC address in the command buffer is often changed from
* the original sent to the device. That is, the MAC address
* written to the command buffer often is not the same MAC address
* read from the command buffer when the command returns. This
* issue has not yet been resolved and this debugging is left to
* observe the problem.
*/
D_INFO("%s station according to cmd buffer %pM\n",
il->stations[sta_id].sta.mode ==
STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", addsta->sta.addr);
spin_unlock_irqrestore(&il->sta_lock, flags);
return ret;
}
static void
il_add_sta_callback(struct il_priv *il, struct il_device_cmd *cmd,
struct il_rx_pkt *pkt)
{
struct il_addsta_cmd *addsta = (struct il_addsta_cmd *)cmd->cmd.payload;
il_process_add_sta_resp(il, addsta, pkt, false);
}
int
il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags)
{
struct il_rx_pkt *pkt = NULL;
int ret = 0;
u8 data[sizeof(*sta)];
struct il_host_cmd cmd = {
.id = C_ADD_STA,
.flags = flags,
.data = data,
};
u8 sta_id __maybe_unused = sta->sta.sta_id;
D_INFO("Adding sta %u (%pM) %ssynchronously\n", sta_id, sta->sta.addr,
flags & CMD_ASYNC ? "a" : "");
if (flags & CMD_ASYNC)
cmd.callback = il_add_sta_callback;
else {
cmd.flags |= CMD_WANT_SKB;
might_sleep();
}
cmd.len = il->ops->build_addsta_hcmd(sta, data);
ret = il_send_cmd(il, &cmd);
if (ret || (flags & CMD_ASYNC))
return ret;
if (ret == 0) {
pkt = (struct il_rx_pkt *)cmd.reply_page;
ret = il_process_add_sta_resp(il, sta, pkt, true);
}
il_free_pages(il, cmd.reply_page);
return ret;
}
EXPORT_SYMBOL(il_send_add_sta);
static void
il_set_ht_add_station(struct il_priv *il, u8 idx, struct ieee80211_sta *sta)
{
struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->ht_cap;
__le32 sta_flags;
if (!sta || !sta_ht_inf->ht_supported)
goto done;
D_ASSOC("spatial multiplexing power save mode: %s\n",
(sta->smps_mode == IEEE80211_SMPS_STATIC) ? "static" :
(sta->smps_mode == IEEE80211_SMPS_DYNAMIC) ? "dynamic" :
"disabled");
sta_flags = il->stations[idx].sta.station_flags;
sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK);
switch (sta->smps_mode) {
case IEEE80211_SMPS_STATIC:
sta_flags |= STA_FLG_MIMO_DIS_MSK;
break;
case IEEE80211_SMPS_DYNAMIC:
sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK;
break;
case IEEE80211_SMPS_OFF:
break;
default:
IL_WARN("Invalid MIMO PS mode %d\n", sta->smps_mode);
break;
}
sta_flags |=
cpu_to_le32((u32) sta_ht_inf->
ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS);
sta_flags |=
cpu_to_le32((u32) sta_ht_inf->
ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS);
if (il_is_ht40_tx_allowed(il, &sta->ht_cap))
sta_flags |= STA_FLG_HT40_EN_MSK;
else
sta_flags &= ~STA_FLG_HT40_EN_MSK;
il->stations[idx].sta.station_flags = sta_flags;
done:
return;
}
/**
* il_prep_station - Prepare station information for addition
*
* should be called with sta_lock held
*/
u8
il_prep_station(struct il_priv *il, const u8 *addr, bool is_ap,
struct ieee80211_sta *sta)
{
struct il_station_entry *station;
int i;
u8 sta_id = IL_INVALID_STATION;
u16 rate;
if (is_ap)
sta_id = IL_AP_ID;
else if (is_broadcast_ether_addr(addr))
sta_id = il->hw_params.bcast_id;
else
for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) {
if (ether_addr_equal(il->stations[i].sta.sta.addr,
addr)) {
sta_id = i;
break;
}
if (!il->stations[i].used &&
sta_id == IL_INVALID_STATION)
sta_id = i;
}
/*
* These two conditions have the same outcome, but keep them
* separate
*/
if (unlikely(sta_id == IL_INVALID_STATION))
return sta_id;
/*
* uCode is not able to deal with multiple requests to add a
* station. Keep track if one is in progress so that we do not send
* another.
*/
if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
D_INFO("STA %d already in process of being added.\n", sta_id);
return sta_id;
}
if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) &&
ether_addr_equal(il->stations[sta_id].sta.sta.addr, addr)) {
D_ASSOC("STA %d (%pM) already added, not adding again.\n",
sta_id, addr);
return sta_id;
}
station = &il->stations[sta_id];
station->used = IL_STA_DRIVER_ACTIVE;
D_ASSOC("Add STA to driver ID %d: %pM\n", sta_id, addr);
il->num_stations++;
/* Set up the C_ADD_STA command to send to device */
memset(&station->sta, 0, sizeof(struct il_addsta_cmd));
memcpy(station->sta.sta.addr, addr, ETH_ALEN);
station->sta.mode = 0;
station->sta.sta.sta_id = sta_id;
station->sta.station_flags = 0;
/*
* OK to call unconditionally, since local stations (IBSS BSSID
* STA and broadcast STA) pass in a NULL sta, and mac80211
* doesn't allow HT IBSS.
*/
il_set_ht_add_station(il, sta_id, sta);
/* 3945 only */
rate = (il->band == IEEE80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP;
/* Turn on both antennas for the station... */
station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK);
return sta_id;
}
EXPORT_SYMBOL_GPL(il_prep_station);
#define STA_WAIT_TIMEOUT (HZ/2)
/**
* il_add_station_common -
*/
int
il_add_station_common(struct il_priv *il, const u8 *addr, bool is_ap,
struct ieee80211_sta *sta, u8 *sta_id_r)
{
unsigned long flags_spin;
int ret = 0;
u8 sta_id;
struct il_addsta_cmd sta_cmd;
*sta_id_r = 0;
spin_lock_irqsave(&il->sta_lock, flags_spin);
sta_id = il_prep_station(il, addr, is_ap, sta);
if (sta_id == IL_INVALID_STATION) {
IL_ERR("Unable to prepare station %pM for addition\n", addr);
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EINVAL;
}
/*
* uCode is not able to deal with multiple requests to add a
* station. Keep track if one is in progress so that we do not send
* another.
*/
if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
D_INFO("STA %d already in process of being added.\n", sta_id);
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EEXIST;
}
if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
D_ASSOC("STA %d (%pM) already added, not adding again.\n",
sta_id, addr);
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EEXIST;
}
il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS;
memcpy(&sta_cmd, &il->stations[sta_id].sta,
sizeof(struct il_addsta_cmd));
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
/* Add station to device's station table */
ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
if (ret) {
spin_lock_irqsave(&il->sta_lock, flags_spin);
IL_ERR("Adding station %pM failed.\n",
il->stations[sta_id].sta.sta.addr);
il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
}
*sta_id_r = sta_id;
return ret;
}
EXPORT_SYMBOL(il_add_station_common);
/**
* il_sta_ucode_deactivate - deactivate ucode status for a station
*
* il->sta_lock must be held
*/
static void
il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id)
{
/* Ucode must be active and driver must be non active */
if ((il->stations[sta_id].
used & (IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) !=
IL_STA_UCODE_ACTIVE)
IL_ERR("removed non active STA %u\n", sta_id);
il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE;
memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry));
D_ASSOC("Removed STA %u\n", sta_id);
}
static int
il_send_remove_station(struct il_priv *il, const u8 * addr, int sta_id,
bool temporary)
{
struct il_rx_pkt *pkt;
int ret;
unsigned long flags_spin;
struct il_rem_sta_cmd rm_sta_cmd;
struct il_host_cmd cmd = {
.id = C_REM_STA,
.len = sizeof(struct il_rem_sta_cmd),
.flags = CMD_SYNC,
.data = &rm_sta_cmd,
};
memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
rm_sta_cmd.num_sta = 1;
memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN);
cmd.flags |= CMD_WANT_SKB;
ret = il_send_cmd(il, &cmd);
if (ret)
return ret;
pkt = (struct il_rx_pkt *)cmd.reply_page;
if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
IL_ERR("Bad return from C_REM_STA (0x%08X)\n", pkt->hdr.flags);
ret = -EIO;
}
if (!ret) {
switch (pkt->u.rem_sta.status) {
case REM_STA_SUCCESS_MSK:
if (!temporary) {
spin_lock_irqsave(&il->sta_lock, flags_spin);
il_sta_ucode_deactivate(il, sta_id);
spin_unlock_irqrestore(&il->sta_lock,
flags_spin);
}
D_ASSOC("C_REM_STA PASSED\n");
break;
default:
ret = -EIO;
IL_ERR("C_REM_STA failed\n");
break;
}
}
il_free_pages(il, cmd.reply_page);
return ret;
}
/**
* il_remove_station - Remove driver's knowledge of station.
*/
int
il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr)
{
unsigned long flags;
if (!il_is_ready(il)) {
D_INFO("Unable to remove station %pM, device not ready.\n",
addr);
/*
* It is typical for stations to be removed when we are
* going down. Return success since device will be down
* soon anyway
*/
return 0;
}
D_ASSOC("Removing STA from driver:%d %pM\n", sta_id, addr);
if (WARN_ON(sta_id == IL_INVALID_STATION))
return -EINVAL;
spin_lock_irqsave(&il->sta_lock, flags);
if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) {
D_INFO("Removing %pM but non DRIVER active\n", addr);
goto out_err;
}
if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
D_INFO("Removing %pM but non UCODE active\n", addr);
goto out_err;
}
if (il->stations[sta_id].used & IL_STA_LOCAL) {
kfree(il->stations[sta_id].lq);
il->stations[sta_id].lq = NULL;
}
il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
il->num_stations--;
BUG_ON(il->num_stations < 0);
spin_unlock_irqrestore(&il->sta_lock, flags);
return il_send_remove_station(il, addr, sta_id, false);
out_err:
spin_unlock_irqrestore(&il->sta_lock, flags);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(il_remove_station);
/**
* il_clear_ucode_stations - clear ucode station table bits
*
* This function clears all the bits in the driver indicating
* which stations are active in the ucode. Call when something
* other than explicit station management would cause this in
* the ucode, e.g. unassociated RXON.
*/
void
il_clear_ucode_stations(struct il_priv *il)
{
int i;
unsigned long flags_spin;
bool cleared = false;
D_INFO("Clearing ucode stations in driver\n");
spin_lock_irqsave(&il->sta_lock, flags_spin);
for (i = 0; i < il->hw_params.max_stations; i++) {
if (il->stations[i].used & IL_STA_UCODE_ACTIVE) {
D_INFO("Clearing ucode active for station %d\n", i);
il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
cleared = true;
}
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
if (!cleared)
D_INFO("No active stations found to be cleared\n");
}
EXPORT_SYMBOL(il_clear_ucode_stations);
/**
* il_restore_stations() - Restore driver known stations to device
*
* All stations considered active by driver, but not present in ucode, is
* restored.
*
* Function sleeps.
*/
void
il_restore_stations(struct il_priv *il)
{
struct il_addsta_cmd sta_cmd;
struct il_link_quality_cmd lq;
unsigned long flags_spin;
int i;
bool found = false;
int ret;
bool send_lq;
if (!il_is_ready(il)) {
D_INFO("Not ready yet, not restoring any stations.\n");
return;
}
D_ASSOC("Restoring all known stations ... start.\n");
spin_lock_irqsave(&il->sta_lock, flags_spin);
for (i = 0; i < il->hw_params.max_stations; i++) {
if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) &&
!(il->stations[i].used & IL_STA_UCODE_ACTIVE)) {
D_ASSOC("Restoring sta %pM\n",
il->stations[i].sta.sta.addr);
il->stations[i].sta.mode = 0;
il->stations[i].used |= IL_STA_UCODE_INPROGRESS;
found = true;
}
}
for (i = 0; i < il->hw_params.max_stations; i++) {
if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) {
memcpy(&sta_cmd, &il->stations[i].sta,
sizeof(struct il_addsta_cmd));
send_lq = false;
if (il->stations[i].lq) {
memcpy(&lq, il->stations[i].lq,
sizeof(struct il_link_quality_cmd));
send_lq = true;
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
if (ret) {
spin_lock_irqsave(&il->sta_lock, flags_spin);
IL_ERR("Adding station %pM failed.\n",
il->stations[i].sta.sta.addr);
il->stations[i].used &= ~IL_STA_DRIVER_ACTIVE;
il->stations[i].used &=
~IL_STA_UCODE_INPROGRESS;
spin_unlock_irqrestore(&il->sta_lock,
flags_spin);
}
/*
* Rate scaling has already been initialized, send
* current LQ command
*/
if (send_lq)
il_send_lq_cmd(il, &lq, CMD_SYNC, true);
spin_lock_irqsave(&il->sta_lock, flags_spin);
il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS;
}
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
if (!found)
D_INFO("Restoring all known stations"
" .... no stations to be restored.\n");
else
D_INFO("Restoring all known stations" " .... complete.\n");
}
EXPORT_SYMBOL(il_restore_stations);
int
il_get_free_ucode_key_idx(struct il_priv *il)
{
int i;
for (i = 0; i < il->sta_key_max_num; i++)
if (!test_and_set_bit(i, &il->ucode_key_table))
return i;
return WEP_INVALID_OFFSET;
}
EXPORT_SYMBOL(il_get_free_ucode_key_idx);
void
il_dealloc_bcast_stations(struct il_priv *il)
{
unsigned long flags;
int i;
spin_lock_irqsave(&il->sta_lock, flags);
for (i = 0; i < il->hw_params.max_stations; i++) {
if (!(il->stations[i].used & IL_STA_BCAST))
continue;
il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
il->num_stations--;
BUG_ON(il->num_stations < 0);
kfree(il->stations[i].lq);
il->stations[i].lq = NULL;
}
spin_unlock_irqrestore(&il->sta_lock, flags);
}
EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations);
#ifdef CONFIG_IWLEGACY_DEBUG
static void
il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
{
int i;
D_RATE("lq station id 0x%x\n", lq->sta_id);
D_RATE("lq ant 0x%X 0x%X\n", lq->general_params.single_stream_ant_msk,
lq->general_params.dual_stream_ant_msk);
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++)
D_RATE("lq idx %d 0x%X\n", i, lq->rs_table[i].rate_n_flags);
}
#else
static inline void
il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
{
}
#endif
/**
* il_is_lq_table_valid() - Test one aspect of LQ cmd for validity
*
* It sometimes happens when a HT rate has been in use and we
* loose connectivity with AP then mac80211 will first tell us that the
* current channel is not HT anymore before removing the station. In such a
* scenario the RXON flags will be updated to indicate we are not
* communicating HT anymore, but the LQ command may still contain HT rates.
* Test for this to prevent driver from sending LQ command between the time
* RXON flags are updated and when LQ command is updated.
*/
static bool
il_is_lq_table_valid(struct il_priv *il, struct il_link_quality_cmd *lq)
{
int i;
if (il->ht.enabled)
return true;
D_INFO("Channel %u is not an HT channel\n", il->active.channel);
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
if (le32_to_cpu(lq->rs_table[i].rate_n_flags) & RATE_MCS_HT_MSK) {
D_INFO("idx %d of LQ expects HT channel\n", i);
return false;
}
}
return true;
}
/**
* il_send_lq_cmd() - Send link quality command
* @init: This command is sent as part of station initialization right
* after station has been added.
*
* The link quality command is sent as the last step of station creation.
* This is the special case in which init is set and we call a callback in
* this case to clear the state indicating that station creation is in
* progress.
*/
int
il_send_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq,
u8 flags, bool init)
{
int ret = 0;
unsigned long flags_spin;
struct il_host_cmd cmd = {
.id = C_TX_LINK_QUALITY_CMD,
.len = sizeof(struct il_link_quality_cmd),
.flags = flags,
.data = lq,
};
if (WARN_ON(lq->sta_id == IL_INVALID_STATION))
return -EINVAL;
spin_lock_irqsave(&il->sta_lock, flags_spin);
if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) {
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EINVAL;
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
il_dump_lq_cmd(il, lq);
BUG_ON(init && (cmd.flags & CMD_ASYNC));
if (il_is_lq_table_valid(il, lq))
ret = il_send_cmd(il, &cmd);
else
ret = -EINVAL;
if (cmd.flags & CMD_ASYNC)
return ret;
if (init) {
D_INFO("init LQ command complete,"
" clearing sta addition status for sta %d\n",
lq->sta_id);
spin_lock_irqsave(&il->sta_lock, flags_spin);
il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
}
return ret;
}
EXPORT_SYMBOL(il_send_lq_cmd);
int
il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct il_priv *il = hw->priv;
struct il_station_priv_common *sta_common = (void *)sta->drv_priv;
int ret;
mutex_lock(&il->mutex);
D_MAC80211("enter station %pM\n", sta->addr);
ret = il_remove_station(il, sta_common->sta_id, sta->addr);
if (ret)
IL_ERR("Error removing station %pM\n", sta->addr);
D_MAC80211("leave ret %d\n", ret);
mutex_unlock(&il->mutex);
return ret;
}
EXPORT_SYMBOL(il_mac_sta_remove);
/************************** RX-FUNCTIONS ****************************/
/*
* Rx theory of operation
*
* Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
* each of which point to Receive Buffers to be filled by the NIC. These get
* used not only for Rx frames, but for any command response or notification
* from the NIC. The driver and NIC manage the Rx buffers by means
* of idxes into the circular buffer.
*
* Rx Queue Indexes
* The host/firmware share two idx registers for managing the Rx buffers.
*
* The READ idx maps to the first position that the firmware may be writing
* to -- the driver can read up to (but not including) this position and get
* good data.
* The READ idx is managed by the firmware once the card is enabled.
*
* The WRITE idx maps to the last position the driver has read from -- the
* position preceding WRITE is the last slot the firmware can place a packet.
*
* The queue is empty (no good data) if WRITE = READ - 1, and is full if
* WRITE = READ.
*
* During initialization, the host sets up the READ queue position to the first
* IDX position, and WRITE to the last (READ - 1 wrapped)
*
* When the firmware places a packet in a buffer, it will advance the READ idx
* and fire the RX interrupt. The driver can then query the READ idx and
* process as many packets as possible, moving the WRITE idx forward as it
* resets the Rx queue buffers with new memory.
*
* The management in the driver is as follows:
* + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
* iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
* to replenish the iwl->rxq->rx_free.
* + In il_rx_replenish (scheduled) if 'processed' != 'read' then the
* iwl->rxq is replenished and the READ IDX is updated (updating the
* 'processed' and 'read' driver idxes as well)
* + A received packet is processed and handed to the kernel network stack,
* detached from the iwl->rxq. The driver 'processed' idx is updated.
* + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
* list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
* IDX is not incremented and iwl->status(RX_STALLED) is set. If there
* were enough free buffers and RX_STALLED is set it is cleared.
*
*
* Driver sequence:
*
* il_rx_queue_alloc() Allocates rx_free
* il_rx_replenish() Replenishes rx_free list from rx_used, and calls
* il_rx_queue_restock
* il_rx_queue_restock() Moves available buffers from rx_free into Rx
* queue, updates firmware pointers, and updates
* the WRITE idx. If insufficient rx_free buffers
* are available, schedules il_rx_replenish
*
* -- enable interrupts --
* ISR - il_rx() Detach il_rx_bufs from pool up to the
* READ IDX, detaching the SKB from the pool.
* Moves the packet buffer from queue to rx_used.
* Calls il_rx_queue_restock to refill any empty
* slots.
* ...
*
*/
/**
* il_rx_queue_space - Return number of free slots available in queue.
*/
int
il_rx_queue_space(const struct il_rx_queue *q)
{
int s = q->read - q->write;
if (s <= 0)
s += RX_QUEUE_SIZE;
/* keep some buffer to not confuse full and empty queue */
s -= 2;
if (s < 0)
s = 0;
return s;
}
EXPORT_SYMBOL(il_rx_queue_space);
/**
* il_rx_queue_update_write_ptr - Update the write pointer for the RX queue
*/
void
il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q)
{
unsigned long flags;
u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg;
u32 reg;
spin_lock_irqsave(&q->lock, flags);
if (q->need_update == 0)
goto exit_unlock;
/* If power-saving is in use, make sure device is awake */
if (test_bit(S_POWER_PMI, &il->status)) {
reg = _il_rd(il, CSR_UCODE_DRV_GP1);
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
D_INFO("Rx queue requesting wakeup," " GP1 = 0x%x\n",
reg);
il_set_bit(il, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
goto exit_unlock;
}
q->write_actual = (q->write & ~0x7);
il_wr(il, rx_wrt_ptr_reg, q->write_actual);
/* Else device is assumed to be awake */
} else {
/* Device expects a multiple of 8 */
q->write_actual = (q->write & ~0x7);
il_wr(il, rx_wrt_ptr_reg, q->write_actual);
}
q->need_update = 0;
exit_unlock:
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(il_rx_queue_update_write_ptr);
int
il_rx_queue_alloc(struct il_priv *il)
{
struct il_rx_queue *rxq = &il->rxq;
struct device *dev = &il->pci_dev->dev;
int i;
spin_lock_init(&rxq->lock);
INIT_LIST_HEAD(&rxq->rx_free);
INIT_LIST_HEAD(&rxq->rx_used);
/* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
rxq->bd = dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma,
GFP_KERNEL);
if (!rxq->bd)
goto err_bd;
rxq->rb_stts = dma_alloc_coherent(dev, sizeof(struct il_rb_status),
&rxq->rb_stts_dma, GFP_KERNEL);
if (!rxq->rb_stts)
goto err_rb;
/* Fill the rx_used queue with _all_ of the Rx buffers */
for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
/* Set us so that we have processed and used all buffers, but have
* not restocked the Rx queue with fresh buffers */
rxq->read = rxq->write = 0;
rxq->write_actual = 0;
rxq->free_count = 0;
rxq->need_update = 0;
return 0;
err_rb:
dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
rxq->bd_dma);
err_bd:
return -ENOMEM;
}
EXPORT_SYMBOL(il_rx_queue_alloc);
void
il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_spectrum_notification *report = &(pkt->u.spectrum_notif);
if (!report->state) {
D_11H("Spectrum Measure Notification: Start\n");
return;
}
memcpy(&il->measure_report, report, sizeof(*report));
il->measurement_status |= MEASUREMENT_READY;
}
EXPORT_SYMBOL(il_hdl_spectrum_measurement);
/*
* returns non-zero if packet should be dropped
*/
int
il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr,
u32 decrypt_res, struct ieee80211_rx_status *stats)
{
u16 fc = le16_to_cpu(hdr->frame_control);
/*
* All contexts have the same setting here due to it being
* a module parameter, so OK to check any context.
*/
if (il->active.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK)
return 0;
if (!(fc & IEEE80211_FCTL_PROTECTED))
return 0;
D_RX("decrypt_res:0x%x\n", decrypt_res);
switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
case RX_RES_STATUS_SEC_TYPE_TKIP:
/* The uCode has got a bad phase 1 Key, pushes the packet.
* Decryption will be done in SW. */
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_BAD_KEY_TTAK)
break;
case RX_RES_STATUS_SEC_TYPE_WEP:
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_BAD_ICV_MIC) {
/* bad ICV, the packet is destroyed since the
* decryption is inplace, drop it */
D_RX("Packet destroyed\n");
return -1;
}
case RX_RES_STATUS_SEC_TYPE_CCMP:
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_DECRYPT_OK) {
D_RX("hw decrypt successfully!!!\n");
stats->flag |= RX_FLAG_DECRYPTED;
}
break;
default:
break;
}
return 0;
}
EXPORT_SYMBOL(il_set_decrypted_flag);
/**
* il_txq_update_write_ptr - Send new write idx to hardware
*/
void
il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq)
{
u32 reg = 0;
int txq_id = txq->q.id;
if (txq->need_update == 0)
return;
/* if we're trying to save power */
if (test_bit(S_POWER_PMI, &il->status)) {
/* wake up nic if it's powered down ...
* uCode will wake up, and interrupt us again, so next
* time we'll skip this part. */
reg = _il_rd(il, CSR_UCODE_DRV_GP1);
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
D_INFO("Tx queue %d requesting wakeup," " GP1 = 0x%x\n",
txq_id, reg);
il_set_bit(il, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
return;
}
il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
/*
* else not in power-save mode,
* uCode will never sleep when we're
* trying to tx (during RFKILL, we're not trying to tx).
*/
} else
_il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
txq->need_update = 0;
}
EXPORT_SYMBOL(il_txq_update_write_ptr);
/**
* il_tx_queue_unmap - Unmap any remaining DMA mappings and free skb's
*/
void
il_tx_queue_unmap(struct il_priv *il, int txq_id)
{
struct il_tx_queue *txq = &il->txq[txq_id];
struct il_queue *q = &txq->q;
if (q->n_bd == 0)
return;
while (q->write_ptr != q->read_ptr) {
il->ops->txq_free_tfd(il, txq);
q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
}
}
EXPORT_SYMBOL(il_tx_queue_unmap);
/**
* il_tx_queue_free - Deallocate DMA queue.
* @txq: Transmit queue to deallocate.
*
* Empty queue by removing and destroying all BD's.
* Free all buffers.
* 0-fill, but do not free "txq" descriptor structure.
*/
void
il_tx_queue_free(struct il_priv *il, int txq_id)
{
struct il_tx_queue *txq = &il->txq[txq_id];
struct device *dev = &il->pci_dev->dev;
int i;
il_tx_queue_unmap(il, txq_id);
/* De-alloc array of command/tx buffers */
for (i = 0; i < TFD_TX_CMD_SLOTS; i++)
kfree(txq->cmd[i]);
/* De-alloc circular buffer of TFDs */
if (txq->q.n_bd)
dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
txq->tfds, txq->q.dma_addr);
/* De-alloc array of per-TFD driver data */
kfree(txq->skbs);
txq->skbs = NULL;
/* deallocate arrays */
kfree(txq->cmd);
kfree(txq->meta);
txq->cmd = NULL;
txq->meta = NULL;
/* 0-fill queue descriptor structure */
memset(txq, 0, sizeof(*txq));
}
EXPORT_SYMBOL(il_tx_queue_free);
/**
* il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue
*/
void
il_cmd_queue_unmap(struct il_priv *il)
{
struct il_tx_queue *txq = &il->txq[il->cmd_queue];
struct il_queue *q = &txq->q;
int i;
if (q->n_bd == 0)
return;
while (q->read_ptr != q->write_ptr) {
i = il_get_cmd_idx(q, q->read_ptr, 0);
if (txq->meta[i].flags & CMD_MAPPED) {
pci_unmap_single(il->pci_dev,
dma_unmap_addr(&txq->meta[i], mapping),
dma_unmap_len(&txq->meta[i], len),
PCI_DMA_BIDIRECTIONAL);
txq->meta[i].flags = 0;
}
q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
}
i = q->n_win;
if (txq->meta[i].flags & CMD_MAPPED) {
pci_unmap_single(il->pci_dev,
dma_unmap_addr(&txq->meta[i], mapping),
dma_unmap_len(&txq->meta[i], len),
PCI_DMA_BIDIRECTIONAL);
txq->meta[i].flags = 0;
}
}
EXPORT_SYMBOL(il_cmd_queue_unmap);
/**
* il_cmd_queue_free - Deallocate DMA queue.
* @txq: Transmit queue to deallocate.
*
* Empty queue by removing and destroying all BD's.
* Free all buffers.
* 0-fill, but do not free "txq" descriptor structure.
*/
void
il_cmd_queue_free(struct il_priv *il)
{
struct il_tx_queue *txq = &il->txq[il->cmd_queue];
struct device *dev = &il->pci_dev->dev;
int i;
il_cmd_queue_unmap(il);
/* De-alloc array of command/tx buffers */
for (i = 0; i <= TFD_CMD_SLOTS; i++)
kfree(txq->cmd[i]);
/* De-alloc circular buffer of TFDs */
if (txq->q.n_bd)
dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
txq->tfds, txq->q.dma_addr);
/* deallocate arrays */
kfree(txq->cmd);
kfree(txq->meta);
txq->cmd = NULL;
txq->meta = NULL;
/* 0-fill queue descriptor structure */
memset(txq, 0, sizeof(*txq));
}
EXPORT_SYMBOL(il_cmd_queue_free);
/*************** DMA-QUEUE-GENERAL-FUNCTIONS *****
* DMA services
*
* Theory of operation
*
* A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer
* of buffer descriptors, each of which points to one or more data buffers for
* the device to read from or fill. Driver and device exchange status of each
* queue via "read" and "write" pointers. Driver keeps minimum of 2 empty
* entries in each circular buffer, to protect against confusing empty and full
* queue states.
*
* The device reads or writes the data in the queues via the device's several
* DMA/FIFO channels. Each queue is mapped to a single DMA channel.
*
* For Tx queue, there are low mark and high mark limits. If, after queuing
* the packet for Tx, free space become < low mark, Tx queue stopped. When
* reclaiming packets (on 'tx done IRQ), if free space become > high mark,
* Tx queue resumed.
*
* See more detailed info in 4965.h.
***************************************************/
int
il_queue_space(const struct il_queue *q)
{
int s = q->read_ptr - q->write_ptr;
if (q->read_ptr > q->write_ptr)
s -= q->n_bd;
if (s <= 0)
s += q->n_win;
/* keep some reserve to not confuse empty and full situations */
s -= 2;
if (s < 0)
s = 0;
return s;
}
EXPORT_SYMBOL(il_queue_space);
/**
* il_queue_init - Initialize queue's high/low-water and read/write idxes
*/
static int
il_queue_init(struct il_priv *il, struct il_queue *q, int slots, u32 id)
{
/*
* TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise
* il_queue_inc_wrap and il_queue_dec_wrap are broken.
*/
BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1));
/* FIXME: remove q->n_bd */
q->n_bd = TFD_QUEUE_SIZE_MAX;
q->n_win = slots;
q->id = id;
/* slots_must be power-of-two size, otherwise
* il_get_cmd_idx is broken. */
BUG_ON(!is_power_of_2(slots));
q->low_mark = q->n_win / 4;
if (q->low_mark < 4)
q->low_mark = 4;
q->high_mark = q->n_win / 8;
if (q->high_mark < 2)
q->high_mark = 2;
q->write_ptr = q->read_ptr = 0;
return 0;
}
/**
* il_tx_queue_alloc - Alloc driver data and TFD CB for one Tx/cmd queue
*/
static int
il_tx_queue_alloc(struct il_priv *il, struct il_tx_queue *txq, u32 id)
{
struct device *dev = &il->pci_dev->dev;
size_t tfd_sz = il->hw_params.tfd_size * TFD_QUEUE_SIZE_MAX;
/* Driver ilate data, only for Tx (not command) queues,
* not shared with device. */
if (id != il->cmd_queue) {
txq->skbs = kcalloc(TFD_QUEUE_SIZE_MAX, sizeof(struct skb *),
GFP_KERNEL);
if (!txq->skbs) {
IL_ERR("Fail to alloc skbs\n");
goto error;
}
} else
txq->skbs = NULL;
/* Circular buffer of transmit frame descriptors (TFDs),
* shared with device */
txq->tfds =
dma_alloc_coherent(dev, tfd_sz, &txq->q.dma_addr, GFP_KERNEL);
if (!txq->tfds)
goto error;
txq->q.id = id;
return 0;
error:
kfree(txq->skbs);
txq->skbs = NULL;
return -ENOMEM;
}
/**
* il_tx_queue_init - Allocate and initialize one tx/cmd queue
*/
int
il_tx_queue_init(struct il_priv *il, u32 txq_id)
{
int i, len, ret;
int slots, actual_slots;
struct il_tx_queue *txq = &il->txq[txq_id];
/*
* Alloc buffer array for commands (Tx or other types of commands).
* For the command queue (#4/#9), allocate command space + one big
* command for scan, since scan command is very huge; the system will
* not have two scans at the same time, so only one is needed.
* For normal Tx queues (all other queues), no super-size command
* space is needed.
*/
if (txq_id == il->cmd_queue) {
slots = TFD_CMD_SLOTS;
actual_slots = slots + 1;
} else {
slots = TFD_TX_CMD_SLOTS;
actual_slots = slots;
}
txq->meta =
kzalloc(sizeof(struct il_cmd_meta) * actual_slots, GFP_KERNEL);
txq->cmd =
kzalloc(sizeof(struct il_device_cmd *) * actual_slots, GFP_KERNEL);
if (!txq->meta || !txq->cmd)
goto out_free_arrays;
len = sizeof(struct il_device_cmd);
for (i = 0; i < actual_slots; i++) {
/* only happens for cmd queue */
if (i == slots)
len = IL_MAX_CMD_SIZE;
txq->cmd[i] = kmalloc(len, GFP_KERNEL);
if (!txq->cmd[i])
goto err;
}
/* Alloc driver data array and TFD circular buffer */
ret = il_tx_queue_alloc(il, txq, txq_id);
if (ret)
goto err;
txq->need_update = 0;
/*
* For the default queues 0-3, set up the swq_id
* already -- all others need to get one later
* (if they need one at all).
*/
if (txq_id < 4)
il_set_swq_id(txq, txq_id, txq_id);
/* Initialize queue's high/low-water marks, and head/tail idxes */
il_queue_init(il, &txq->q, slots, txq_id);
/* Tell device where to find queue */
il->ops->txq_init(il, txq);
return 0;
err:
for (i = 0; i < actual_slots; i++)
kfree(txq->cmd[i]);
out_free_arrays:
kfree(txq->meta);
kfree(txq->cmd);
return -ENOMEM;
}
EXPORT_SYMBOL(il_tx_queue_init);
void
il_tx_queue_reset(struct il_priv *il, u32 txq_id)
{
int slots, actual_slots;
struct il_tx_queue *txq = &il->txq[txq_id];
if (txq_id == il->cmd_queue) {
slots = TFD_CMD_SLOTS;
actual_slots = TFD_CMD_SLOTS + 1;
} else {
slots = TFD_TX_CMD_SLOTS;
actual_slots = TFD_TX_CMD_SLOTS;
}
memset(txq->meta, 0, sizeof(struct il_cmd_meta) * actual_slots);
txq->need_update = 0;
/* Initialize queue's high/low-water marks, and head/tail idxes */
il_queue_init(il, &txq->q, slots, txq_id);
/* Tell device where to find queue */
il->ops->txq_init(il, txq);
}
EXPORT_SYMBOL(il_tx_queue_reset);
/*************** HOST COMMAND QUEUE FUNCTIONS *****/
/**
* il_enqueue_hcmd - enqueue a uCode command
* @il: device ilate data point
* @cmd: a point to the ucode command structure
*
* The function returns < 0 values to indicate the operation is
* failed. On success, it turns the idx (> 0) of command in the
* command queue.
*/
int
il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
{
struct il_tx_queue *txq = &il->txq[il->cmd_queue];
struct il_queue *q = &txq->q;
struct il_device_cmd *out_cmd;
struct il_cmd_meta *out_meta;
dma_addr_t phys_addr;
unsigned long flags;
int len;
u32 idx;
u16 fix_size;
cmd->len = il->ops->get_hcmd_size(cmd->id, cmd->len);
fix_size = (u16) (cmd->len + sizeof(out_cmd->hdr));
/* If any of the command structures end up being larger than
* the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then
* we will need to increase the size of the TFD entries
* Also, check to see if command buffer should not exceed the size
* of device_cmd and max_cmd_size. */
BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) &&
!(cmd->flags & CMD_SIZE_HUGE));
BUG_ON(fix_size > IL_MAX_CMD_SIZE);
if (il_is_rfkill(il) || il_is_ctkill(il)) {
IL_WARN("Not sending command - %s KILL\n",
il_is_rfkill(il) ? "RF" : "CT");
return -EIO;
}
spin_lock_irqsave(&il->hcmd_lock, flags);
if (il_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
spin_unlock_irqrestore(&il->hcmd_lock, flags);
IL_ERR("Restarting adapter due to command queue full\n");
queue_work(il->workqueue, &il->restart);
return -ENOSPC;
}
idx = il_get_cmd_idx(q, q->write_ptr, cmd->flags & CMD_SIZE_HUGE);
out_cmd = txq->cmd[idx];
out_meta = &txq->meta[idx];
if (WARN_ON(out_meta->flags & CMD_MAPPED)) {
spin_unlock_irqrestore(&il->hcmd_lock, flags);
return -ENOSPC;
}
memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */
out_meta->flags = cmd->flags | CMD_MAPPED;
if (cmd->flags & CMD_WANT_SKB)
out_meta->source = cmd;
if (cmd->flags & CMD_ASYNC)
out_meta->callback = cmd->callback;
out_cmd->hdr.cmd = cmd->id;
memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len);
/* At this point, the out_cmd now has all of the incoming cmd
* information */
out_cmd->hdr.flags = 0;
out_cmd->hdr.sequence =
cpu_to_le16(QUEUE_TO_SEQ(il->cmd_queue) | IDX_TO_SEQ(q->write_ptr));
if (cmd->flags & CMD_SIZE_HUGE)
out_cmd->hdr.sequence |= SEQ_HUGE_FRAME;
len = sizeof(struct il_device_cmd);
if (idx == TFD_CMD_SLOTS)
len = IL_MAX_CMD_SIZE;
#ifdef CONFIG_IWLEGACY_DEBUG
switch (out_cmd->hdr.cmd) {
case C_TX_LINK_QUALITY_CMD:
case C_SENSITIVITY:
D_HC_DUMP("Sending command %s (#%x), seq: 0x%04X, "
"%d bytes at %d[%d]:%d\n",
il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
le16_to_cpu(out_cmd->hdr.sequence), fix_size,
q->write_ptr, idx, il->cmd_queue);
break;
default:
D_HC("Sending command %s (#%x), seq: 0x%04X, "
"%d bytes at %d[%d]:%d\n",
il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->write_ptr,
idx, il->cmd_queue);
}
#endif
phys_addr =
pci_map_single(il->pci_dev, &out_cmd->hdr, fix_size,
PCI_DMA_BIDIRECTIONAL);
if (unlikely(pci_dma_mapping_error(il->pci_dev, phys_addr))) {
idx = -ENOMEM;
goto out;
}
dma_unmap_addr_set(out_meta, mapping, phys_addr);
dma_unmap_len_set(out_meta, len, fix_size);
txq->need_update = 1;
if (il->ops->txq_update_byte_cnt_tbl)
/* Set up entry in queue's byte count circular buffer */
il->ops->txq_update_byte_cnt_tbl(il, txq, 0);
il->ops->txq_attach_buf_to_tfd(il, txq, phys_addr, fix_size, 1,
U32_PAD(cmd->len));
/* Increment and update queue's write idx */
q->write_ptr = il_queue_inc_wrap(q->write_ptr, q->n_bd);
il_txq_update_write_ptr(il, txq);
out:
spin_unlock_irqrestore(&il->hcmd_lock, flags);
return idx;
}
/**
* il_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd
*
* When FW advances 'R' idx, all entries between old and new 'R' idx
* need to be reclaimed. As result, some free space forms. If there is
* enough free space (> low mark), wake the stack that feeds us.
*/
static void
il_hcmd_queue_reclaim(struct il_priv *il, int txq_id, int idx, int cmd_idx)
{
struct il_tx_queue *txq = &il->txq[txq_id];
struct il_queue *q = &txq->q;
int nfreed = 0;
if (idx >= q->n_bd || il_queue_used(q, idx) == 0) {
IL_ERR("Read idx for DMA queue txq id (%d), idx %d, "
"is out of range [0-%d] %d %d.\n", txq_id, idx, q->n_bd,
q->write_ptr, q->read_ptr);
return;
}
for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) {
if (nfreed++ > 0) {
IL_ERR("HCMD skipped: idx (%d) %d %d\n", idx,
q->write_ptr, q->read_ptr);
queue_work(il->workqueue, &il->restart);
}
}
}
/**
* il_tx_cmd_complete - Pull unused buffers off the queue and reclaim them
* @rxb: Rx buffer to reclaim
*
* If an Rx buffer has an async callback associated with it the callback
* will be executed. The attached skb (if present) will only be freed
* if the callback returns 1
*/
void
il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
u16 sequence = le16_to_cpu(pkt->hdr.sequence);
int txq_id = SEQ_TO_QUEUE(sequence);
int idx = SEQ_TO_IDX(sequence);
int cmd_idx;
bool huge = !!(pkt->hdr.sequence & SEQ_HUGE_FRAME);
struct il_device_cmd *cmd;
struct il_cmd_meta *meta;
struct il_tx_queue *txq = &il->txq[il->cmd_queue];
unsigned long flags;
/* If a Tx command is being handled and it isn't in the actual
* command queue then there a command routing bug has been introduced
* in the queue management code. */
if (WARN
(txq_id != il->cmd_queue,
"wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n",
txq_id, il->cmd_queue, sequence, il->txq[il->cmd_queue].q.read_ptr,
il->txq[il->cmd_queue].q.write_ptr)) {
il_print_hex_error(il, pkt, 32);
return;
}
cmd_idx = il_get_cmd_idx(&txq->q, idx, huge);
cmd = txq->cmd[cmd_idx];
meta = &txq->meta[cmd_idx];
txq->time_stamp = jiffies;
pci_unmap_single(il->pci_dev, dma_unmap_addr(meta, mapping),
dma_unmap_len(meta, len), PCI_DMA_BIDIRECTIONAL);
/* Input error checking is done when commands are added to queue. */
if (meta->flags & CMD_WANT_SKB) {
meta->source->reply_page = (unsigned long)rxb_addr(rxb);
rxb->page = NULL;
} else if (meta->callback)
meta->callback(il, cmd, pkt);
spin_lock_irqsave(&il->hcmd_lock, flags);
il_hcmd_queue_reclaim(il, txq_id, idx, cmd_idx);
if (!(meta->flags & CMD_ASYNC)) {
clear_bit(S_HCMD_ACTIVE, &il->status);
D_INFO("Clearing HCMD_ACTIVE for command %s\n",
il_get_cmd_string(cmd->hdr.cmd));
wake_up(&il->wait_command_queue);
}
/* Mark as unmapped */
meta->flags = 0;
spin_unlock_irqrestore(&il->hcmd_lock, flags);
}
EXPORT_SYMBOL(il_tx_cmd_complete);
MODULE_DESCRIPTION("iwl-legacy: common functions for 3945 and 4965");
MODULE_VERSION(IWLWIFI_VERSION);
MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR);
MODULE_LICENSE("GPL");
/*
* set bt_coex_active to true, uCode will do kill/defer
* every time the priority line is asserted (BT is sending signals on the
* priority line in the PCIx).
* set bt_coex_active to false, uCode will ignore the BT activity and
* perform the normal operation
*
* User might experience transmit issue on some platform due to WiFi/BT
* co-exist problem. The possible behaviors are:
* Able to scan and finding all the available AP
* Not able to associate with any AP
* On those platforms, WiFi communication can be restored by set
* "bt_coex_active" module parameter to "false"
*
* default: bt_coex_active = true (BT_COEX_ENABLE)
*/
static bool bt_coex_active = true;
module_param(bt_coex_active, bool, S_IRUGO);
MODULE_PARM_DESC(bt_coex_active, "enable wifi/bluetooth co-exist");
u32 il_debug_level;
EXPORT_SYMBOL(il_debug_level);
const u8 il_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
EXPORT_SYMBOL(il_bcast_addr);
#define MAX_BIT_RATE_40_MHZ 150 /* Mbps */
#define MAX_BIT_RATE_20_MHZ 72 /* Mbps */
static void
il_init_ht_hw_capab(const struct il_priv *il,
struct ieee80211_sta_ht_cap *ht_info,
enum ieee80211_band band)
{
u16 max_bit_rate = 0;
u8 rx_chains_num = il->hw_params.rx_chains_num;
u8 tx_chains_num = il->hw_params.tx_chains_num;
ht_info->cap = 0;
memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
ht_info->ht_supported = true;
ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
max_bit_rate = MAX_BIT_RATE_20_MHZ;
if (il->hw_params.ht40_channel & BIT(band)) {
ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
ht_info->mcs.rx_mask[4] = 0x01;
max_bit_rate = MAX_BIT_RATE_40_MHZ;
}
if (il->cfg->mod_params->amsdu_size_8K)
ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF;
ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF;
ht_info->mcs.rx_mask[0] = 0xFF;
if (rx_chains_num >= 2)
ht_info->mcs.rx_mask[1] = 0xFF;
if (rx_chains_num >= 3)
ht_info->mcs.rx_mask[2] = 0xFF;
/* Highest supported Rx data rate */
max_bit_rate *= rx_chains_num;
WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
/* Tx MCS capabilities */
ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
if (tx_chains_num != rx_chains_num) {
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
ht_info->mcs.tx_params |=
((tx_chains_num -
1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
}
}
/**
* il_init_geos - Initialize mac80211's geo/channel info based from eeprom
*/
int
il_init_geos(struct il_priv *il)
{
struct il_channel_info *ch;
struct ieee80211_supported_band *sband;
struct ieee80211_channel *channels;
struct ieee80211_channel *geo_ch;
struct ieee80211_rate *rates;
int i = 0;
s8 max_tx_power = 0;
if (il->bands[IEEE80211_BAND_2GHZ].n_bitrates ||
il->bands[IEEE80211_BAND_5GHZ].n_bitrates) {
D_INFO("Geography modes already initialized.\n");
set_bit(S_GEO_CONFIGURED, &il->status);
return 0;
}
channels =
kzalloc(sizeof(struct ieee80211_channel) * il->channel_count,
GFP_KERNEL);
if (!channels)
return -ENOMEM;
rates =
kzalloc((sizeof(struct ieee80211_rate) * RATE_COUNT_LEGACY),
GFP_KERNEL);
if (!rates) {
kfree(channels);
return -ENOMEM;
}
/* 5.2GHz channels start after the 2.4GHz channels */
sband = &il->bands[IEEE80211_BAND_5GHZ];
sband->channels = &channels[ARRAY_SIZE(il_eeprom_band_1)];
/* just OFDM */
sband->bitrates = &rates[IL_FIRST_OFDM_RATE];
sband->n_bitrates = RATE_COUNT_LEGACY - IL_FIRST_OFDM_RATE;
if (il->cfg->sku & IL_SKU_N)
il_init_ht_hw_capab(il, &sband->ht_cap, IEEE80211_BAND_5GHZ);
sband = &il->bands[IEEE80211_BAND_2GHZ];
sband->channels = channels;
/* OFDM & CCK */
sband->bitrates = rates;
sband->n_bitrates = RATE_COUNT_LEGACY;
if (il->cfg->sku & IL_SKU_N)
il_init_ht_hw_capab(il, &sband->ht_cap, IEEE80211_BAND_2GHZ);
il->ieee_channels = channels;
il->ieee_rates = rates;
for (i = 0; i < il->channel_count; i++) {
ch = &il->channel_info[i];
if (!il_is_channel_valid(ch))
continue;
sband = &il->bands[ch->band];
geo_ch = &sband->channels[sband->n_channels++];
geo_ch->center_freq =
ieee80211_channel_to_frequency(ch->channel, ch->band);
geo_ch->max_power = ch->max_power_avg;
geo_ch->max_antenna_gain = 0xff;
geo_ch->hw_value = ch->channel;
if (il_is_channel_valid(ch)) {
if (!(ch->flags & EEPROM_CHANNEL_IBSS))
geo_ch->flags |= IEEE80211_CHAN_NO_IBSS;
if (!(ch->flags & EEPROM_CHANNEL_ACTIVE))
geo_ch->flags |= IEEE80211_CHAN_PASSIVE_SCAN;
if (ch->flags & EEPROM_CHANNEL_RADAR)
geo_ch->flags |= IEEE80211_CHAN_RADAR;
geo_ch->flags |= ch->ht40_extension_channel;
if (ch->max_power_avg > max_tx_power)
max_tx_power = ch->max_power_avg;
} else {
geo_ch->flags |= IEEE80211_CHAN_DISABLED;
}
D_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n", ch->channel,
geo_ch->center_freq,
il_is_channel_a_band(ch) ? "5.2" : "2.4",
geo_ch->
flags & IEEE80211_CHAN_DISABLED ? "restricted" : "valid",
geo_ch->flags);
}
il->tx_power_device_lmt = max_tx_power;
il->tx_power_user_lmt = max_tx_power;
il->tx_power_next = max_tx_power;
if (il->bands[IEEE80211_BAND_5GHZ].n_channels == 0 &&
(il->cfg->sku & IL_SKU_A)) {
IL_INFO("Incorrectly detected BG card as ABG. "
"Please send your PCI ID 0x%04X:0x%04X to maintainer.\n",
il->pci_dev->device, il->pci_dev->subsystem_device);
il->cfg->sku &= ~IL_SKU_A;
}
IL_INFO("Tunable channels: %d 802.11bg, %d 802.11a channels\n",
il->bands[IEEE80211_BAND_2GHZ].n_channels,
il->bands[IEEE80211_BAND_5GHZ].n_channels);
set_bit(S_GEO_CONFIGURED, &il->status);
return 0;
}
EXPORT_SYMBOL(il_init_geos);
/*
* il_free_geos - undo allocations in il_init_geos
*/
void
il_free_geos(struct il_priv *il)
{
kfree(il->ieee_channels);
kfree(il->ieee_rates);
clear_bit(S_GEO_CONFIGURED, &il->status);
}
EXPORT_SYMBOL(il_free_geos);
static bool
il_is_channel_extension(struct il_priv *il, enum ieee80211_band band,
u16 channel, u8 extension_chan_offset)
{
const struct il_channel_info *ch_info;
ch_info = il_get_channel_info(il, band, channel);
if (!il_is_channel_valid(ch_info))
return false;
if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE)
return !(ch_info->
ht40_extension_channel & IEEE80211_CHAN_NO_HT40PLUS);
else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW)
return !(ch_info->
ht40_extension_channel & IEEE80211_CHAN_NO_HT40MINUS);
return false;
}
bool
il_is_ht40_tx_allowed(struct il_priv *il, struct ieee80211_sta_ht_cap *ht_cap)
{
if (!il->ht.enabled || !il->ht.is_40mhz)
return false;
/*
* We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40
* the bit will not set if it is pure 40MHz case
*/
if (ht_cap && !ht_cap->ht_supported)
return false;
#ifdef CONFIG_IWLEGACY_DEBUGFS
if (il->disable_ht40)
return false;
#endif
return il_is_channel_extension(il, il->band,
le16_to_cpu(il->staging.channel),
il->ht.extension_chan_offset);
}
EXPORT_SYMBOL(il_is_ht40_tx_allowed);
static u16
il_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val)
{
u16 new_val;
u16 beacon_factor;
/*
* If mac80211 hasn't given us a beacon interval, program
* the default into the device.
*/
if (!beacon_val)
return DEFAULT_BEACON_INTERVAL;
/*
* If the beacon interval we obtained from the peer
* is too large, we'll have to wake up more often
* (and in IBSS case, we'll beacon too much)
*
* For example, if max_beacon_val is 4096, and the
* requested beacon interval is 7000, we'll have to
* use 3500 to be able to wake up on the beacons.
*
* This could badly influence beacon detection stats.
*/
beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val;
new_val = beacon_val / beacon_factor;
if (!new_val)
new_val = max_beacon_val;
return new_val;
}
int
il_send_rxon_timing(struct il_priv *il)
{
u64 tsf;
s32 interval_tm, rem;
struct ieee80211_conf *conf = NULL;
u16 beacon_int;
struct ieee80211_vif *vif = il->vif;
conf = &il->hw->conf;
lockdep_assert_held(&il->mutex);
memset(&il->timing, 0, sizeof(struct il_rxon_time_cmd));
il->timing.timestamp = cpu_to_le64(il->timestamp);
il->timing.listen_interval = cpu_to_le16(conf->listen_interval);
beacon_int = vif ? vif->bss_conf.beacon_int : 0;
/*
* TODO: For IBSS we need to get atim_win from mac80211,
* for now just always use 0
*/
il->timing.atim_win = 0;
beacon_int =
il_adjust_beacon_interval(beacon_int,
il->hw_params.max_beacon_itrvl *
TIME_UNIT);
il->timing.beacon_interval = cpu_to_le16(beacon_int);
tsf = il->timestamp; /* tsf is modifed by do_div: copy it */
interval_tm = beacon_int * TIME_UNIT;
rem = do_div(tsf, interval_tm);
il->timing.beacon_init_val = cpu_to_le32(interval_tm - rem);
il->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ? : 1) : 1;
D_ASSOC("beacon interval %d beacon timer %d beacon tim %d\n",
le16_to_cpu(il->timing.beacon_interval),
le32_to_cpu(il->timing.beacon_init_val),
le16_to_cpu(il->timing.atim_win));
return il_send_cmd_pdu(il, C_RXON_TIMING, sizeof(il->timing),
&il->timing);
}
EXPORT_SYMBOL(il_send_rxon_timing);
void
il_set_rxon_hwcrypto(struct il_priv *il, int hw_decrypt)
{
struct il_rxon_cmd *rxon = &il->staging;
if (hw_decrypt)
rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK;
else
rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK;
}
EXPORT_SYMBOL(il_set_rxon_hwcrypto);
/* validate RXON structure is valid */
int
il_check_rxon_cmd(struct il_priv *il)
{
struct il_rxon_cmd *rxon = &il->staging;
bool error = false;
if (rxon->flags & RXON_FLG_BAND_24G_MSK) {
if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) {
IL_WARN("check 2.4G: wrong narrow\n");
error = true;
}
if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) {
IL_WARN("check 2.4G: wrong radar\n");
error = true;
}
} else {
if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) {
IL_WARN("check 5.2G: not short slot!\n");
error = true;
}
if (rxon->flags & RXON_FLG_CCK_MSK) {
IL_WARN("check 5.2G: CCK!\n");
error = true;
}
}
if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) {
IL_WARN("mac/bssid mcast!\n");
error = true;
}
/* make sure basic rates 6Mbps and 1Mbps are supported */
if ((rxon->ofdm_basic_rates & RATE_6M_MASK) == 0 &&
(rxon->cck_basic_rates & RATE_1M_MASK) == 0) {
IL_WARN("neither 1 nor 6 are basic\n");
error = true;
}
if (le16_to_cpu(rxon->assoc_id) > 2007) {
IL_WARN("aid > 2007\n");
error = true;
}
if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) ==
(RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) {
IL_WARN("CCK and short slot\n");
error = true;
}
if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) ==
(RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) {
IL_WARN("CCK and auto detect");
error = true;
}
if ((rxon->
flags & (RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK)) ==
RXON_FLG_TGG_PROTECT_MSK) {
IL_WARN("TGg but no auto-detect\n");
error = true;
}
if (error)
IL_WARN("Tuning to channel %d\n", le16_to_cpu(rxon->channel));
if (error) {
IL_ERR("Invalid RXON\n");
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(il_check_rxon_cmd);
/**
* il_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed
* @il: staging_rxon is compared to active_rxon
*
* If the RXON structure is changing enough to require a new tune,
* or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that
* a new tune (full RXON command, rather than RXON_ASSOC cmd) is required.
*/
int
il_full_rxon_required(struct il_priv *il)
{
const struct il_rxon_cmd *staging = &il->staging;
const struct il_rxon_cmd *active = &il->active;
#define CHK(cond) \
if ((cond)) { \
D_INFO("need full RXON - " #cond "\n"); \
return 1; \
}
#define CHK_NEQ(c1, c2) \
if ((c1) != (c2)) { \
D_INFO("need full RXON - " \
#c1 " != " #c2 " - %d != %d\n", \
(c1), (c2)); \
return 1; \
}
/* These items are only settable from the full RXON command */
CHK(!il_is_associated(il));
CHK(!ether_addr_equal(staging->bssid_addr, active->bssid_addr));
CHK(!ether_addr_equal(staging->node_addr, active->node_addr));
CHK(!ether_addr_equal(staging->wlap_bssid_addr,
active->wlap_bssid_addr));
CHK_NEQ(staging->dev_type, active->dev_type);
CHK_NEQ(staging->channel, active->channel);
CHK_NEQ(staging->air_propagation, active->air_propagation);
CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates,
active->ofdm_ht_single_stream_basic_rates);
CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates,
active->ofdm_ht_dual_stream_basic_rates);
CHK_NEQ(staging->assoc_id, active->assoc_id);
/* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can
* be updated with the RXON_ASSOC command -- however only some
* flag transitions are allowed using RXON_ASSOC */
/* Check if we are not switching bands */
CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK,
active->flags & RXON_FLG_BAND_24G_MSK);
/* Check if we are switching association toggle */
CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK,
active->filter_flags & RXON_FILTER_ASSOC_MSK);
#undef CHK
#undef CHK_NEQ
return 0;
}
EXPORT_SYMBOL(il_full_rxon_required);
u8
il_get_lowest_plcp(struct il_priv *il)
{
/*
* Assign the lowest rate -- should really get this from
* the beacon skb from mac80211.
*/
if (il->staging.flags & RXON_FLG_BAND_24G_MSK)
return RATE_1M_PLCP;
else
return RATE_6M_PLCP;
}
EXPORT_SYMBOL(il_get_lowest_plcp);
static void
_il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
{
struct il_rxon_cmd *rxon = &il->staging;
if (!il->ht.enabled) {
rxon->flags &=
~(RXON_FLG_CHANNEL_MODE_MSK |
RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | RXON_FLG_HT40_PROT_MSK
| RXON_FLG_HT_PROT_MSK);
return;
}
rxon->flags |=
cpu_to_le32(il->ht.protection << RXON_FLG_HT_OPERATING_MODE_POS);
/* Set up channel bandwidth:
* 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */
/* clear the HT channel mode before set the mode */
rxon->flags &=
~(RXON_FLG_CHANNEL_MODE_MSK | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
if (il_is_ht40_tx_allowed(il, NULL)) {
/* pure ht40 */
if (il->ht.protection == IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) {
rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40;
/* Note: control channel is opposite of extension channel */
switch (il->ht.extension_chan_offset) {
case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
rxon->flags &=
~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
break;
case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
break;
}
} else {
/* Note: control channel is opposite of extension channel */
switch (il->ht.extension_chan_offset) {
case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
rxon->flags &=
~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
break;
case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
break;
case IEEE80211_HT_PARAM_CHA_SEC_NONE:
default:
/* channel location only valid if in Mixed mode */
IL_ERR("invalid extension channel offset\n");
break;
}
}
} else {
rxon->flags |= RXON_FLG_CHANNEL_MODE_LEGACY;
}
if (il->ops->set_rxon_chain)
il->ops->set_rxon_chain(il);
D_ASSOC("rxon flags 0x%X operation mode :0x%X "
"extension channel offset 0x%x\n", le32_to_cpu(rxon->flags),
il->ht.protection, il->ht.extension_chan_offset);
}
void
il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
{
_il_set_rxon_ht(il, ht_conf);
}
EXPORT_SYMBOL(il_set_rxon_ht);
/* Return valid, unused, channel for a passive scan to reset the RF */
u8
il_get_single_channel_number(struct il_priv *il, enum ieee80211_band band)
{
const struct il_channel_info *ch_info;
int i;
u8 channel = 0;
u8 min, max;
if (band == IEEE80211_BAND_5GHZ) {
min = 14;
max = il->channel_count;
} else {
min = 0;
max = 14;
}
for (i = min; i < max; i++) {
channel = il->channel_info[i].channel;
if (channel == le16_to_cpu(il->staging.channel))
continue;
ch_info = il_get_channel_info(il, band, channel);
if (il_is_channel_valid(ch_info))
break;
}
return channel;
}
EXPORT_SYMBOL(il_get_single_channel_number);
/**
* il_set_rxon_channel - Set the band and channel values in staging RXON
* @ch: requested channel as a pointer to struct ieee80211_channel
* NOTE: Does not commit to the hardware; it sets appropriate bit fields
* in the staging RXON flag structure based on the ch->band
*/
int
il_set_rxon_channel(struct il_priv *il, struct ieee80211_channel *ch)
{
enum ieee80211_band band = ch->band;
u16 channel = ch->hw_value;
if (le16_to_cpu(il->staging.channel) == channel && il->band == band)
return 0;
il->staging.channel = cpu_to_le16(channel);
if (band == IEEE80211_BAND_5GHZ)
il->staging.flags &= ~RXON_FLG_BAND_24G_MSK;
else
il->staging.flags |= RXON_FLG_BAND_24G_MSK;
il->band = band;
D_INFO("Staging channel set to %d [%d]\n", channel, band);
return 0;
}
EXPORT_SYMBOL(il_set_rxon_channel);
void
il_set_flags_for_band(struct il_priv *il, enum ieee80211_band band,
struct ieee80211_vif *vif)
{
if (band == IEEE80211_BAND_5GHZ) {
il->staging.flags &=
~(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK |
RXON_FLG_CCK_MSK);
il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
} else {
/* Copied from il_post_associate() */
if (vif && vif->bss_conf.use_short_slot)
il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
else
il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
il->staging.flags |= RXON_FLG_BAND_24G_MSK;
il->staging.flags |= RXON_FLG_AUTO_DETECT_MSK;
il->staging.flags &= ~RXON_FLG_CCK_MSK;
}
}
EXPORT_SYMBOL(il_set_flags_for_band);
/*
* initialize rxon structure with default values from eeprom
*/
void
il_connection_init_rx_config(struct il_priv *il)
{
const struct il_channel_info *ch_info;
memset(&il->staging, 0, sizeof(il->staging));
switch (il->iw_mode) {
case NL80211_IFTYPE_UNSPECIFIED:
il->staging.dev_type = RXON_DEV_TYPE_ESS;
break;
case NL80211_IFTYPE_STATION:
il->staging.dev_type = RXON_DEV_TYPE_ESS;
il->staging.filter_flags = RXON_FILTER_ACCEPT_GRP_MSK;
break;
case NL80211_IFTYPE_ADHOC:
il->staging.dev_type = RXON_DEV_TYPE_IBSS;
il->staging.flags = RXON_FLG_SHORT_PREAMBLE_MSK;
il->staging.filter_flags =
RXON_FILTER_BCON_AWARE_MSK | RXON_FILTER_ACCEPT_GRP_MSK;
break;
default:
IL_ERR("Unsupported interface type %d\n", il->vif->type);
return;
}
#if 0
/* TODO: Figure out when short_preamble would be set and cache from
* that */
if (!hw_to_local(il->hw)->short_preamble)
il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
else
il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
#endif
ch_info =
il_get_channel_info(il, il->band, le16_to_cpu(il->active.channel));
if (!ch_info)
ch_info = &il->channel_info[0];
il->staging.channel = cpu_to_le16(ch_info->channel);
il->band = ch_info->band;
il_set_flags_for_band(il, il->band, il->vif);
il->staging.ofdm_basic_rates =
(IL_OFDM_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
il->staging.cck_basic_rates =
(IL_CCK_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
/* clear both MIX and PURE40 mode flag */
il->staging.flags &=
~(RXON_FLG_CHANNEL_MODE_MIXED | RXON_FLG_CHANNEL_MODE_PURE_40);
if (il->vif)
memcpy(il->staging.node_addr, il->vif->addr, ETH_ALEN);
il->staging.ofdm_ht_single_stream_basic_rates = 0xff;
il->staging.ofdm_ht_dual_stream_basic_rates = 0xff;
}
EXPORT_SYMBOL(il_connection_init_rx_config);
void
il_set_rate(struct il_priv *il)
{
const struct ieee80211_supported_band *hw = NULL;
struct ieee80211_rate *rate;
int i;
hw = il_get_hw_mode(il, il->band);
if (!hw) {
IL_ERR("Failed to set rate: unable to get hw mode\n");
return;
}
il->active_rate = 0;
for (i = 0; i < hw->n_bitrates; i++) {
rate = &(hw->bitrates[i]);
if (rate->hw_value < RATE_COUNT_LEGACY)
il->active_rate |= (1 << rate->hw_value);
}
D_RATE("Set active_rate = %0x\n", il->active_rate);
il->staging.cck_basic_rates =
(IL_CCK_BASIC_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
il->staging.ofdm_basic_rates =
(IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
}
EXPORT_SYMBOL(il_set_rate);
void
il_chswitch_done(struct il_priv *il, bool is_success)
{
if (test_bit(S_EXIT_PENDING, &il->status))
return;
if (test_and_clear_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
ieee80211_chswitch_done(il->vif, is_success);
}
EXPORT_SYMBOL(il_chswitch_done);
void
il_hdl_csa(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_csa_notification *csa = &(pkt->u.csa_notif);
struct il_rxon_cmd *rxon = (void *)&il->active;
if (!test_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
return;
if (!le32_to_cpu(csa->status) && csa->channel == il->switch_channel) {
rxon->channel = csa->channel;
il->staging.channel = csa->channel;
D_11H("CSA notif: channel %d\n", le16_to_cpu(csa->channel));
il_chswitch_done(il, true);
} else {
IL_ERR("CSA notif (fail) : channel %d\n",
le16_to_cpu(csa->channel));
il_chswitch_done(il, false);
}
}
EXPORT_SYMBOL(il_hdl_csa);
#ifdef CONFIG_IWLEGACY_DEBUG
void
il_print_rx_config_cmd(struct il_priv *il)
{
struct il_rxon_cmd *rxon = &il->staging;
D_RADIO("RX CONFIG:\n");
il_print_hex_dump(il, IL_DL_RADIO, (u8 *) rxon, sizeof(*rxon));
D_RADIO("u16 channel: 0x%x\n", le16_to_cpu(rxon->channel));
D_RADIO("u32 flags: 0x%08X\n", le32_to_cpu(rxon->flags));
D_RADIO("u32 filter_flags: 0x%08x\n", le32_to_cpu(rxon->filter_flags));
D_RADIO("u8 dev_type: 0x%x\n", rxon->dev_type);
D_RADIO("u8 ofdm_basic_rates: 0x%02x\n", rxon->ofdm_basic_rates);
D_RADIO("u8 cck_basic_rates: 0x%02x\n", rxon->cck_basic_rates);
D_RADIO("u8[6] node_addr: %pM\n", rxon->node_addr);
D_RADIO("u8[6] bssid_addr: %pM\n", rxon->bssid_addr);
D_RADIO("u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id));
}
EXPORT_SYMBOL(il_print_rx_config_cmd);
#endif
/**
* il_irq_handle_error - called for HW or SW error interrupt from card
*/
void
il_irq_handle_error(struct il_priv *il)
{
/* Set the FW error flag -- cleared on il_down */
set_bit(S_FW_ERROR, &il->status);
/* Cancel currently queued command. */
clear_bit(S_HCMD_ACTIVE, &il->status);
IL_ERR("Loaded firmware version: %s\n", il->hw->wiphy->fw_version);
il->ops->dump_nic_error_log(il);
if (il->ops->dump_fh)
il->ops->dump_fh(il, NULL, false);
#ifdef CONFIG_IWLEGACY_DEBUG
if (il_get_debug_level(il) & IL_DL_FW_ERRORS)
il_print_rx_config_cmd(il);
#endif
wake_up(&il->wait_command_queue);
/* Keep the restart process from trying to send host
* commands by clearing the INIT status bit */
clear_bit(S_READY, &il->status);
if (!test_bit(S_EXIT_PENDING, &il->status)) {
IL_DBG(IL_DL_FW_ERRORS,
"Restarting adapter due to uCode error.\n");
if (il->cfg->mod_params->restart_fw)
queue_work(il->workqueue, &il->restart);
}
}
EXPORT_SYMBOL(il_irq_handle_error);
static int
_il_apm_stop_master(struct il_priv *il)
{
int ret = 0;
/* stop device's busmaster DMA activity */
_il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
ret =
_il_poll_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED,
CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
if (ret < 0)
IL_WARN("Master Disable Timed Out, 100 usec\n");
D_INFO("stop master\n");
return ret;
}
void
_il_apm_stop(struct il_priv *il)
{
lockdep_assert_held(&il->reg_lock);
D_INFO("Stop card, put in low power state\n");
/* Stop device's DMA activity */
_il_apm_stop_master(il);
/* Reset the entire device */
_il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
udelay(10);
/*
* Clear "initialization complete" bit to move adapter from
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
*/
_il_clear_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
}
EXPORT_SYMBOL(_il_apm_stop);
void
il_apm_stop(struct il_priv *il)
{
unsigned long flags;
spin_lock_irqsave(&il->reg_lock, flags);
_il_apm_stop(il);
spin_unlock_irqrestore(&il->reg_lock, flags);
}
EXPORT_SYMBOL(il_apm_stop);
/*
* Start up NIC's basic functionality after it has been reset
* (e.g. after platform boot, or shutdown via il_apm_stop())
* NOTE: This does not load uCode nor start the embedded processor
*/
int
il_apm_init(struct il_priv *il)
{
int ret = 0;
u16 lctl;
D_INFO("Init card's basic functions\n");
/*
* Use "set_bit" below rather than "write", to preserve any hardware
* bits already set by default after reset.
*/
/* Disable L0S exit timer (platform NMI Work/Around) */
il_set_bit(il, CSR_GIO_CHICKEN_BITS,
CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
/*
* Disable L0s without affecting L1;
* don't wait for ICH L0s (ICH bug W/A)
*/
il_set_bit(il, CSR_GIO_CHICKEN_BITS,
CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
/* Set FH wait threshold to maximum (HW error during stress W/A) */
il_set_bit(il, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
/*
* Enable HAP INTA (interrupt from management bus) to
* wake device's PCI Express link L1a -> L0s
* NOTE: This is no-op for 3945 (non-existent bit)
*/
il_set_bit(il, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
/*
* HW bug W/A for instability in PCIe bus L0->L0S->L1 transition.
* Check if BIOS (or OS) enabled L1-ASPM on this device.
* If so (likely), disable L0S, so device moves directly L0->L1;
* costs negligible amount of power savings.
* If not (unlikely), enable L0S, so there is at least some
* power savings, even without L1.
*/
if (il->cfg->set_l0s) {
pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
if (lctl & PCI_EXP_LNKCTL_ASPM_L1) {
/* L1-ASPM enabled; disable(!) L0S */
il_set_bit(il, CSR_GIO_REG,
CSR_GIO_REG_VAL_L0S_ENABLED);
D_POWER("L1 Enabled; Disabling L0S\n");
} else {
/* L1-ASPM disabled; enable(!) L0S */
il_clear_bit(il, CSR_GIO_REG,
CSR_GIO_REG_VAL_L0S_ENABLED);
D_POWER("L1 Disabled; Enabling L0S\n");
}
}
/* Configure analog phase-lock-loop before activating to D0A */
if (il->cfg->pll_cfg_val)
il_set_bit(il, CSR_ANA_PLL_CFG,
il->cfg->pll_cfg_val);
/*
* Set "initialization complete" bit to move adapter from
* D0U* --> D0A* (powered-up active) state.
*/
il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
/*
* Wait for clock stabilization; once stabilized, access to
* device-internal resources is supported, e.g. il_wr_prph()
* and accesses to uCode SRAM.
*/
ret =
_il_poll_bit(il, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
if (ret < 0) {
D_INFO("Failed to init the card\n");
goto out;
}
/*
* Enable DMA and BSM (if used) clocks, wait for them to stabilize.
* BSM (Boostrap State Machine) is only in 3945 and 4965.
*
* Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
* do not disable clocks. This preserves any hardware bits already
* set by default in "CLK_CTRL_REG" after reset.
*/
if (il->cfg->use_bsm)
il_wr_prph(il, APMG_CLK_EN_REG,
APMG_CLK_VAL_DMA_CLK_RQT | APMG_CLK_VAL_BSM_CLK_RQT);
else
il_wr_prph(il, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
udelay(20);
/* Disable L1-Active */
il_set_bits_prph(il, APMG_PCIDEV_STT_REG,
APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
out:
return ret;
}
EXPORT_SYMBOL(il_apm_init);
int
il_set_tx_power(struct il_priv *il, s8 tx_power, bool force)
{
int ret;
s8 prev_tx_power;
bool defer;
lockdep_assert_held(&il->mutex);
if (il->tx_power_user_lmt == tx_power && !force)
return 0;
if (!il->ops->send_tx_power)
return -EOPNOTSUPP;
/* 0 dBm mean 1 milliwatt */
if (tx_power < 0) {
IL_WARN("Requested user TXPOWER %d below 1 mW.\n", tx_power);
return -EINVAL;
}
if (tx_power > il->tx_power_device_lmt) {
IL_WARN("Requested user TXPOWER %d above upper limit %d.\n",
tx_power, il->tx_power_device_lmt);
return -EINVAL;
}
if (!il_is_ready_rf(il))
return -EIO;
/* scan complete and commit_rxon use tx_power_next value,
* it always need to be updated for newest request */
il->tx_power_next = tx_power;
/* do not set tx power when scanning or channel changing */
defer = test_bit(S_SCANNING, &il->status) ||
memcmp(&il->active, &il->staging, sizeof(il->staging));
if (defer && !force) {
D_INFO("Deferring tx power set\n");
return 0;
}
prev_tx_power = il->tx_power_user_lmt;
il->tx_power_user_lmt = tx_power;
ret = il->ops->send_tx_power(il);
/* if fail to set tx_power, restore the orig. tx power */
if (ret) {
il->tx_power_user_lmt = prev_tx_power;
il->tx_power_next = prev_tx_power;
}
return ret;
}
EXPORT_SYMBOL(il_set_tx_power);
void
il_send_bt_config(struct il_priv *il)
{
struct il_bt_cmd bt_cmd = {
.lead_time = BT_LEAD_TIME_DEF,
.max_kill = BT_MAX_KILL_DEF,
.kill_ack_mask = 0,
.kill_cts_mask = 0,
};
if (!bt_coex_active)
bt_cmd.flags = BT_COEX_DISABLE;
else
bt_cmd.flags = BT_COEX_ENABLE;
D_INFO("BT coex %s\n",
(bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
if (il_send_cmd_pdu(il, C_BT_CONFIG, sizeof(struct il_bt_cmd), &bt_cmd))
IL_ERR("failed to send BT Coex Config\n");
}
EXPORT_SYMBOL(il_send_bt_config);
int
il_send_stats_request(struct il_priv *il, u8 flags, bool clear)
{
struct il_stats_cmd stats_cmd = {
.configuration_flags = clear ? IL_STATS_CONF_CLEAR_STATS : 0,
};
if (flags & CMD_ASYNC)
return il_send_cmd_pdu_async(il, C_STATS, sizeof(struct il_stats_cmd),
&stats_cmd, NULL);
else
return il_send_cmd_pdu(il, C_STATS, sizeof(struct il_stats_cmd),
&stats_cmd);
}
EXPORT_SYMBOL(il_send_stats_request);
void
il_hdl_pm_sleep(struct il_priv *il, struct il_rx_buf *rxb)
{
#ifdef CONFIG_IWLEGACY_DEBUG
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_sleep_notification *sleep = &(pkt->u.sleep_notif);
D_RX("sleep mode: %d, src: %d\n",
sleep->pm_sleep_mode, sleep->pm_wakeup_src);
#endif
}
EXPORT_SYMBOL(il_hdl_pm_sleep);
void
il_hdl_pm_debug_stats(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
u32 len = le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK;
D_RADIO("Dumping %d bytes of unhandled notification for %s:\n", len,
il_get_cmd_string(pkt->hdr.cmd));
il_print_hex_dump(il, IL_DL_RADIO, pkt->u.raw, len);
}
EXPORT_SYMBOL(il_hdl_pm_debug_stats);
void
il_hdl_error(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
IL_ERR("Error Reply type 0x%08X cmd %s (0x%02X) "
"seq 0x%04X ser 0x%08X\n",
le32_to_cpu(pkt->u.err_resp.error_type),
il_get_cmd_string(pkt->u.err_resp.cmd_id),
pkt->u.err_resp.cmd_id,
le16_to_cpu(pkt->u.err_resp.bad_cmd_seq_num),
le32_to_cpu(pkt->u.err_resp.error_info));
}
EXPORT_SYMBOL(il_hdl_error);
void
il_clear_isr_stats(struct il_priv *il)
{
memset(&il->isr_stats, 0, sizeof(il->isr_stats));
}
int
il_mac_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct il_priv *il = hw->priv;
unsigned long flags;
int q;
D_MAC80211("enter\n");
if (!il_is_ready_rf(il)) {
D_MAC80211("leave - RF not ready\n");
return -EIO;
}
if (queue >= AC_NUM) {
D_MAC80211("leave - queue >= AC_NUM %d\n", queue);
return 0;
}
q = AC_NUM - 1 - queue;
spin_lock_irqsave(&il->lock, flags);
il->qos_data.def_qos_parm.ac[q].cw_min =
cpu_to_le16(params->cw_min);
il->qos_data.def_qos_parm.ac[q].cw_max =
cpu_to_le16(params->cw_max);
il->qos_data.def_qos_parm.ac[q].aifsn = params->aifs;
il->qos_data.def_qos_parm.ac[q].edca_txop =
cpu_to_le16((params->txop * 32));
il->qos_data.def_qos_parm.ac[q].reserved1 = 0;
spin_unlock_irqrestore(&il->lock, flags);
D_MAC80211("leave\n");
return 0;
}
EXPORT_SYMBOL(il_mac_conf_tx);
int
il_mac_tx_last_beacon(struct ieee80211_hw *hw)
{
struct il_priv *il = hw->priv;
int ret;
D_MAC80211("enter\n");
ret = (il->ibss_manager == IL_IBSS_MANAGER);
D_MAC80211("leave ret %d\n", ret);
return ret;
}
EXPORT_SYMBOL_GPL(il_mac_tx_last_beacon);
static int
il_set_mode(struct il_priv *il)
{
il_connection_init_rx_config(il);
if (il->ops->set_rxon_chain)
il->ops->set_rxon_chain(il);
return il_commit_rxon(il);
}
int
il_mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct il_priv *il = hw->priv;
int err;
bool reset;
mutex_lock(&il->mutex);
D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
if (!il_is_ready_rf(il)) {
IL_WARN("Try to add interface when device not ready\n");
err = -EINVAL;
goto out;
}
/*
* We do not support multiple virtual interfaces, but on hardware reset
* we have to add the same interface again.
*/
reset = (il->vif == vif);
if (il->vif && !reset) {
err = -EOPNOTSUPP;
goto out;
}
il->vif = vif;
il->iw_mode = vif->type;
err = il_set_mode(il);
if (err) {
IL_WARN("Fail to set mode %d\n", vif->type);
if (!reset) {
il->vif = NULL;
il->iw_mode = NL80211_IFTYPE_STATION;
}
}
out:
D_MAC80211("leave err %d\n", err);
mutex_unlock(&il->mutex);
return err;
}
EXPORT_SYMBOL(il_mac_add_interface);
static void
il_teardown_interface(struct il_priv *il, struct ieee80211_vif *vif)
{
lockdep_assert_held(&il->mutex);
if (il->scan_vif == vif) {
il_scan_cancel_timeout(il, 200);
il_force_scan_end(il);
}
il_set_mode(il);
}
void
il_mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct il_priv *il = hw->priv;
mutex_lock(&il->mutex);
D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
WARN_ON(il->vif != vif);
il->vif = NULL;
il->iw_mode = NL80211_IFTYPE_UNSPECIFIED;
il_teardown_interface(il, vif);
memset(il->bssid, 0, ETH_ALEN);
D_MAC80211("leave\n");
mutex_unlock(&il->mutex);
}
EXPORT_SYMBOL(il_mac_remove_interface);
int
il_alloc_txq_mem(struct il_priv *il)
{
if (!il->txq)
il->txq =
kzalloc(sizeof(struct il_tx_queue) *
il->cfg->num_of_queues, GFP_KERNEL);
if (!il->txq) {
IL_ERR("Not enough memory for txq\n");
return -ENOMEM;
}
return 0;
}
EXPORT_SYMBOL(il_alloc_txq_mem);
void
il_free_txq_mem(struct il_priv *il)
{
kfree(il->txq);
il->txq = NULL;
}
EXPORT_SYMBOL(il_free_txq_mem);
int
il_force_reset(struct il_priv *il, bool external)
{
struct il_force_reset *force_reset;
if (test_bit(S_EXIT_PENDING, &il->status))
return -EINVAL;
force_reset = &il->force_reset;
force_reset->reset_request_count++;
if (!external) {
if (force_reset->last_force_reset_jiffies &&
time_after(force_reset->last_force_reset_jiffies +
force_reset->reset_duration, jiffies)) {
D_INFO("force reset rejected\n");
force_reset->reset_reject_count++;
return -EAGAIN;
}
}
force_reset->reset_success_count++;
force_reset->last_force_reset_jiffies = jiffies;
/*
* if the request is from external(ex: debugfs),
* then always perform the request in regardless the module
* parameter setting
* if the request is from internal (uCode error or driver
* detect failure), then fw_restart module parameter
* need to be check before performing firmware reload
*/
if (!external && !il->cfg->mod_params->restart_fw) {
D_INFO("Cancel firmware reload based on "
"module parameter setting\n");
return 0;
}
IL_ERR("On demand firmware reload\n");
/* Set the FW error flag -- cleared on il_down */
set_bit(S_FW_ERROR, &il->status);
wake_up(&il->wait_command_queue);
/*
* Keep the restart process from trying to send host
* commands by clearing the INIT status bit
*/
clear_bit(S_READY, &il->status);
queue_work(il->workqueue, &il->restart);
return 0;
}
EXPORT_SYMBOL(il_force_reset);
int
il_mac_change_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
enum nl80211_iftype newtype, bool newp2p)
{
struct il_priv *il = hw->priv;
int err;
mutex_lock(&il->mutex);
D_MAC80211("enter: type %d, addr %pM newtype %d newp2p %d\n",
vif->type, vif->addr, newtype, newp2p);
if (newp2p) {
err = -EOPNOTSUPP;
goto out;
}
if (!il->vif || !il_is_ready_rf(il)) {
/*
* Huh? But wait ... this can maybe happen when
* we're in the middle of a firmware restart!
*/
err = -EBUSY;
goto out;
}
/* success */
vif->type = newtype;
vif->p2p = false;
il->iw_mode = newtype;
il_teardown_interface(il, vif);
err = 0;
out:
D_MAC80211("leave err %d\n", err);
mutex_unlock(&il->mutex);
return err;
}
EXPORT_SYMBOL(il_mac_change_interface);
void il_mac_flush(struct ieee80211_hw *hw, u32 queues, bool drop)
{
struct il_priv *il = hw->priv;
unsigned long timeout = jiffies + msecs_to_jiffies(500);
int i;
mutex_lock(&il->mutex);
D_MAC80211("enter\n");
if (il->txq == NULL)
goto out;
for (i = 0; i < il->hw_params.max_txq_num; i++) {
struct il_queue *q;
if (i == il->cmd_queue)
continue;
q = &il->txq[i].q;
if (q->read_ptr == q->write_ptr)
continue;
if (time_after(jiffies, timeout)) {
IL_ERR("Failed to flush queue %d\n", q->id);
break;
}
msleep(20);
}
out:
D_MAC80211("leave\n");
mutex_unlock(&il->mutex);
}
EXPORT_SYMBOL(il_mac_flush);
/*
* On every watchdog tick we check (latest) time stamp. If it does not
* change during timeout period and queue is not empty we reset firmware.
*/
static int
il_check_stuck_queue(struct il_priv *il, int cnt)
{
struct il_tx_queue *txq = &il->txq[cnt];
struct il_queue *q = &txq->q;
unsigned long timeout;
unsigned long now = jiffies;
int ret;
if (q->read_ptr == q->write_ptr) {
txq->time_stamp = now;
return 0;
}
timeout =
txq->time_stamp +
msecs_to_jiffies(il->cfg->wd_timeout);
if (time_after(now, timeout)) {
IL_ERR("Queue %d stuck for %u ms.\n", q->id,
jiffies_to_msecs(now - txq->time_stamp));
ret = il_force_reset(il, false);
return (ret == -EAGAIN) ? 0 : 1;
}
return 0;
}
/*
* Making watchdog tick be a quarter of timeout assure we will
* discover the queue hung between timeout and 1.25*timeout
*/
#define IL_WD_TICK(timeout) ((timeout) / 4)
/*
* Watchdog timer callback, we check each tx queue for stuck, if if hung
* we reset the firmware. If everything is fine just rearm the timer.
*/
void
il_bg_watchdog(unsigned long data)
{
struct il_priv *il = (struct il_priv *)data;
int cnt;
unsigned long timeout;
if (test_bit(S_EXIT_PENDING, &il->status))
return;
timeout = il->cfg->wd_timeout;
if (timeout == 0)
return;
/* monitor and check for stuck cmd queue */
if (il_check_stuck_queue(il, il->cmd_queue))
return;
/* monitor and check for other stuck queues */
for (cnt = 0; cnt < il->hw_params.max_txq_num; cnt++) {
/* skip as we already checked the command queue */
if (cnt == il->cmd_queue)
continue;
if (il_check_stuck_queue(il, cnt))
return;
}
mod_timer(&il->watchdog,
jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
}
EXPORT_SYMBOL(il_bg_watchdog);
void
il_setup_watchdog(struct il_priv *il)
{
unsigned int timeout = il->cfg->wd_timeout;
if (timeout)
mod_timer(&il->watchdog,
jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
else
del_timer(&il->watchdog);
}
EXPORT_SYMBOL(il_setup_watchdog);
/*
* extended beacon time format
* time in usec will be changed into a 32-bit value in extended:internal format
* the extended part is the beacon counts
* the internal part is the time in usec within one beacon interval
*/
u32
il_usecs_to_beacons(struct il_priv *il, u32 usec, u32 beacon_interval)
{
u32 quot;
u32 rem;
u32 interval = beacon_interval * TIME_UNIT;
if (!interval || !usec)
return 0;
quot =
(usec /
interval) & (il_beacon_time_mask_high(il,
il->hw_params.
beacon_time_tsf_bits) >> il->
hw_params.beacon_time_tsf_bits);
rem =
(usec % interval) & il_beacon_time_mask_low(il,
il->hw_params.
beacon_time_tsf_bits);
return (quot << il->hw_params.beacon_time_tsf_bits) + rem;
}
EXPORT_SYMBOL(il_usecs_to_beacons);
/* base is usually what we get from ucode with each received frame,
* the same as HW timer counter counting down
*/
__le32
il_add_beacon_time(struct il_priv *il, u32 base, u32 addon,
u32 beacon_interval)
{
u32 base_low = base & il_beacon_time_mask_low(il,
il->hw_params.
beacon_time_tsf_bits);
u32 addon_low = addon & il_beacon_time_mask_low(il,
il->hw_params.
beacon_time_tsf_bits);
u32 interval = beacon_interval * TIME_UNIT;
u32 res = (base & il_beacon_time_mask_high(il,
il->hw_params.
beacon_time_tsf_bits)) +
(addon & il_beacon_time_mask_high(il,
il->hw_params.
beacon_time_tsf_bits));
if (base_low > addon_low)
res += base_low - addon_low;
else if (base_low < addon_low) {
res += interval + base_low - addon_low;
res += (1 << il->hw_params.beacon_time_tsf_bits);
} else
res += (1 << il->hw_params.beacon_time_tsf_bits);
return cpu_to_le32(res);
}
EXPORT_SYMBOL(il_add_beacon_time);
#ifdef CONFIG_PM_SLEEP
static int
il_pci_suspend(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct il_priv *il = pci_get_drvdata(pdev);
/*
* This function is called when system goes into suspend state
* mac80211 will call il_mac_stop() from the mac80211 suspend function
* first but since il_mac_stop() has no knowledge of who the caller is,
* it will not call apm_ops.stop() to stop the DMA operation.
* Calling apm_ops.stop here to make sure we stop the DMA.
*/
il_apm_stop(il);
return 0;
}
static int
il_pci_resume(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct il_priv *il = pci_get_drvdata(pdev);
bool hw_rfkill = false;
/*
* We disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state.
*/
pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
il_enable_interrupts(il);
if (!(_il_rd(il, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW))
hw_rfkill = true;
if (hw_rfkill)
set_bit(S_RFKILL, &il->status);
else
clear_bit(S_RFKILL, &il->status);
wiphy_rfkill_set_hw_state(il->hw->wiphy, hw_rfkill);
return 0;
}
SIMPLE_DEV_PM_OPS(il_pm_ops, il_pci_suspend, il_pci_resume);
EXPORT_SYMBOL(il_pm_ops);
#endif /* CONFIG_PM_SLEEP */
static void
il_update_qos(struct il_priv *il)
{
if (test_bit(S_EXIT_PENDING, &il->status))
return;
il->qos_data.def_qos_parm.qos_flags = 0;
if (il->qos_data.qos_active)
il->qos_data.def_qos_parm.qos_flags |=
QOS_PARAM_FLG_UPDATE_EDCA_MSK;
if (il->ht.enabled)
il->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_TGN_MSK;
D_QOS("send QoS cmd with Qos active=%d FLAGS=0x%X\n",
il->qos_data.qos_active, il->qos_data.def_qos_parm.qos_flags);
il_send_cmd_pdu_async(il, C_QOS_PARAM, sizeof(struct il_qosparam_cmd),
&il->qos_data.def_qos_parm, NULL);
}
/**
* il_mac_config - mac80211 config callback
*/
int
il_mac_config(struct ieee80211_hw *hw, u32 changed)
{
struct il_priv *il = hw->priv;
const struct il_channel_info *ch_info;
struct ieee80211_conf *conf = &hw->conf;
struct ieee80211_channel *channel = conf->chandef.chan;
struct il_ht_config *ht_conf = &il->current_ht_config;
unsigned long flags = 0;
int ret = 0;
u16 ch;
int scan_active = 0;
bool ht_changed = false;
mutex_lock(&il->mutex);
D_MAC80211("enter: channel %d changed 0x%X\n", channel->hw_value,
changed);
if (unlikely(test_bit(S_SCANNING, &il->status))) {
scan_active = 1;
D_MAC80211("scan active\n");
}
if (changed &
(IEEE80211_CONF_CHANGE_SMPS | IEEE80211_CONF_CHANGE_CHANNEL)) {
/* mac80211 uses static for non-HT which is what we want */
il->current_ht_config.smps = conf->smps_mode;
/*
* Recalculate chain counts.
*
* If monitor mode is enabled then mac80211 will
* set up the SM PS mode to OFF if an HT channel is
* configured.
*/
if (il->ops->set_rxon_chain)
il->ops->set_rxon_chain(il);
}
/* during scanning mac80211 will delay channel setting until
* scan finish with changed = 0
*/
if (!changed || (changed & IEEE80211_CONF_CHANGE_CHANNEL)) {
if (scan_active)
goto set_ch_out;
ch = channel->hw_value;
ch_info = il_get_channel_info(il, channel->band, ch);
if (!il_is_channel_valid(ch_info)) {
D_MAC80211("leave - invalid channel\n");
ret = -EINVAL;
goto set_ch_out;
}
if (il->iw_mode == NL80211_IFTYPE_ADHOC &&
!il_is_channel_ibss(ch_info)) {
D_MAC80211("leave - not IBSS channel\n");
ret = -EINVAL;
goto set_ch_out;
}
spin_lock_irqsave(&il->lock, flags);
/* Configure HT40 channels */
if (il->ht.enabled != conf_is_ht(conf)) {
il->ht.enabled = conf_is_ht(conf);
ht_changed = true;
}
if (il->ht.enabled) {
if (conf_is_ht40_minus(conf)) {
il->ht.extension_chan_offset =
IEEE80211_HT_PARAM_CHA_SEC_BELOW;
il->ht.is_40mhz = true;
} else if (conf_is_ht40_plus(conf)) {
il->ht.extension_chan_offset =
IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
il->ht.is_40mhz = true;
} else {
il->ht.extension_chan_offset =
IEEE80211_HT_PARAM_CHA_SEC_NONE;
il->ht.is_40mhz = false;
}
} else
il->ht.is_40mhz = false;
/*
* Default to no protection. Protection mode will
* later be set from BSS config in il_ht_conf
*/
il->ht.protection = IEEE80211_HT_OP_MODE_PROTECTION_NONE;
/* if we are switching from ht to 2.4 clear flags
* from any ht related info since 2.4 does not
* support ht */
if ((le16_to_cpu(il->staging.channel) != ch))
il->staging.flags = 0;
il_set_rxon_channel(il, channel);
il_set_rxon_ht(il, ht_conf);
il_set_flags_for_band(il, channel->band, il->vif);
spin_unlock_irqrestore(&il->lock, flags);
if (il->ops->update_bcast_stations)
ret = il->ops->update_bcast_stations(il);
set_ch_out:
/* The list of supported rates and rate mask can be different
* for each band; since the band may have changed, reset
* the rate mask to what mac80211 lists */
il_set_rate(il);
}
if (changed & (IEEE80211_CONF_CHANGE_PS | IEEE80211_CONF_CHANGE_IDLE)) {
ret = il_power_update_mode(il, false);
if (ret)
D_MAC80211("Error setting sleep level\n");
}
if (changed & IEEE80211_CONF_CHANGE_POWER) {
D_MAC80211("TX Power old=%d new=%d\n", il->tx_power_user_lmt,
conf->power_level);
il_set_tx_power(il, conf->power_level, false);
}
if (!il_is_ready(il)) {
D_MAC80211("leave - not ready\n");
goto out;
}
if (scan_active)
goto out;
if (memcmp(&il->active, &il->staging, sizeof(il->staging)))
il_commit_rxon(il);
else
D_INFO("Not re-sending same RXON configuration.\n");
if (ht_changed)
il_update_qos(il);
out:
D_MAC80211("leave ret %d\n", ret);
mutex_unlock(&il->mutex);
return ret;
}
EXPORT_SYMBOL(il_mac_config);
void
il_mac_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct il_priv *il = hw->priv;
unsigned long flags;
mutex_lock(&il->mutex);
D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
spin_lock_irqsave(&il->lock, flags);
memset(&il->current_ht_config, 0, sizeof(struct il_ht_config));
/* new association get rid of ibss beacon skb */
if (il->beacon_skb)
dev_kfree_skb(il->beacon_skb);
il->beacon_skb = NULL;
il->timestamp = 0;
spin_unlock_irqrestore(&il->lock, flags);
il_scan_cancel_timeout(il, 100);
if (!il_is_ready_rf(il)) {
D_MAC80211("leave - not ready\n");
mutex_unlock(&il->mutex);
return;
}
/* we are restarting association process */
il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
il_commit_rxon(il);
il_set_rate(il);
D_MAC80211("leave\n");
mutex_unlock(&il->mutex);
}
EXPORT_SYMBOL(il_mac_reset_tsf);
static void
il_ht_conf(struct il_priv *il, struct ieee80211_vif *vif)
{
struct il_ht_config *ht_conf = &il->current_ht_config;
struct ieee80211_sta *sta;
struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
D_ASSOC("enter:\n");
if (!il->ht.enabled)
return;
il->ht.protection =
bss_conf->ht_operation_mode & IEEE80211_HT_OP_MODE_PROTECTION;
il->ht.non_gf_sta_present =
!!(bss_conf->
ht_operation_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
ht_conf->single_chain_sufficient = false;
switch (vif->type) {
case NL80211_IFTYPE_STATION:
rcu_read_lock();
sta = ieee80211_find_sta(vif, bss_conf->bssid);
if (sta) {
struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
int maxstreams;
maxstreams =
(ht_cap->mcs.
tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
maxstreams += 1;
if (ht_cap->mcs.rx_mask[1] == 0 &&
ht_cap->mcs.rx_mask[2] == 0)
ht_conf->single_chain_sufficient = true;
if (maxstreams <= 1)
ht_conf->single_chain_sufficient = true;
} else {
/*
* If at all, this can only happen through a race
* when the AP disconnects us while we're still
* setting up the connection, in that case mac80211
* will soon tell us about that.
*/
ht_conf->single_chain_sufficient = true;
}
rcu_read_unlock();
break;
case NL80211_IFTYPE_ADHOC:
ht_conf->single_chain_sufficient = true;
break;
default:
break;
}
D_ASSOC("leave\n");
}
static inline void
il_set_no_assoc(struct il_priv *il, struct ieee80211_vif *vif)
{
/*
* inform the ucode that there is no longer an
* association and that no more packets should be
* sent
*/
il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
il->staging.assoc_id = 0;
il_commit_rxon(il);
}
static void
il_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct il_priv *il = hw->priv;
unsigned long flags;
__le64 timestamp;
struct sk_buff *skb = ieee80211_beacon_get(hw, vif);
if (!skb)
return;
D_MAC80211("enter\n");
lockdep_assert_held(&il->mutex);
if (!il->beacon_enabled) {
IL_ERR("update beacon with no beaconing enabled\n");
dev_kfree_skb(skb);
return;
}
spin_lock_irqsave(&il->lock, flags);
if (il->beacon_skb)
dev_kfree_skb(il->beacon_skb);
il->beacon_skb = skb;
timestamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp;
il->timestamp = le64_to_cpu(timestamp);
D_MAC80211("leave\n");
spin_unlock_irqrestore(&il->lock, flags);
if (!il_is_ready_rf(il)) {
D_MAC80211("leave - RF not ready\n");
return;
}
il->ops->post_associate(il);
}
void
il_mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf, u32 changes)
{
struct il_priv *il = hw->priv;
int ret;
mutex_lock(&il->mutex);
D_MAC80211("enter: changes 0x%x\n", changes);
if (!il_is_alive(il)) {
D_MAC80211("leave - not alive\n");
mutex_unlock(&il->mutex);
return;
}
if (changes & BSS_CHANGED_QOS) {
unsigned long flags;
spin_lock_irqsave(&il->lock, flags);
il->qos_data.qos_active = bss_conf->qos;
il_update_qos(il);
spin_unlock_irqrestore(&il->lock, flags);
}
if (changes & BSS_CHANGED_BEACON_ENABLED) {
/* FIXME: can we remove beacon_enabled ? */
if (vif->bss_conf.enable_beacon)
il->beacon_enabled = true;
else
il->beacon_enabled = false;
}
if (changes & BSS_CHANGED_BSSID) {
D_MAC80211("BSSID %pM\n", bss_conf->bssid);
/*
* On passive channel we wait with blocked queues to see if
* there is traffic on that channel. If no frame will be
* received (what is very unlikely since scan detects AP on
* that channel, but theoretically possible), mac80211 associate
* procedure will time out and mac80211 will call us with NULL
* bssid. We have to unblock queues on such condition.
*/
if (is_zero_ether_addr(bss_conf->bssid))
il_wake_queues_by_reason(il, IL_STOP_REASON_PASSIVE);
/*
* If there is currently a HW scan going on in the background,
* then we need to cancel it, otherwise sometimes we are not
* able to authenticate (FIXME: why ?)
*/
if (il_scan_cancel_timeout(il, 100)) {
D_MAC80211("leave - scan abort failed\n");
mutex_unlock(&il->mutex);
return;
}
/* mac80211 only sets assoc when in STATION mode */
memcpy(il->staging.bssid_addr, bss_conf->bssid, ETH_ALEN);
/* FIXME: currently needed in a few places */
memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
}
/*
* This needs to be after setting the BSSID in case
* mac80211 decides to do both changes at once because
* it will invoke post_associate.
*/
if (vif->type == NL80211_IFTYPE_ADHOC && (changes & BSS_CHANGED_BEACON))
il_beacon_update(hw, vif);
if (changes & BSS_CHANGED_ERP_PREAMBLE) {
D_MAC80211("ERP_PREAMBLE %d\n", bss_conf->use_short_preamble);
if (bss_conf->use_short_preamble)
il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
else
il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
}
if (changes & BSS_CHANGED_ERP_CTS_PROT) {
D_MAC80211("ERP_CTS %d\n", bss_conf->use_cts_prot);
if (bss_conf->use_cts_prot && il->band != IEEE80211_BAND_5GHZ)
il->staging.flags |= RXON_FLG_TGG_PROTECT_MSK;
else
il->staging.flags &= ~RXON_FLG_TGG_PROTECT_MSK;
if (bss_conf->use_cts_prot)
il->staging.flags |= RXON_FLG_SELF_CTS_EN;
else
il->staging.flags &= ~RXON_FLG_SELF_CTS_EN;
}
if (changes & BSS_CHANGED_BASIC_RATES) {
/* XXX use this information
*
* To do that, remove code from il_set_rate() and put something
* like this here:
*
if (A-band)
il->staging.ofdm_basic_rates =
bss_conf->basic_rates;
else
il->staging.ofdm_basic_rates =
bss_conf->basic_rates >> 4;
il->staging.cck_basic_rates =
bss_conf->basic_rates & 0xF;
*/
}
if (changes & BSS_CHANGED_HT) {
il_ht_conf(il, vif);
if (il->ops->set_rxon_chain)
il->ops->set_rxon_chain(il);
}
if (changes & BSS_CHANGED_ASSOC) {
D_MAC80211("ASSOC %d\n", bss_conf->assoc);
if (bss_conf->assoc) {
il->timestamp = bss_conf->sync_tsf;
if (!il_is_rfkill(il))
il->ops->post_associate(il);
} else
il_set_no_assoc(il, vif);
}
if (changes && il_is_associated(il) && bss_conf->aid) {
D_MAC80211("Changes (%#x) while associated\n", changes);
ret = il_send_rxon_assoc(il);
if (!ret) {
/* Sync active_rxon with latest change. */
memcpy((void *)&il->active, &il->staging,
sizeof(struct il_rxon_cmd));
}
}
if (changes & BSS_CHANGED_BEACON_ENABLED) {
if (vif->bss_conf.enable_beacon) {
memcpy(il->staging.bssid_addr, bss_conf->bssid,
ETH_ALEN);
memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
il->ops->config_ap(il);
} else
il_set_no_assoc(il, vif);
}
if (changes & BSS_CHANGED_IBSS) {
ret = il->ops->manage_ibss_station(il, vif,
bss_conf->ibss_joined);
if (ret)
IL_ERR("failed to %s IBSS station %pM\n",
bss_conf->ibss_joined ? "add" : "remove",
bss_conf->bssid);
}
D_MAC80211("leave\n");
mutex_unlock(&il->mutex);
}
EXPORT_SYMBOL(il_mac_bss_info_changed);
irqreturn_t
il_isr(int irq, void *data)
{
struct il_priv *il = data;
u32 inta, inta_mask;
u32 inta_fh;
unsigned long flags;
if (!il)
return IRQ_NONE;
spin_lock_irqsave(&il->lock, flags);
/* Disable (but don't clear!) interrupts here to avoid
* back-to-back ISRs and sporadic interrupts from our NIC.
* If we have something to service, the tasklet will re-enable ints.
* If we *don't* have something, we'll re-enable before leaving here. */
inta_mask = _il_rd(il, CSR_INT_MASK); /* just for debug */
_il_wr(il, CSR_INT_MASK, 0x00000000);
/* Discover which interrupts are active/pending */
inta = _il_rd(il, CSR_INT);
inta_fh = _il_rd(il, CSR_FH_INT_STATUS);
/* Ignore interrupt if there's nothing in NIC to service.
* This may be due to IRQ shared with another device,
* or due to sporadic interrupts thrown from our NIC. */
if (!inta && !inta_fh) {
D_ISR("Ignore interrupt, inta == 0, inta_fh == 0\n");
goto none;
}
if (inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0) {
/* Hardware disappeared. It might have already raised
* an interrupt */
IL_WARN("HARDWARE GONE?? INTA == 0x%08x\n", inta);
goto unplugged;
}
D_ISR("ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n", inta, inta_mask,
inta_fh);
inta &= ~CSR_INT_BIT_SCD;
/* il_irq_tasklet() will service interrupts and re-enable them */
if (likely(inta || inta_fh))
tasklet_schedule(&il->irq_tasklet);
unplugged:
spin_unlock_irqrestore(&il->lock, flags);
return IRQ_HANDLED;
none:
/* re-enable interrupts here since we don't have anything to service. */
/* only Re-enable if disabled by irq */
if (test_bit(S_INT_ENABLED, &il->status))
il_enable_interrupts(il);
spin_unlock_irqrestore(&il->lock, flags);
return IRQ_NONE;
}
EXPORT_SYMBOL(il_isr);
/*
* il_tx_cmd_protection: Set rts/cts. 3945 and 4965 only share this
* function.
*/
void
il_tx_cmd_protection(struct il_priv *il, struct ieee80211_tx_info *info,
__le16 fc, __le32 *tx_flags)
{
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
*tx_flags |= TX_CMD_FLG_RTS_MSK;
*tx_flags &= ~TX_CMD_FLG_CTS_MSK;
*tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
if (!ieee80211_is_mgmt(fc))
return;
switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) {
case cpu_to_le16(IEEE80211_STYPE_AUTH):
case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
case cpu_to_le16(IEEE80211_STYPE_ASSOC_REQ):
case cpu_to_le16(IEEE80211_STYPE_REASSOC_REQ):
*tx_flags &= ~TX_CMD_FLG_RTS_MSK;
*tx_flags |= TX_CMD_FLG_CTS_MSK;
break;
}
} else if (info->control.rates[0].
flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
*tx_flags &= ~TX_CMD_FLG_RTS_MSK;
*tx_flags |= TX_CMD_FLG_CTS_MSK;
*tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
}
}
EXPORT_SYMBOL(il_tx_cmd_protection);