linux/drivers/gpu/drm/i915/gem/i915_gem_object.c
Chris Wilson d82b4b2621 drm/i915: Report all objects with allocated pages to the shrinker
Currently, we try to report to the shrinker the precise number of
objects (pages) that are available to be reaped at this moment. This
requires searching all objects with allocated pages to see if they
fulfill the search criteria, and this count is performed quite
frequently. (The shrinker tries to free ~128 pages on each invocation,
before which we count all the objects; counting takes longer than
unbinding the objects!) If we take the pragmatic view that with
sufficient desire, all objects are eventually reapable (they become
inactive, or no longer used as framebuffer etc), we can simply return
the count of pinned pages maintained during get_pages/put_pages rather
than walk the lists every time.

The downside is that we may (slightly) over-report the number of
objects/pages we could shrink and so penalize ourselves by shrinking
more than required. This is mitigated by keeping the order in which we
shrink objects such that we avoid penalizing active and frequently used
objects, and if memory is so tight that we need to free them we would
need to anyway.

v2: Only expose shrinkable objects to the shrinker; a small reduction in
not considering stolen and foreign objects.
v3: Restore the tracking from a "backup" copy from before the gem/ split

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190530203500.26272-2-chris@chris-wilson.co.uk
2019-05-31 21:23:51 +01:00

435 lines
12 KiB
C

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gem_context.h"
#include "i915_gem_object.h"
#include "i915_globals.h"
#include "intel_frontbuffer.h"
static struct i915_global_object {
struct i915_global base;
struct kmem_cache *slab_objects;
} global;
struct drm_i915_gem_object *i915_gem_object_alloc(void)
{
return kmem_cache_zalloc(global.slab_objects, GFP_KERNEL);
}
void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
return kmem_cache_free(global.slab_objects, obj);
}
static void
frontbuffer_retire(struct i915_active_request *active,
struct i915_request *request)
{
struct drm_i915_gem_object *obj =
container_of(active, typeof(*obj), frontbuffer_write);
intel_fb_obj_flush(obj, ORIGIN_CS);
}
void i915_gem_object_init(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_object_ops *ops)
{
mutex_init(&obj->mm.lock);
spin_lock_init(&obj->vma.lock);
INIT_LIST_HEAD(&obj->vma.list);
INIT_LIST_HEAD(&obj->lut_list);
INIT_LIST_HEAD(&obj->batch_pool_link);
init_rcu_head(&obj->rcu);
obj->ops = ops;
reservation_object_init(&obj->__builtin_resv);
obj->resv = &obj->__builtin_resv;
obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
i915_active_request_init(&obj->frontbuffer_write,
NULL, frontbuffer_retire);
obj->mm.madv = I915_MADV_WILLNEED;
INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
mutex_init(&obj->mm.get_page.lock);
}
/**
* Mark up the object's coherency levels for a given cache_level
* @obj: #drm_i915_gem_object
* @cache_level: cache level
*/
void i915_gem_object_set_cache_coherency(struct drm_i915_gem_object *obj,
unsigned int cache_level)
{
obj->cache_level = cache_level;
if (cache_level != I915_CACHE_NONE)
obj->cache_coherent = (I915_BO_CACHE_COHERENT_FOR_READ |
I915_BO_CACHE_COHERENT_FOR_WRITE);
else if (HAS_LLC(to_i915(obj->base.dev)))
obj->cache_coherent = I915_BO_CACHE_COHERENT_FOR_READ;
else
obj->cache_coherent = 0;
obj->cache_dirty =
!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE);
}
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
struct drm_i915_private *i915 = to_i915(gem->dev);
struct drm_i915_gem_object *obj = to_intel_bo(gem);
struct drm_i915_file_private *fpriv = file->driver_priv;
struct i915_lut_handle *lut, *ln;
mutex_lock(&i915->drm.struct_mutex);
list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
struct i915_gem_context *ctx = lut->ctx;
struct i915_vma *vma;
GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
if (ctx->file_priv != fpriv)
continue;
vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
GEM_BUG_ON(vma->obj != obj);
/* We allow the process to have multiple handles to the same
* vma, in the same fd namespace, by virtue of flink/open.
*/
GEM_BUG_ON(!vma->open_count);
if (!--vma->open_count && !i915_vma_is_ggtt(vma))
i915_vma_close(vma);
list_del(&lut->obj_link);
list_del(&lut->ctx_link);
i915_lut_handle_free(lut);
i915_gem_object_put(obj);
}
mutex_unlock(&i915->drm.struct_mutex);
}
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
/*
* If we are the last user of the backing storage (be it shmemfs
* pages or stolen etc), we know that the pages are going to be
* immediately released. In this case, we can then skip copying
* back the contents from the GPU.
*/
if (!i915_gem_object_is_shrinkable(obj))
return false;
if (obj->mm.madv != I915_MADV_WILLNEED)
return false;
if (!obj->base.filp)
return true;
/* At first glance, this looks racy, but then again so would be
* userspace racing mmap against close. However, the first external
* reference to the filp can only be obtained through the
* i915_gem_mmap_ioctl() which safeguards us against the user
* acquiring such a reference whilst we are in the middle of
* freeing the object.
*/
return file_count(obj->base.filp) == 1;
}
static void __i915_gem_free_objects(struct drm_i915_private *i915,
struct llist_node *freed)
{
struct drm_i915_gem_object *obj, *on;
intel_wakeref_t wakeref;
wakeref = intel_runtime_pm_get(i915);
llist_for_each_entry_safe(obj, on, freed, freed) {
struct i915_vma *vma, *vn;
trace_i915_gem_object_destroy(obj);
mutex_lock(&i915->drm.struct_mutex);
GEM_BUG_ON(i915_gem_object_is_active(obj));
list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) {
GEM_BUG_ON(i915_vma_is_active(vma));
vma->flags &= ~I915_VMA_PIN_MASK;
i915_vma_destroy(vma);
}
GEM_BUG_ON(!list_empty(&obj->vma.list));
GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree));
/*
* This serializes freeing with the shrinker. Since the free
* is delayed, first by RCU then by the workqueue, we want the
* shrinker to be able to free pages of unreferenced objects,
* or else we may oom whilst there are plenty of deferred
* freed objects.
*/
if (i915_gem_object_has_pages(obj) &&
i915_gem_object_is_shrinkable(obj)) {
spin_lock(&i915->mm.obj_lock);
list_del_init(&obj->mm.link);
spin_unlock(&i915->mm.obj_lock);
}
mutex_unlock(&i915->drm.struct_mutex);
GEM_BUG_ON(obj->bind_count);
GEM_BUG_ON(obj->userfault_count);
GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
GEM_BUG_ON(!list_empty(&obj->lut_list));
if (obj->ops->release)
obj->ops->release(obj);
if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
atomic_set(&obj->mm.pages_pin_count, 0);
__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
GEM_BUG_ON(i915_gem_object_has_pages(obj));
if (obj->base.import_attach)
drm_prime_gem_destroy(&obj->base, NULL);
reservation_object_fini(&obj->__builtin_resv);
drm_gem_object_release(&obj->base);
bitmap_free(obj->bit_17);
i915_gem_object_free(obj);
GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
atomic_dec(&i915->mm.free_count);
cond_resched();
}
intel_runtime_pm_put(i915, wakeref);
}
void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
struct llist_node *freed;
/* Free the oldest, most stale object to keep the free_list short */
freed = NULL;
if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
/* Only one consumer of llist_del_first() allowed */
spin_lock(&i915->mm.free_lock);
freed = llist_del_first(&i915->mm.free_list);
spin_unlock(&i915->mm.free_lock);
}
if (unlikely(freed)) {
freed->next = NULL;
__i915_gem_free_objects(i915, freed);
}
}
static void __i915_gem_free_work(struct work_struct *work)
{
struct drm_i915_private *i915 =
container_of(work, struct drm_i915_private, mm.free_work);
struct llist_node *freed;
/*
* All file-owned VMA should have been released by this point through
* i915_gem_close_object(), or earlier by i915_gem_context_close().
* However, the object may also be bound into the global GTT (e.g.
* older GPUs without per-process support, or for direct access through
* the GTT either for the user or for scanout). Those VMA still need to
* unbound now.
*/
spin_lock(&i915->mm.free_lock);
while ((freed = llist_del_all(&i915->mm.free_list))) {
spin_unlock(&i915->mm.free_lock);
__i915_gem_free_objects(i915, freed);
if (need_resched())
return;
spin_lock(&i915->mm.free_lock);
}
spin_unlock(&i915->mm.free_lock);
}
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
struct drm_i915_gem_object *obj =
container_of(head, typeof(*obj), rcu);
struct drm_i915_private *i915 = to_i915(obj->base.dev);
/*
* We reuse obj->rcu for the freed list, so we had better not treat
* it like a rcu_head from this point forwards. And we expect all
* objects to be freed via this path.
*/
destroy_rcu_head(&obj->rcu);
/*
* Since we require blocking on struct_mutex to unbind the freed
* object from the GPU before releasing resources back to the
* system, we can not do that directly from the RCU callback (which may
* be a softirq context), but must instead then defer that work onto a
* kthread. We use the RCU callback rather than move the freed object
* directly onto the work queue so that we can mix between using the
* worker and performing frees directly from subsequent allocations for
* crude but effective memory throttling.
*/
if (llist_add(&obj->freed, &i915->mm.free_list))
queue_work(i915->wq, &i915->mm.free_work);
}
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
if (obj->mm.quirked)
__i915_gem_object_unpin_pages(obj);
if (discard_backing_storage(obj)) {
struct drm_i915_private *i915 = to_i915(obj->base.dev);
obj->mm.madv = I915_MADV_DONTNEED;
if (i915_gem_object_has_pages(obj)) {
spin_lock(&i915->mm.obj_lock);
list_move_tail(&obj->mm.link, &i915->mm.purge_list);
spin_unlock(&i915->mm.obj_lock);
}
}
/*
* Before we free the object, make sure any pure RCU-only
* read-side critical sections are complete, e.g.
* i915_gem_busy_ioctl(). For the corresponding synchronized
* lookup see i915_gem_object_lookup_rcu().
*/
atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
}
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
return (domain == I915_GEM_DOMAIN_GTT ?
obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
return !(obj->cache_level == I915_CACHE_NONE ||
obj->cache_level == I915_CACHE_WT);
}
void
i915_gem_object_flush_write_domain(struct drm_i915_gem_object *obj,
unsigned int flush_domains)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct i915_vma *vma;
assert_object_held(obj);
if (!(obj->write_domain & flush_domains))
return;
switch (obj->write_domain) {
case I915_GEM_DOMAIN_GTT:
i915_gem_flush_ggtt_writes(dev_priv);
intel_fb_obj_flush(obj,
fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
for_each_ggtt_vma(vma, obj) {
if (vma->iomap)
continue;
i915_vma_unset_ggtt_write(vma);
}
break;
case I915_GEM_DOMAIN_WC:
wmb();
break;
case I915_GEM_DOMAIN_CPU:
i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
break;
case I915_GEM_DOMAIN_RENDER:
if (gpu_write_needs_clflush(obj))
obj->cache_dirty = true;
break;
}
obj->write_domain = 0;
}
void i915_gem_init__objects(struct drm_i915_private *i915)
{
INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}
static void i915_global_objects_shrink(void)
{
kmem_cache_shrink(global.slab_objects);
}
static void i915_global_objects_exit(void)
{
kmem_cache_destroy(global.slab_objects);
}
static struct i915_global_object global = { {
.shrink = i915_global_objects_shrink,
.exit = i915_global_objects_exit,
} };
int __init i915_global_objects_init(void)
{
global.slab_objects =
KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
if (!global.slab_objects)
return -ENOMEM;
i915_global_register(&global.base);
return 0;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/huge_gem_object.c"
#include "selftests/huge_pages.c"
#include "selftests/i915_gem_object.c"
#include "selftests/i915_gem_coherency.c"
#endif