forked from Minki/linux
3e33ee9e08
Fix cpufreq_gov_ondemand to skip CPU where another governor is used. The bug present itself as NULL pointer access on the mutex_lock() call, an can be reproduced on an SMP machine by setting the default governor to anything other than ondemand, setting a single CPU's governor to ondemand, then changing the sample rate by writing on: > /sys/devices/system/cpu/cpufreq/ondemand/sampling_rate Backtrace: Nov 26 17:36:54 balto kernel: [ 839.585241] BUG: unable to handle kernel NULL pointer dereference at (null) Nov 26 17:36:54 balto kernel: [ 839.585311] IP: [<ffffffff8174e082>] __mutex_lock_slowpath+0xb2/0x170 [snip] Nov 26 17:36:54 balto kernel: [ 839.587005] Call Trace: Nov 26 17:36:54 balto kernel: [ 839.587030] [<ffffffff8174da82>] mutex_lock+0x22/0x40 Nov 26 17:36:54 balto kernel: [ 839.587067] [<ffffffff81610b8f>] store_sampling_rate+0xbf/0x150 Nov 26 17:36:54 balto kernel: [ 839.587110] [<ffffffff81031e9c>] ? __do_page_fault+0x1cc/0x4c0 Nov 26 17:36:54 balto kernel: [ 839.587153] [<ffffffff813309bf>] kobj_attr_store+0xf/0x20 Nov 26 17:36:54 balto kernel: [ 839.587192] [<ffffffff811bb62d>] sysfs_write_file+0xcd/0x140 Nov 26 17:36:54 balto kernel: [ 839.587234] [<ffffffff8114c12c>] vfs_write+0xac/0x180 Nov 26 17:36:54 balto kernel: [ 839.587271] [<ffffffff8114c472>] sys_write+0x52/0xa0 Nov 26 17:36:54 balto kernel: [ 839.587306] [<ffffffff810321ce>] ? do_page_fault+0xe/0x10 Nov 26 17:36:54 balto kernel: [ 839.587345] [<ffffffff81751202>] system_call_fastpath+0x16/0x1b Signed-off-by: Fabio Baltieri <fabio.baltieri@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
543 lines
15 KiB
C
543 lines
15 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_ondemand.c
|
|
*
|
|
* Copyright (C) 2001 Russell King
|
|
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
|
|
* Jun Nakajima <jun.nakajima@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/percpu-defs.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/types.h>
|
|
|
|
#include "cpufreq_governor.h"
|
|
|
|
/* On-demand governor macors */
|
|
#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
|
|
#define DEF_FREQUENCY_UP_THRESHOLD (80)
|
|
#define DEF_SAMPLING_DOWN_FACTOR (1)
|
|
#define MAX_SAMPLING_DOWN_FACTOR (100000)
|
|
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
|
|
#define MICRO_FREQUENCY_UP_THRESHOLD (95)
|
|
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
|
|
#define MIN_FREQUENCY_UP_THRESHOLD (11)
|
|
#define MAX_FREQUENCY_UP_THRESHOLD (100)
|
|
|
|
static struct dbs_data od_dbs_data;
|
|
static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
|
|
|
|
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
|
static struct cpufreq_governor cpufreq_gov_ondemand;
|
|
#endif
|
|
|
|
static struct od_dbs_tuners od_tuners = {
|
|
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
|
|
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
|
|
.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
|
|
.ignore_nice = 0,
|
|
.powersave_bias = 0,
|
|
};
|
|
|
|
static void ondemand_powersave_bias_init_cpu(int cpu)
|
|
{
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
|
|
|
|
dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
|
|
dbs_info->freq_lo = 0;
|
|
}
|
|
|
|
/*
|
|
* Not all CPUs want IO time to be accounted as busy; this depends on how
|
|
* efficient idling at a higher frequency/voltage is.
|
|
* Pavel Machek says this is not so for various generations of AMD and old
|
|
* Intel systems.
|
|
* Mike Chan (androidlcom) calis this is also not true for ARM.
|
|
* Because of this, whitelist specific known (series) of CPUs by default, and
|
|
* leave all others up to the user.
|
|
*/
|
|
static int should_io_be_busy(void)
|
|
{
|
|
#if defined(CONFIG_X86)
|
|
/*
|
|
* For Intel, Core 2 (model 15) andl later have an efficient idle.
|
|
*/
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
|
|
boot_cpu_data.x86 == 6 &&
|
|
boot_cpu_data.x86_model >= 15)
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find right freq to be set now with powersave_bias on.
|
|
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
|
|
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
|
|
*/
|
|
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
|
|
unsigned int freq_next, unsigned int relation)
|
|
{
|
|
unsigned int freq_req, freq_reduc, freq_avg;
|
|
unsigned int freq_hi, freq_lo;
|
|
unsigned int index = 0;
|
|
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
|
|
policy->cpu);
|
|
|
|
if (!dbs_info->freq_table) {
|
|
dbs_info->freq_lo = 0;
|
|
dbs_info->freq_lo_jiffies = 0;
|
|
return freq_next;
|
|
}
|
|
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
|
|
relation, &index);
|
|
freq_req = dbs_info->freq_table[index].frequency;
|
|
freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
|
|
freq_avg = freq_req - freq_reduc;
|
|
|
|
/* Find freq bounds for freq_avg in freq_table */
|
|
index = 0;
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
|
|
CPUFREQ_RELATION_H, &index);
|
|
freq_lo = dbs_info->freq_table[index].frequency;
|
|
index = 0;
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
|
|
CPUFREQ_RELATION_L, &index);
|
|
freq_hi = dbs_info->freq_table[index].frequency;
|
|
|
|
/* Find out how long we have to be in hi and lo freqs */
|
|
if (freq_hi == freq_lo) {
|
|
dbs_info->freq_lo = 0;
|
|
dbs_info->freq_lo_jiffies = 0;
|
|
return freq_lo;
|
|
}
|
|
jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
|
|
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
|
|
jiffies_hi += ((freq_hi - freq_lo) / 2);
|
|
jiffies_hi /= (freq_hi - freq_lo);
|
|
jiffies_lo = jiffies_total - jiffies_hi;
|
|
dbs_info->freq_lo = freq_lo;
|
|
dbs_info->freq_lo_jiffies = jiffies_lo;
|
|
dbs_info->freq_hi_jiffies = jiffies_hi;
|
|
return freq_hi;
|
|
}
|
|
|
|
static void ondemand_powersave_bias_init(void)
|
|
{
|
|
int i;
|
|
for_each_online_cpu(i) {
|
|
ondemand_powersave_bias_init_cpu(i);
|
|
}
|
|
}
|
|
|
|
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
|
|
{
|
|
if (od_tuners.powersave_bias)
|
|
freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
|
|
else if (p->cur == p->max)
|
|
return;
|
|
|
|
__cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
|
|
CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
|
|
}
|
|
|
|
/*
|
|
* Every sampling_rate, we check, if current idle time is less than 20%
|
|
* (default), then we try to increase frequency Every sampling_rate, we look for
|
|
* a the lowest frequency which can sustain the load while keeping idle time
|
|
* over 30%. If such a frequency exist, we try to decrease to this frequency.
|
|
*
|
|
* Any frequency increase takes it to the maximum frequency. Frequency reduction
|
|
* happens at minimum steps of 5% (default) of current frequency
|
|
*/
|
|
static void od_check_cpu(int cpu, unsigned int load_freq)
|
|
{
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
|
|
struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
|
|
|
|
dbs_info->freq_lo = 0;
|
|
|
|
/* Check for frequency increase */
|
|
if (load_freq > od_tuners.up_threshold * policy->cur) {
|
|
/* If switching to max speed, apply sampling_down_factor */
|
|
if (policy->cur < policy->max)
|
|
dbs_info->rate_mult =
|
|
od_tuners.sampling_down_factor;
|
|
dbs_freq_increase(policy, policy->max);
|
|
return;
|
|
}
|
|
|
|
/* Check for frequency decrease */
|
|
/* if we cannot reduce the frequency anymore, break out early */
|
|
if (policy->cur == policy->min)
|
|
return;
|
|
|
|
/*
|
|
* The optimal frequency is the frequency that is the lowest that can
|
|
* support the current CPU usage without triggering the up policy. To be
|
|
* safe, we focus 10 points under the threshold.
|
|
*/
|
|
if (load_freq < (od_tuners.up_threshold - od_tuners.down_differential) *
|
|
policy->cur) {
|
|
unsigned int freq_next;
|
|
freq_next = load_freq / (od_tuners.up_threshold -
|
|
od_tuners.down_differential);
|
|
|
|
/* No longer fully busy, reset rate_mult */
|
|
dbs_info->rate_mult = 1;
|
|
|
|
if (freq_next < policy->min)
|
|
freq_next = policy->min;
|
|
|
|
if (!od_tuners.powersave_bias) {
|
|
__cpufreq_driver_target(policy, freq_next,
|
|
CPUFREQ_RELATION_L);
|
|
} else {
|
|
int freq = powersave_bias_target(policy, freq_next,
|
|
CPUFREQ_RELATION_L);
|
|
__cpufreq_driver_target(policy, freq,
|
|
CPUFREQ_RELATION_L);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void od_dbs_timer(struct work_struct *work)
|
|
{
|
|
struct od_cpu_dbs_info_s *dbs_info =
|
|
container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
|
|
unsigned int cpu = dbs_info->cdbs.cpu;
|
|
int delay, sample_type = dbs_info->sample_type;
|
|
|
|
mutex_lock(&dbs_info->cdbs.timer_mutex);
|
|
|
|
/* Common NORMAL_SAMPLE setup */
|
|
dbs_info->sample_type = OD_NORMAL_SAMPLE;
|
|
if (sample_type == OD_SUB_SAMPLE) {
|
|
delay = dbs_info->freq_lo_jiffies;
|
|
__cpufreq_driver_target(dbs_info->cdbs.cur_policy,
|
|
dbs_info->freq_lo, CPUFREQ_RELATION_H);
|
|
} else {
|
|
dbs_check_cpu(&od_dbs_data, cpu);
|
|
if (dbs_info->freq_lo) {
|
|
/* Setup timer for SUB_SAMPLE */
|
|
dbs_info->sample_type = OD_SUB_SAMPLE;
|
|
delay = dbs_info->freq_hi_jiffies;
|
|
} else {
|
|
delay = delay_for_sampling_rate(od_tuners.sampling_rate
|
|
* dbs_info->rate_mult);
|
|
}
|
|
}
|
|
|
|
schedule_delayed_work_on(cpu, &dbs_info->cdbs.work, delay);
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
}
|
|
|
|
/************************** sysfs interface ************************/
|
|
|
|
static ssize_t show_sampling_rate_min(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
|
|
}
|
|
|
|
/**
|
|
* update_sampling_rate - update sampling rate effective immediately if needed.
|
|
* @new_rate: new sampling rate
|
|
*
|
|
* If new rate is smaller than the old, simply updaing
|
|
* dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
|
|
* original sampling_rate was 1 second and the requested new sampling rate is 10
|
|
* ms because the user needs immediate reaction from ondemand governor, but not
|
|
* sure if higher frequency will be required or not, then, the governor may
|
|
* change the sampling rate too late; up to 1 second later. Thus, if we are
|
|
* reducing the sampling rate, we need to make the new value effective
|
|
* immediately.
|
|
*/
|
|
static void update_sampling_rate(unsigned int new_rate)
|
|
{
|
|
int cpu;
|
|
|
|
od_tuners.sampling_rate = new_rate = max(new_rate,
|
|
od_dbs_data.min_sampling_rate);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct cpufreq_policy *policy;
|
|
struct od_cpu_dbs_info_s *dbs_info;
|
|
unsigned long next_sampling, appointed_at;
|
|
|
|
policy = cpufreq_cpu_get(cpu);
|
|
if (!policy)
|
|
continue;
|
|
if (policy->governor != &cpufreq_gov_ondemand) {
|
|
cpufreq_cpu_put(policy);
|
|
continue;
|
|
}
|
|
dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
|
|
cpufreq_cpu_put(policy);
|
|
|
|
mutex_lock(&dbs_info->cdbs.timer_mutex);
|
|
|
|
if (!delayed_work_pending(&dbs_info->cdbs.work)) {
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
continue;
|
|
}
|
|
|
|
next_sampling = jiffies + usecs_to_jiffies(new_rate);
|
|
appointed_at = dbs_info->cdbs.work.timer.expires;
|
|
|
|
if (time_before(next_sampling, appointed_at)) {
|
|
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
cancel_delayed_work_sync(&dbs_info->cdbs.work);
|
|
mutex_lock(&dbs_info->cdbs.timer_mutex);
|
|
|
|
schedule_delayed_work_on(dbs_info->cdbs.cpu,
|
|
&dbs_info->cdbs.work,
|
|
usecs_to_jiffies(new_rate));
|
|
|
|
}
|
|
mutex_unlock(&dbs_info->cdbs.timer_mutex);
|
|
}
|
|
}
|
|
|
|
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
update_sampling_rate(input);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
od_tuners.io_is_busy = !!input;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
|
|
input < MIN_FREQUENCY_UP_THRESHOLD) {
|
|
return -EINVAL;
|
|
}
|
|
od_tuners.up_threshold = input;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_sampling_down_factor(struct kobject *a,
|
|
struct attribute *b, const char *buf, size_t count)
|
|
{
|
|
unsigned int input, j;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
|
|
return -EINVAL;
|
|
od_tuners.sampling_down_factor = input;
|
|
|
|
/* Reset down sampling multiplier in case it was active */
|
|
for_each_online_cpu(j) {
|
|
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
|
|
j);
|
|
dbs_info->rate_mult = 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
unsigned int j;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 1)
|
|
input = 1;
|
|
|
|
if (input == od_tuners.ignore_nice) { /* nothing to do */
|
|
return count;
|
|
}
|
|
od_tuners.ignore_nice = input;
|
|
|
|
/* we need to re-evaluate prev_cpu_idle */
|
|
for_each_online_cpu(j) {
|
|
struct od_cpu_dbs_info_s *dbs_info;
|
|
dbs_info = &per_cpu(od_cpu_dbs_info, j);
|
|
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
|
|
&dbs_info->cdbs.prev_cpu_wall);
|
|
if (od_tuners.ignore_nice)
|
|
dbs_info->cdbs.prev_cpu_nice =
|
|
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
|
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 1000)
|
|
input = 1000;
|
|
|
|
od_tuners.powersave_bias = input;
|
|
ondemand_powersave_bias_init();
|
|
return count;
|
|
}
|
|
|
|
show_one(od, sampling_rate, sampling_rate);
|
|
show_one(od, io_is_busy, io_is_busy);
|
|
show_one(od, up_threshold, up_threshold);
|
|
show_one(od, sampling_down_factor, sampling_down_factor);
|
|
show_one(od, ignore_nice_load, ignore_nice);
|
|
show_one(od, powersave_bias, powersave_bias);
|
|
|
|
define_one_global_rw(sampling_rate);
|
|
define_one_global_rw(io_is_busy);
|
|
define_one_global_rw(up_threshold);
|
|
define_one_global_rw(sampling_down_factor);
|
|
define_one_global_rw(ignore_nice_load);
|
|
define_one_global_rw(powersave_bias);
|
|
define_one_global_ro(sampling_rate_min);
|
|
|
|
static struct attribute *dbs_attributes[] = {
|
|
&sampling_rate_min.attr,
|
|
&sampling_rate.attr,
|
|
&up_threshold.attr,
|
|
&sampling_down_factor.attr,
|
|
&ignore_nice_load.attr,
|
|
&powersave_bias.attr,
|
|
&io_is_busy.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group od_attr_group = {
|
|
.attrs = dbs_attributes,
|
|
.name = "ondemand",
|
|
};
|
|
|
|
/************************** sysfs end ************************/
|
|
|
|
define_get_cpu_dbs_routines(od_cpu_dbs_info);
|
|
|
|
static struct od_ops od_ops = {
|
|
.io_busy = should_io_be_busy,
|
|
.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
|
|
.powersave_bias_target = powersave_bias_target,
|
|
.freq_increase = dbs_freq_increase,
|
|
};
|
|
|
|
static struct dbs_data od_dbs_data = {
|
|
.governor = GOV_ONDEMAND,
|
|
.attr_group = &od_attr_group,
|
|
.tuners = &od_tuners,
|
|
.get_cpu_cdbs = get_cpu_cdbs,
|
|
.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
|
|
.gov_dbs_timer = od_dbs_timer,
|
|
.gov_check_cpu = od_check_cpu,
|
|
.gov_ops = &od_ops,
|
|
};
|
|
|
|
static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
|
unsigned int event)
|
|
{
|
|
return cpufreq_governor_dbs(&od_dbs_data, policy, event);
|
|
}
|
|
|
|
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
|
static
|
|
#endif
|
|
struct cpufreq_governor cpufreq_gov_ondemand = {
|
|
.name = "ondemand",
|
|
.governor = od_cpufreq_governor_dbs,
|
|
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init cpufreq_gov_dbs_init(void)
|
|
{
|
|
u64 idle_time;
|
|
int cpu = get_cpu();
|
|
|
|
mutex_init(&od_dbs_data.mutex);
|
|
idle_time = get_cpu_idle_time_us(cpu, NULL);
|
|
put_cpu();
|
|
if (idle_time != -1ULL) {
|
|
/* Idle micro accounting is supported. Use finer thresholds */
|
|
od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
|
|
od_tuners.down_differential = MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
|
|
/*
|
|
* In nohz/micro accounting case we set the minimum frequency
|
|
* not depending on HZ, but fixed (very low). The deferred
|
|
* timer might skip some samples if idle/sleeping as needed.
|
|
*/
|
|
od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
|
|
} else {
|
|
/* For correct statistics, we need 10 ticks for each measure */
|
|
od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
|
|
jiffies_to_usecs(10);
|
|
}
|
|
|
|
return cpufreq_register_governor(&cpufreq_gov_ondemand);
|
|
}
|
|
|
|
static void __exit cpufreq_gov_dbs_exit(void)
|
|
{
|
|
cpufreq_unregister_governor(&cpufreq_gov_ondemand);
|
|
}
|
|
|
|
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
|
|
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
|
|
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
|
|
"Low Latency Frequency Transition capable processors");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
|
fs_initcall(cpufreq_gov_dbs_init);
|
|
#else
|
|
module_init(cpufreq_gov_dbs_init);
|
|
#endif
|
|
module_exit(cpufreq_gov_dbs_exit);
|