forked from Minki/linux
bfe8df3d31
Optionally add a boot delay after each kernel printk() call, crudely measured in milliseconds, with a maximum delay of 10 seconds per printk. Enable CONFIG_BOOT_PRINTK_DELAY=y and then add (e.g.): "lpj=loops_per_jiffy boot_delay=100" to the kernel command line. It has been useful in cases like "during boot, my machine just reboots or the screen goes black" by slowing down printk, (and adding initcall_debug), we can usually see the last thing that happened before the lights went out which is usually a valuable clue. [akpm@linux-foundation.org: not all architectures implement CONFIG_HZ] [akpm@linux-foundation.org: fix lots of stuff] [bunk@stusta.de: kernel/printk.c: make 2 variables static] [heiko.carstens@de.ibm.com: fix slow down printk on boot compile error] Signed-off-by: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Dave Jones <davej@redhat.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
174 lines
4.7 KiB
C
174 lines
4.7 KiB
C
/* calibrate.c: default delay calibration
|
|
*
|
|
* Excised from init/main.c
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/jiffies.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/timex.h>
|
|
|
|
unsigned long preset_lpj;
|
|
static int __init lpj_setup(char *str)
|
|
{
|
|
preset_lpj = simple_strtoul(str,NULL,0);
|
|
return 1;
|
|
}
|
|
|
|
__setup("lpj=", lpj_setup);
|
|
|
|
#ifdef ARCH_HAS_READ_CURRENT_TIMER
|
|
|
|
/* This routine uses the read_current_timer() routine and gets the
|
|
* loops per jiffy directly, instead of guessing it using delay().
|
|
* Also, this code tries to handle non-maskable asynchronous events
|
|
* (like SMIs)
|
|
*/
|
|
#define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
|
|
#define MAX_DIRECT_CALIBRATION_RETRIES 5
|
|
|
|
static unsigned long __devinit calibrate_delay_direct(void)
|
|
{
|
|
unsigned long pre_start, start, post_start;
|
|
unsigned long pre_end, end, post_end;
|
|
unsigned long start_jiffies;
|
|
unsigned long tsc_rate_min, tsc_rate_max;
|
|
unsigned long good_tsc_sum = 0;
|
|
unsigned long good_tsc_count = 0;
|
|
int i;
|
|
|
|
if (read_current_timer(&pre_start) < 0 )
|
|
return 0;
|
|
|
|
/*
|
|
* A simple loop like
|
|
* while ( jiffies < start_jiffies+1)
|
|
* start = read_current_timer();
|
|
* will not do. As we don't really know whether jiffy switch
|
|
* happened first or timer_value was read first. And some asynchronous
|
|
* event can happen between these two events introducing errors in lpj.
|
|
*
|
|
* So, we do
|
|
* 1. pre_start <- When we are sure that jiffy switch hasn't happened
|
|
* 2. check jiffy switch
|
|
* 3. start <- timer value before or after jiffy switch
|
|
* 4. post_start <- When we are sure that jiffy switch has happened
|
|
*
|
|
* Note, we don't know anything about order of 2 and 3.
|
|
* Now, by looking at post_start and pre_start difference, we can
|
|
* check whether any asynchronous event happened or not
|
|
*/
|
|
|
|
for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
|
|
pre_start = 0;
|
|
read_current_timer(&start);
|
|
start_jiffies = jiffies;
|
|
while (jiffies <= (start_jiffies + 1)) {
|
|
pre_start = start;
|
|
read_current_timer(&start);
|
|
}
|
|
read_current_timer(&post_start);
|
|
|
|
pre_end = 0;
|
|
end = post_start;
|
|
while (jiffies <=
|
|
(start_jiffies + 1 + DELAY_CALIBRATION_TICKS)) {
|
|
pre_end = end;
|
|
read_current_timer(&end);
|
|
}
|
|
read_current_timer(&post_end);
|
|
|
|
tsc_rate_max = (post_end - pre_start) / DELAY_CALIBRATION_TICKS;
|
|
tsc_rate_min = (pre_end - post_start) / DELAY_CALIBRATION_TICKS;
|
|
|
|
/*
|
|
* If the upper limit and lower limit of the tsc_rate is
|
|
* >= 12.5% apart, redo calibration.
|
|
*/
|
|
if (pre_start != 0 && pre_end != 0 &&
|
|
(tsc_rate_max - tsc_rate_min) < (tsc_rate_max >> 3)) {
|
|
good_tsc_count++;
|
|
good_tsc_sum += tsc_rate_max;
|
|
}
|
|
}
|
|
|
|
if (good_tsc_count)
|
|
return (good_tsc_sum/good_tsc_count);
|
|
|
|
printk(KERN_WARNING "calibrate_delay_direct() failed to get a good "
|
|
"estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n");
|
|
return 0;
|
|
}
|
|
#else
|
|
static unsigned long __devinit calibrate_delay_direct(void) {return 0;}
|
|
#endif
|
|
|
|
/*
|
|
* This is the number of bits of precision for the loops_per_jiffy. Each
|
|
* bit takes on average 1.5/HZ seconds. This (like the original) is a little
|
|
* better than 1%
|
|
*/
|
|
#define LPS_PREC 8
|
|
|
|
void __devinit calibrate_delay(void)
|
|
{
|
|
unsigned long ticks, loopbit;
|
|
int lps_precision = LPS_PREC;
|
|
|
|
if (preset_lpj) {
|
|
loops_per_jiffy = preset_lpj;
|
|
printk("Calibrating delay loop (skipped)... "
|
|
"%lu.%02lu BogoMIPS preset\n",
|
|
loops_per_jiffy/(500000/HZ),
|
|
(loops_per_jiffy/(5000/HZ)) % 100);
|
|
} else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
|
|
printk("Calibrating delay using timer specific routine.. ");
|
|
printk("%lu.%02lu BogoMIPS (lpj=%lu)\n",
|
|
loops_per_jiffy/(500000/HZ),
|
|
(loops_per_jiffy/(5000/HZ)) % 100,
|
|
loops_per_jiffy);
|
|
} else {
|
|
loops_per_jiffy = (1<<12);
|
|
|
|
printk(KERN_DEBUG "Calibrating delay loop... ");
|
|
while ((loops_per_jiffy <<= 1) != 0) {
|
|
/* wait for "start of" clock tick */
|
|
ticks = jiffies;
|
|
while (ticks == jiffies)
|
|
/* nothing */;
|
|
/* Go .. */
|
|
ticks = jiffies;
|
|
__delay(loops_per_jiffy);
|
|
ticks = jiffies - ticks;
|
|
if (ticks)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Do a binary approximation to get loops_per_jiffy set to
|
|
* equal one clock (up to lps_precision bits)
|
|
*/
|
|
loops_per_jiffy >>= 1;
|
|
loopbit = loops_per_jiffy;
|
|
while (lps_precision-- && (loopbit >>= 1)) {
|
|
loops_per_jiffy |= loopbit;
|
|
ticks = jiffies;
|
|
while (ticks == jiffies)
|
|
/* nothing */;
|
|
ticks = jiffies;
|
|
__delay(loops_per_jiffy);
|
|
if (jiffies != ticks) /* longer than 1 tick */
|
|
loops_per_jiffy &= ~loopbit;
|
|
}
|
|
|
|
/* Round the value and print it */
|
|
printk("%lu.%02lu BogoMIPS (lpj=%lu)\n",
|
|
loops_per_jiffy/(500000/HZ),
|
|
(loops_per_jiffy/(5000/HZ)) % 100,
|
|
loops_per_jiffy);
|
|
}
|
|
|
|
}
|