linux/arch/x86/mm/init.c
Yinghai Lu aeebe84cc9 x86, mm: Use big page size for small memory range
We could map small range in the middle of big range at first, so should use
big page size at first to avoid using small page size to break down page table.

Only can set big page bit when that range has ram area around it.

-v2: fix 32bit boundary checking. We can not count ram above max_low_pfn
	for 32 bit.

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-19-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-11-17 11:59:16 -08:00

608 lines
16 KiB
C

#include <linux/gfp.h>
#include <linux/initrd.h>
#include <linux/ioport.h>
#include <linux/swap.h>
#include <linux/memblock.h>
#include <linux/bootmem.h> /* for max_low_pfn */
#include <asm/cacheflush.h>
#include <asm/e820.h>
#include <asm/init.h>
#include <asm/page.h>
#include <asm/page_types.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/tlb.h>
#include <asm/proto.h>
#include <asm/dma.h> /* for MAX_DMA_PFN */
unsigned long __initdata pgt_buf_start;
unsigned long __meminitdata pgt_buf_end;
unsigned long __meminitdata pgt_buf_top;
int after_bootmem;
int direct_gbpages
#ifdef CONFIG_DIRECT_GBPAGES
= 1
#endif
;
struct map_range {
unsigned long start;
unsigned long end;
unsigned page_size_mask;
};
static int page_size_mask;
static void __init probe_page_size_mask(void)
{
#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
/*
* For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
* This will simplify cpa(), which otherwise needs to support splitting
* large pages into small in interrupt context, etc.
*/
if (direct_gbpages)
page_size_mask |= 1 << PG_LEVEL_1G;
if (cpu_has_pse)
page_size_mask |= 1 << PG_LEVEL_2M;
#endif
/* Enable PSE if available */
if (cpu_has_pse)
set_in_cr4(X86_CR4_PSE);
/* Enable PGE if available */
if (cpu_has_pge) {
set_in_cr4(X86_CR4_PGE);
__supported_pte_mask |= _PAGE_GLOBAL;
}
}
void __init native_pagetable_reserve(u64 start, u64 end)
{
memblock_reserve(start, end - start);
}
#ifdef CONFIG_X86_32
#define NR_RANGE_MR 3
#else /* CONFIG_X86_64 */
#define NR_RANGE_MR 5
#endif
static int __meminit save_mr(struct map_range *mr, int nr_range,
unsigned long start_pfn, unsigned long end_pfn,
unsigned long page_size_mask)
{
if (start_pfn < end_pfn) {
if (nr_range >= NR_RANGE_MR)
panic("run out of range for init_memory_mapping\n");
mr[nr_range].start = start_pfn<<PAGE_SHIFT;
mr[nr_range].end = end_pfn<<PAGE_SHIFT;
mr[nr_range].page_size_mask = page_size_mask;
nr_range++;
}
return nr_range;
}
/*
* adjust the page_size_mask for small range to go with
* big page size instead small one if nearby are ram too.
*/
static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
int nr_range)
{
int i;
for (i = 0; i < nr_range; i++) {
if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
!(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
unsigned long start = round_down(mr[i].start, PMD_SIZE);
unsigned long end = round_up(mr[i].end, PMD_SIZE);
#ifdef CONFIG_X86_32
if ((end >> PAGE_SHIFT) > max_low_pfn)
continue;
#endif
if (memblock_is_region_memory(start, end - start))
mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
}
if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
!(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
unsigned long start = round_down(mr[i].start, PUD_SIZE);
unsigned long end = round_up(mr[i].end, PUD_SIZE);
if (memblock_is_region_memory(start, end - start))
mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
}
}
}
static int __meminit split_mem_range(struct map_range *mr, int nr_range,
unsigned long start,
unsigned long end)
{
unsigned long start_pfn, end_pfn;
unsigned long pos;
int i;
/* head if not big page alignment ? */
start_pfn = start >> PAGE_SHIFT;
pos = start_pfn << PAGE_SHIFT;
#ifdef CONFIG_X86_32
/*
* Don't use a large page for the first 2/4MB of memory
* because there are often fixed size MTRRs in there
* and overlapping MTRRs into large pages can cause
* slowdowns.
*/
if (pos == 0)
end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
else
end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
<< (PMD_SHIFT - PAGE_SHIFT);
#else /* CONFIG_X86_64 */
end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
<< (PMD_SHIFT - PAGE_SHIFT);
#endif
if (end_pfn > (end >> PAGE_SHIFT))
end_pfn = end >> PAGE_SHIFT;
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
pos = end_pfn << PAGE_SHIFT;
}
/* big page (2M) range */
start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
<< (PMD_SHIFT - PAGE_SHIFT);
#ifdef CONFIG_X86_32
end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
#else /* CONFIG_X86_64 */
end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
<< (PUD_SHIFT - PAGE_SHIFT);
if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
#endif
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pos = end_pfn << PAGE_SHIFT;
}
#ifdef CONFIG_X86_64
/* big page (1G) range */
start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
<< (PUD_SHIFT - PAGE_SHIFT);
end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask &
((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
pos = end_pfn << PAGE_SHIFT;
}
/* tail is not big page (1G) alignment */
start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
<< (PMD_SHIFT - PAGE_SHIFT);
end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pos = end_pfn << PAGE_SHIFT;
}
#endif
/* tail is not big page (2M) alignment */
start_pfn = pos>>PAGE_SHIFT;
end_pfn = end>>PAGE_SHIFT;
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
/* try to merge same page size and continuous */
for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
unsigned long old_start;
if (mr[i].end != mr[i+1].start ||
mr[i].page_size_mask != mr[i+1].page_size_mask)
continue;
/* move it */
old_start = mr[i].start;
memmove(&mr[i], &mr[i+1],
(nr_range - 1 - i) * sizeof(struct map_range));
mr[i--].start = old_start;
nr_range--;
}
if (!after_bootmem)
adjust_range_page_size_mask(mr, nr_range);
for (i = 0; i < nr_range; i++)
printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
mr[i].start, mr[i].end - 1,
(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
(mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
return nr_range;
}
/*
* First calculate space needed for kernel direct mapping page tables to cover
* mr[0].start to mr[nr_range - 1].end, while accounting for possible 2M and 1GB
* pages. Then find enough contiguous space for those page tables.
*/
static unsigned long __init calculate_table_space_size(unsigned long start, unsigned long end)
{
int i;
unsigned long puds = 0, pmds = 0, ptes = 0, tables;
struct map_range mr[NR_RANGE_MR];
int nr_range;
memset(mr, 0, sizeof(mr));
nr_range = 0;
nr_range = split_mem_range(mr, nr_range, start, end);
for (i = 0; i < nr_range; i++) {
unsigned long range, extra;
range = mr[i].end - mr[i].start;
puds += (range + PUD_SIZE - 1) >> PUD_SHIFT;
if (mr[i].page_size_mask & (1 << PG_LEVEL_1G)) {
extra = range - ((range >> PUD_SHIFT) << PUD_SHIFT);
pmds += (extra + PMD_SIZE - 1) >> PMD_SHIFT;
} else {
pmds += (range + PMD_SIZE - 1) >> PMD_SHIFT;
}
if (mr[i].page_size_mask & (1 << PG_LEVEL_2M)) {
extra = range - ((range >> PMD_SHIFT) << PMD_SHIFT);
#ifdef CONFIG_X86_32
extra += PMD_SIZE;
#endif
ptes += (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
} else {
ptes += (range + PAGE_SIZE - 1) >> PAGE_SHIFT;
}
}
tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
#ifdef CONFIG_X86_32
/* for fixmap */
tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
#endif
return tables;
}
static unsigned long __init calculate_all_table_space_size(void)
{
unsigned long start_pfn, end_pfn;
unsigned long tables;
int i;
/* the ISA range is always mapped regardless of memory holes */
tables = calculate_table_space_size(0, ISA_END_ADDRESS);
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
u64 start = start_pfn << PAGE_SHIFT;
u64 end = end_pfn << PAGE_SHIFT;
if (end <= ISA_END_ADDRESS)
continue;
if (start < ISA_END_ADDRESS)
start = ISA_END_ADDRESS;
#ifdef CONFIG_X86_32
/* on 32 bit, we only map up to max_low_pfn */
if ((start >> PAGE_SHIFT) >= max_low_pfn)
continue;
if ((end >> PAGE_SHIFT) > max_low_pfn)
end = max_low_pfn << PAGE_SHIFT;
#endif
tables += calculate_table_space_size(start, end);
}
return tables;
}
static void __init find_early_table_space(unsigned long start,
unsigned long good_end,
unsigned long tables)
{
phys_addr_t base;
base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
if (!base)
panic("Cannot find space for the kernel page tables");
pgt_buf_start = base >> PAGE_SHIFT;
pgt_buf_end = pgt_buf_start;
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
}
static struct range pfn_mapped[E820_X_MAX];
static int nr_pfn_mapped;
static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
nr_pfn_mapped, start_pfn, end_pfn);
nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
max_pfn_mapped = max(max_pfn_mapped, end_pfn);
if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
max_low_pfn_mapped = max(max_low_pfn_mapped,
min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
}
bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
int i;
for (i = 0; i < nr_pfn_mapped; i++)
if ((start_pfn >= pfn_mapped[i].start) &&
(end_pfn <= pfn_mapped[i].end))
return true;
return false;
}
/*
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
* This runs before bootmem is initialized and gets pages directly from
* the physical memory. To access them they are temporarily mapped.
*/
unsigned long __init_refok init_memory_mapping(unsigned long start,
unsigned long end)
{
struct map_range mr[NR_RANGE_MR];
unsigned long ret = 0;
int nr_range, i;
pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
start, end - 1);
memset(mr, 0, sizeof(mr));
nr_range = split_mem_range(mr, 0, start, end);
for (i = 0; i < nr_range; i++)
ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
mr[i].page_size_mask);
#ifdef CONFIG_X86_32
early_ioremap_page_table_range_init();
load_cr3(swapper_pg_dir);
#endif
__flush_tlb_all();
add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
return ret >> PAGE_SHIFT;
}
/*
* Iterate through E820 memory map and create direct mappings for only E820_RAM
* regions. We cannot simply create direct mappings for all pfns from
* [0 to max_low_pfn) and [4GB to max_pfn) because of possible memory holes in
* high addresses that cannot be marked as UC by fixed/variable range MTRRs.
* Depending on the alignment of E820 ranges, this may possibly result in using
* smaller size (i.e. 4K instead of 2M or 1G) page tables.
*/
static void __init init_all_memory_mapping(void)
{
unsigned long start_pfn, end_pfn;
int i;
/* the ISA range is always mapped regardless of memory holes */
init_memory_mapping(0, ISA_END_ADDRESS);
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
u64 start = (u64)start_pfn << PAGE_SHIFT;
u64 end = (u64)end_pfn << PAGE_SHIFT;
if (end <= ISA_END_ADDRESS)
continue;
if (start < ISA_END_ADDRESS)
start = ISA_END_ADDRESS;
#ifdef CONFIG_X86_32
/* on 32 bit, we only map up to max_low_pfn */
if ((start >> PAGE_SHIFT) >= max_low_pfn)
continue;
if ((end >> PAGE_SHIFT) > max_low_pfn)
end = max_low_pfn << PAGE_SHIFT;
#endif
init_memory_mapping(start, end);
}
#ifdef CONFIG_X86_64
if (max_pfn > max_low_pfn) {
/* can we preseve max_low_pfn ?*/
max_low_pfn = max_pfn;
}
#endif
}
void __init init_mem_mapping(void)
{
unsigned long tables, good_end, end;
probe_page_size_mask();
/*
* Find space for the kernel direct mapping tables.
*
* Later we should allocate these tables in the local node of the
* memory mapped. Unfortunately this is done currently before the
* nodes are discovered.
*/
#ifdef CONFIG_X86_64
end = max_pfn << PAGE_SHIFT;
good_end = end;
#else
end = max_low_pfn << PAGE_SHIFT;
good_end = max_pfn_mapped << PAGE_SHIFT;
#endif
tables = calculate_all_table_space_size();
find_early_table_space(0, good_end, tables);
printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx] prealloc\n",
end - 1, pgt_buf_start << PAGE_SHIFT,
(pgt_buf_top << PAGE_SHIFT) - 1);
max_pfn_mapped = 0; /* will get exact value next */
init_all_memory_mapping();
/*
* Reserve the kernel pagetable pages we used (pgt_buf_start -
* pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
* so that they can be reused for other purposes.
*
* On native it just means calling memblock_reserve, on Xen it also
* means marking RW the pagetable pages that we allocated before
* but that haven't been used.
*
* In fact on xen we mark RO the whole range pgt_buf_start -
* pgt_buf_top, because we have to make sure that when
* init_memory_mapping reaches the pagetable pages area, it maps
* RO all the pagetable pages, including the ones that are beyond
* pgt_buf_end at that time.
*/
if (pgt_buf_end > pgt_buf_start) {
printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx] final\n",
end - 1, pgt_buf_start << PAGE_SHIFT,
(pgt_buf_end << PAGE_SHIFT) - 1);
x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
PFN_PHYS(pgt_buf_end));
}
/* stop the wrong using */
pgt_buf_top = 0;
early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
}
/*
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
* is valid. The argument is a physical page number.
*
*
* On x86, access has to be given to the first megabyte of ram because that area
* contains bios code and data regions used by X and dosemu and similar apps.
* Access has to be given to non-kernel-ram areas as well, these contain the PCI
* mmio resources as well as potential bios/acpi data regions.
*/
int devmem_is_allowed(unsigned long pagenr)
{
if (pagenr < 256)
return 1;
if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
return 0;
if (!page_is_ram(pagenr))
return 1;
return 0;
}
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr;
unsigned long begin_aligned, end_aligned;
/* Make sure boundaries are page aligned */
begin_aligned = PAGE_ALIGN(begin);
end_aligned = end & PAGE_MASK;
if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
begin = begin_aligned;
end = end_aligned;
}
if (begin >= end)
return;
addr = begin;
/*
* If debugging page accesses then do not free this memory but
* mark them not present - any buggy init-section access will
* create a kernel page fault:
*/
#ifdef CONFIG_DEBUG_PAGEALLOC
printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
begin, end - 1);
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
/*
* We just marked the kernel text read only above, now that
* we are going to free part of that, we need to make that
* writeable and non-executable first.
*/
set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
for (; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
free_page(addr);
totalram_pages++;
}
#endif
}
void free_initmem(void)
{
free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
#ifdef CONFIG_BLK_DEV_INITRD
void __init free_initrd_mem(unsigned long start, unsigned long end)
{
/*
* end could be not aligned, and We can not align that,
* decompresser could be confused by aligned initrd_end
* We already reserve the end partial page before in
* - i386_start_kernel()
* - x86_64_start_kernel()
* - relocate_initrd()
* So here We can do PAGE_ALIGN() safely to get partial page to be freed
*/
free_init_pages("initrd memory", start, PAGE_ALIGN(end));
}
#endif
void __init zone_sizes_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
#ifdef CONFIG_ZONE_DMA
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
#endif
#ifdef CONFIG_ZONE_DMA32
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
#endif
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
#ifdef CONFIG_HIGHMEM
max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
#endif
free_area_init_nodes(max_zone_pfns);
}