linux/arch/arm/mach-omap2/timer.c
Linus Torvalds bab588fcfb arm-soc: soc-specific updates
This is a larger set of new functionality for the existing SoC families,
 including:
 
 * vt8500 gains support for new CPU cores, notably the Cortex-A9 based wm8850
 * prima2 gains support for the "marco" SoC family, its SMP based cousin
 * tegra gains support for the new Tegra4 (Tegra114) family
 * socfpga now supports a newer version of the hardware including SMP
 * i.mx31 and bcm2835 are now using DT probing for their clocks
 * lots of updates for sh-mobile
 * OMAP updates for clocks, power management and USB
 * i.mx6q and tegra now support cpuidle
 * kirkwood now supports PCIe hot plugging
 * tegra clock support is updated
 * tegra USB PHY probing gets implemented diffently
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.12 (GNU/Linux)
 
 iQIVAwUAUSUyPGCrR//JCVInAQI4YA/+Nb0FaA7qMmTPuJhm7aZNfnwBcGxZ7IZp
 s2xByEl3r5zbLKlKGNGE0x7Q7ETHV4y9tohzi9ZduH2b60dMRYgII06CEmDPu6/h
 4vBap2oLzfWfs9hwpCIh7N9wNzxSj/R42vlXHhNmspHlw7cFk1yw5EeJ+ocxmZPq
 H9lyjAxsGErkZyM/xstNQ1Uvhc8XHAFSUzWrg8hvf6AVVR8hwpIqVzfIizv6Vpk6
 ryBoUBHfdTztAOrafK54CdRc7l6kVMomRodKGzMyasnBK3ZfFca3IR7elnxLyEFJ
 uPDu5DKOdYrjXC8X2dPM6kYiE41YFuqOV2ahBt9HqRe6liNBLHQ6NAH7f7+jBWSI
 eeWe84c2vFaqhAGlci/xm4GaP0ud5ZLudtiVPlDY5tYIADqLygNcx1HIt/5sT7QI
 h34LMjc4+/TGVWTVf5yRmIzTrCXZv5YoAak3UWFoM4nVBo/eYVyNLEt5g9YsfjrC
 P/GWrXJJvOCB3gAi31pgGYJzZg8K7kTTAh/dgxjqzU4f6nGRm5PBydiJe18/lWkH
 qtfNE0RbhxCi3JEBnxW48AIEndVSRbd7jf8upC/s9rPURtFSVXp4APTHVyNUKCip
 gojBxcRYtesyG/53nrwdTyiyHx6GocmWnMNZJoDo0UQEkog2dOef+StdC3zhc2Vm
 9EttcFqWJ+E=
 =PRrg
 -----END PGP SIGNATURE-----

Merge tag 'soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc

Pull ARM SoC-specific updates from Arnd Bergmann:
 "This is a larger set of new functionality for the existing SoC
  families, including:

   - vt8500 gains support for new CPU cores, notably the Cortex-A9 based
     wm8850

   - prima2 gains support for the "marco" SoC family, its SMP based
     cousin

   - tegra gains support for the new Tegra4 (Tegra114) family

   - socfpga now supports a newer version of the hardware including SMP

   - i.mx31 and bcm2835 are now using DT probing for their clocks

   - lots of updates for sh-mobile

   - OMAP updates for clocks, power management and USB

   - i.mx6q and tegra now support cpuidle

   - kirkwood now supports PCIe hot plugging

   - tegra clock support is updated

   - tegra USB PHY probing gets implemented diffently"

* tag 'soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (148 commits)
  ARM: prima2: remove duplicate v7_invalidate_l1
  ARM: shmobile: r8a7779: Correct TMU clock support again
  ARM: prima2: fix __init section for cpu hotplug
  ARM: OMAP: Consolidate OMAP USB-HS platform data (part 3/3)
  ARM: OMAP: Consolidate OMAP USB-HS platform data (part 1/3)
  arm: socfpga: Add SMP support for actual socfpga harware
  arm: Add v7_invalidate_l1 to cache-v7.S
  arm: socfpga: Add entries to enable make dtbs socfpga
  arm: socfpga: Add new device tree source for actual socfpga HW
  ARM: tegra: sort Kconfig selects for Tegra114
  ARM: tegra: enable ARCH_REQUIRE_GPIOLIB for Tegra114
  ARM: tegra: Fix build error w/ ARCH_TEGRA_114_SOC w/o ARCH_TEGRA_3x_SOC
  ARM: tegra: Fix build error for gic update
  ARM: tegra: remove empty tegra_smp_init_cpus()
  ARM: shmobile: Register ARM architected timer
  ARM: MARCO: fix the build issue due to gic-vic-to-irqchip move
  ARM: shmobile: r8a7779: Correct TMU clock support
  ARM: mxs_defconfig: Select CONFIG_DEVTMPFS_MOUNT
  ARM: mxs: decrease mxs_clockevent_device.min_delta_ns to 2 clock cycles
  ARM: mxs: use apbx bus clock to drive the timers on timrotv2
  ...
2013-02-21 15:27:22 -08:00

747 lines
19 KiB
C

/*
* linux/arch/arm/mach-omap2/timer.c
*
* OMAP2 GP timer support.
*
* Copyright (C) 2009 Nokia Corporation
*
* Update to use new clocksource/clockevent layers
* Author: Kevin Hilman, MontaVista Software, Inc. <source@mvista.com>
* Copyright (C) 2007 MontaVista Software, Inc.
*
* Original driver:
* Copyright (C) 2005 Nokia Corporation
* Author: Paul Mundt <paul.mundt@nokia.com>
* Juha Yrjölä <juha.yrjola@nokia.com>
* OMAP Dual-mode timer framework support by Timo Teras
*
* Some parts based off of TI's 24xx code:
*
* Copyright (C) 2004-2009 Texas Instruments, Inc.
*
* Roughly modelled after the OMAP1 MPU timer code.
* Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/init.h>
#include <linux/time.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/platform_data/dmtimer-omap.h>
#include <asm/mach/time.h>
#include <asm/smp_twd.h>
#include <asm/sched_clock.h>
#include <asm/arch_timer.h>
#include "omap_hwmod.h"
#include "omap_device.h"
#include <plat/counter-32k.h>
#include <plat/dmtimer.h>
#include "omap-pm.h"
#include "soc.h"
#include "common.h"
#include "powerdomain.h"
/* Parent clocks, eventually these will come from the clock framework */
#define OMAP2_MPU_SOURCE "sys_ck"
#define OMAP3_MPU_SOURCE OMAP2_MPU_SOURCE
#define OMAP4_MPU_SOURCE "sys_clkin_ck"
#define OMAP2_32K_SOURCE "func_32k_ck"
#define OMAP3_32K_SOURCE "omap_32k_fck"
#define OMAP4_32K_SOURCE "sys_32k_ck"
#define REALTIME_COUNTER_BASE 0x48243200
#define INCREMENTER_NUMERATOR_OFFSET 0x10
#define INCREMENTER_DENUMERATOR_RELOAD_OFFSET 0x14
#define NUMERATOR_DENUMERATOR_MASK 0xfffff000
/* Clockevent code */
static struct omap_dm_timer clkev;
static struct clock_event_device clockevent_gpt;
static irqreturn_t omap2_gp_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = &clockevent_gpt;
__omap_dm_timer_write_status(&clkev, OMAP_TIMER_INT_OVERFLOW);
evt->event_handler(evt);
return IRQ_HANDLED;
}
static struct irqaction omap2_gp_timer_irq = {
.name = "gp_timer",
.flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
.handler = omap2_gp_timer_interrupt,
};
static int omap2_gp_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
__omap_dm_timer_load_start(&clkev, OMAP_TIMER_CTRL_ST,
0xffffffff - cycles, OMAP_TIMER_POSTED);
return 0;
}
static void omap2_gp_timer_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
u32 period;
__omap_dm_timer_stop(&clkev, OMAP_TIMER_POSTED, clkev.rate);
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
period = clkev.rate / HZ;
period -= 1;
/* Looks like we need to first set the load value separately */
__omap_dm_timer_write(&clkev, OMAP_TIMER_LOAD_REG,
0xffffffff - period, OMAP_TIMER_POSTED);
__omap_dm_timer_load_start(&clkev,
OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST,
0xffffffff - period, OMAP_TIMER_POSTED);
break;
case CLOCK_EVT_MODE_ONESHOT:
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
case CLOCK_EVT_MODE_RESUME:
break;
}
}
static struct clock_event_device clockevent_gpt = {
.name = "gp_timer",
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.rating = 300,
.set_next_event = omap2_gp_timer_set_next_event,
.set_mode = omap2_gp_timer_set_mode,
};
static struct property device_disabled = {
.name = "status",
.length = sizeof("disabled"),
.value = "disabled",
};
static struct of_device_id omap_timer_match[] __initdata = {
{ .compatible = "ti,omap2-timer", },
{ }
};
/**
* omap_get_timer_dt - get a timer using device-tree
* @match - device-tree match structure for matching a device type
* @property - optional timer property to match
*
* Helper function to get a timer during early boot using device-tree for use
* as kernel system timer. Optionally, the property argument can be used to
* select a timer with a specific property. Once a timer is found then mark
* the timer node in device-tree as disabled, to prevent the kernel from
* registering this timer as a platform device and so no one else can use it.
*/
static struct device_node * __init omap_get_timer_dt(struct of_device_id *match,
const char *property)
{
struct device_node *np;
for_each_matching_node(np, match) {
if (!of_device_is_available(np))
continue;
if (property && !of_get_property(np, property, NULL))
continue;
of_add_property(np, &device_disabled);
return np;
}
return NULL;
}
/**
* omap_dmtimer_init - initialisation function when device tree is used
*
* For secure OMAP3 devices, timers with device type "timer-secure" cannot
* be used by the kernel as they are reserved. Therefore, to prevent the
* kernel registering these devices remove them dynamically from the device
* tree on boot.
*/
static void __init omap_dmtimer_init(void)
{
struct device_node *np;
if (!cpu_is_omap34xx())
return;
/* If we are a secure device, remove any secure timer nodes */
if ((omap_type() != OMAP2_DEVICE_TYPE_GP)) {
np = omap_get_timer_dt(omap_timer_match, "ti,timer-secure");
if (np)
of_node_put(np);
}
}
/**
* omap_dm_timer_get_errata - get errata flags for a timer
*
* Get the timer errata flags that are specific to the OMAP device being used.
*/
static u32 __init omap_dm_timer_get_errata(void)
{
if (cpu_is_omap24xx())
return 0;
return OMAP_TIMER_ERRATA_I103_I767;
}
static int __init omap_dm_timer_init_one(struct omap_dm_timer *timer,
int gptimer_id,
const char *fck_source,
const char *property,
int posted)
{
char name[10]; /* 10 = sizeof("gptXX_Xck0") */
const char *oh_name;
struct device_node *np;
struct omap_hwmod *oh;
struct resource irq, mem;
int r = 0;
if (of_have_populated_dt()) {
np = omap_get_timer_dt(omap_timer_match, property);
if (!np)
return -ENODEV;
of_property_read_string_index(np, "ti,hwmods", 0, &oh_name);
if (!oh_name)
return -ENODEV;
timer->irq = irq_of_parse_and_map(np, 0);
if (!timer->irq)
return -ENXIO;
timer->io_base = of_iomap(np, 0);
of_node_put(np);
} else {
if (omap_dm_timer_reserve_systimer(gptimer_id))
return -ENODEV;
sprintf(name, "timer%d", gptimer_id);
oh_name = name;
}
oh = omap_hwmod_lookup(oh_name);
if (!oh)
return -ENODEV;
if (!of_have_populated_dt()) {
r = omap_hwmod_get_resource_byname(oh, IORESOURCE_IRQ, NULL,
&irq);
if (r)
return -ENXIO;
timer->irq = irq.start;
r = omap_hwmod_get_resource_byname(oh, IORESOURCE_MEM, NULL,
&mem);
if (r)
return -ENXIO;
/* Static mapping, never released */
timer->io_base = ioremap(mem.start, mem.end - mem.start);
}
if (!timer->io_base)
return -ENXIO;
/* After the dmtimer is using hwmod these clocks won't be needed */
timer->fclk = clk_get(NULL, omap_hwmod_get_main_clk(oh));
if (IS_ERR(timer->fclk))
return -ENODEV;
/* FIXME: Need to remove hard-coded test on timer ID */
if (gptimer_id != 12) {
struct clk *src;
src = clk_get(NULL, fck_source);
if (IS_ERR(src)) {
r = -EINVAL;
} else {
r = clk_set_parent(timer->fclk, src);
if (IS_ERR_VALUE(r))
pr_warn("%s: %s cannot set source\n",
__func__, oh->name);
clk_put(src);
}
}
omap_hwmod_setup_one(oh_name);
omap_hwmod_enable(oh);
__omap_dm_timer_init_regs(timer);
if (posted)
__omap_dm_timer_enable_posted(timer);
/* Check that the intended posted configuration matches the actual */
if (posted != timer->posted)
return -EINVAL;
timer->rate = clk_get_rate(timer->fclk);
timer->reserved = 1;
return r;
}
static void __init omap2_gp_clockevent_init(int gptimer_id,
const char *fck_source,
const char *property)
{
int res;
clkev.errata = omap_dm_timer_get_errata();
/*
* For clock-event timers we never read the timer counter and
* so we are not impacted by errata i103 and i767. Therefore,
* we can safely ignore this errata for clock-event timers.
*/
__omap_dm_timer_override_errata(&clkev, OMAP_TIMER_ERRATA_I103_I767);
res = omap_dm_timer_init_one(&clkev, gptimer_id, fck_source, property,
OMAP_TIMER_POSTED);
BUG_ON(res);
omap2_gp_timer_irq.dev_id = &clkev;
setup_irq(clkev.irq, &omap2_gp_timer_irq);
__omap_dm_timer_int_enable(&clkev, OMAP_TIMER_INT_OVERFLOW);
clockevent_gpt.cpumask = cpu_possible_mask;
clockevent_gpt.irq = omap_dm_timer_get_irq(&clkev);
clockevents_config_and_register(&clockevent_gpt, clkev.rate,
3, /* Timer internal resynch latency */
0xffffffff);
pr_info("OMAP clockevent source: GPTIMER%d at %lu Hz\n",
gptimer_id, clkev.rate);
}
/* Clocksource code */
static struct omap_dm_timer clksrc;
static bool use_gptimer_clksrc;
/*
* clocksource
*/
static cycle_t clocksource_read_cycles(struct clocksource *cs)
{
return (cycle_t)__omap_dm_timer_read_counter(&clksrc,
OMAP_TIMER_NONPOSTED);
}
static struct clocksource clocksource_gpt = {
.name = "gp_timer",
.rating = 300,
.read = clocksource_read_cycles,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static u32 notrace dmtimer_read_sched_clock(void)
{
if (clksrc.reserved)
return __omap_dm_timer_read_counter(&clksrc,
OMAP_TIMER_NONPOSTED);
return 0;
}
static struct of_device_id omap_counter_match[] __initdata = {
{ .compatible = "ti,omap-counter32k", },
{ }
};
/* Setup free-running counter for clocksource */
static int __init __maybe_unused omap2_sync32k_clocksource_init(void)
{
int ret;
struct device_node *np = NULL;
struct omap_hwmod *oh;
void __iomem *vbase;
const char *oh_name = "counter_32k";
/*
* If device-tree is present, then search the DT blob
* to see if the 32kHz counter is supported.
*/
if (of_have_populated_dt()) {
np = omap_get_timer_dt(omap_counter_match, NULL);
if (!np)
return -ENODEV;
of_property_read_string_index(np, "ti,hwmods", 0, &oh_name);
if (!oh_name)
return -ENODEV;
}
/*
* First check hwmod data is available for sync32k counter
*/
oh = omap_hwmod_lookup(oh_name);
if (!oh || oh->slaves_cnt == 0)
return -ENODEV;
omap_hwmod_setup_one(oh_name);
if (np) {
vbase = of_iomap(np, 0);
of_node_put(np);
} else {
vbase = omap_hwmod_get_mpu_rt_va(oh);
}
if (!vbase) {
pr_warn("%s: failed to get counter_32k resource\n", __func__);
return -ENXIO;
}
ret = omap_hwmod_enable(oh);
if (ret) {
pr_warn("%s: failed to enable counter_32k module (%d)\n",
__func__, ret);
return ret;
}
ret = omap_init_clocksource_32k(vbase);
if (ret) {
pr_warn("%s: failed to initialize counter_32k as a clocksource (%d)\n",
__func__, ret);
omap_hwmod_idle(oh);
}
return ret;
}
static void __init omap2_gptimer_clocksource_init(int gptimer_id,
const char *fck_source)
{
int res;
clksrc.errata = omap_dm_timer_get_errata();
res = omap_dm_timer_init_one(&clksrc, gptimer_id, fck_source, NULL,
OMAP_TIMER_NONPOSTED);
BUG_ON(res);
__omap_dm_timer_load_start(&clksrc,
OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, 0,
OMAP_TIMER_NONPOSTED);
setup_sched_clock(dmtimer_read_sched_clock, 32, clksrc.rate);
if (clocksource_register_hz(&clocksource_gpt, clksrc.rate))
pr_err("Could not register clocksource %s\n",
clocksource_gpt.name);
else
pr_info("OMAP clocksource: GPTIMER%d at %lu Hz\n",
gptimer_id, clksrc.rate);
}
#ifdef CONFIG_SOC_HAS_REALTIME_COUNTER
/*
* The realtime counter also called master counter, is a free-running
* counter, which is related to real time. It produces the count used
* by the CPU local timer peripherals in the MPU cluster. The timer counts
* at a rate of 6.144 MHz. Because the device operates on different clocks
* in different power modes, the master counter shifts operation between
* clocks, adjusting the increment per clock in hardware accordingly to
* maintain a constant count rate.
*/
static void __init realtime_counter_init(void)
{
void __iomem *base;
static struct clk *sys_clk;
unsigned long rate;
unsigned int reg, num, den;
base = ioremap(REALTIME_COUNTER_BASE, SZ_32);
if (!base) {
pr_err("%s: ioremap failed\n", __func__);
return;
}
sys_clk = clk_get(NULL, "sys_clkin_ck");
if (IS_ERR(sys_clk)) {
pr_err("%s: failed to get system clock handle\n", __func__);
iounmap(base);
return;
}
rate = clk_get_rate(sys_clk);
/* Numerator/denumerator values refer TRM Realtime Counter section */
switch (rate) {
case 1200000:
num = 64;
den = 125;
break;
case 1300000:
num = 768;
den = 1625;
break;
case 19200000:
num = 8;
den = 25;
break;
case 2600000:
num = 384;
den = 1625;
break;
case 2700000:
num = 256;
den = 1125;
break;
case 38400000:
default:
/* Program it for 38.4 MHz */
num = 4;
den = 25;
break;
}
/* Program numerator and denumerator registers */
reg = __raw_readl(base + INCREMENTER_NUMERATOR_OFFSET) &
NUMERATOR_DENUMERATOR_MASK;
reg |= num;
__raw_writel(reg, base + INCREMENTER_NUMERATOR_OFFSET);
reg = __raw_readl(base + INCREMENTER_NUMERATOR_OFFSET) &
NUMERATOR_DENUMERATOR_MASK;
reg |= den;
__raw_writel(reg, base + INCREMENTER_DENUMERATOR_RELOAD_OFFSET);
iounmap(base);
}
#else
static inline void __init realtime_counter_init(void)
{}
#endif
#define OMAP_SYS_GP_TIMER_INIT(name, clkev_nr, clkev_src, clkev_prop, \
clksrc_nr, clksrc_src) \
void __init omap##name##_gptimer_timer_init(void) \
{ \
omap_dmtimer_init(); \
omap2_gp_clockevent_init((clkev_nr), clkev_src, clkev_prop); \
omap2_gptimer_clocksource_init((clksrc_nr), clksrc_src); \
}
#define OMAP_SYS_32K_TIMER_INIT(name, clkev_nr, clkev_src, clkev_prop, \
clksrc_nr, clksrc_src) \
void __init omap##name##_sync32k_timer_init(void) \
{ \
omap_dmtimer_init(); \
omap2_gp_clockevent_init((clkev_nr), clkev_src, clkev_prop); \
/* Enable the use of clocksource="gp_timer" kernel parameter */ \
if (use_gptimer_clksrc) \
omap2_gptimer_clocksource_init((clksrc_nr), clksrc_src);\
else \
omap2_sync32k_clocksource_init(); \
}
#ifdef CONFIG_ARCH_OMAP2
OMAP_SYS_32K_TIMER_INIT(2, 1, OMAP2_32K_SOURCE, "ti,timer-alwon",
2, OMAP2_MPU_SOURCE);
#endif /* CONFIG_ARCH_OMAP2 */
#ifdef CONFIG_ARCH_OMAP3
OMAP_SYS_32K_TIMER_INIT(3, 1, OMAP3_32K_SOURCE, "ti,timer-alwon",
2, OMAP3_MPU_SOURCE);
OMAP_SYS_32K_TIMER_INIT(3_secure, 12, OMAP3_32K_SOURCE, "ti,timer-secure",
2, OMAP3_MPU_SOURCE);
OMAP_SYS_GP_TIMER_INIT(3_gp, 1, OMAP3_MPU_SOURCE, "ti,timer-alwon",
2, OMAP3_MPU_SOURCE);
#endif /* CONFIG_ARCH_OMAP3 */
#ifdef CONFIG_SOC_AM33XX
OMAP_SYS_GP_TIMER_INIT(3_am33xx, 1, OMAP4_MPU_SOURCE, "ti,timer-alwon",
2, OMAP4_MPU_SOURCE);
#endif /* CONFIG_SOC_AM33XX */
#ifdef CONFIG_ARCH_OMAP4
OMAP_SYS_32K_TIMER_INIT(4, 1, OMAP4_32K_SOURCE, "ti,timer-alwon",
2, OMAP4_MPU_SOURCE);
#ifdef CONFIG_LOCAL_TIMERS
static DEFINE_TWD_LOCAL_TIMER(twd_local_timer, OMAP44XX_LOCAL_TWD_BASE, 29);
void __init omap4_local_timer_init(void)
{
omap4_sync32k_timer_init();
/* Local timers are not supprted on OMAP4430 ES1.0 */
if (omap_rev() != OMAP4430_REV_ES1_0) {
int err;
if (of_have_populated_dt()) {
twd_local_timer_of_register();
return;
}
err = twd_local_timer_register(&twd_local_timer);
if (err)
pr_err("twd_local_timer_register failed %d\n", err);
}
}
#else /* CONFIG_LOCAL_TIMERS */
void __init omap4_local_timer_init(void)
{
omap4_sync32k_timer_init();
}
#endif /* CONFIG_LOCAL_TIMERS */
#endif /* CONFIG_ARCH_OMAP4 */
#ifdef CONFIG_SOC_OMAP5
OMAP_SYS_32K_TIMER_INIT(5, 1, OMAP4_32K_SOURCE, "ti,timer-alwon",
2, OMAP4_MPU_SOURCE);
void __init omap5_realtime_timer_init(void)
{
int err;
omap5_sync32k_timer_init();
realtime_counter_init();
err = arch_timer_of_register();
if (err)
pr_err("%s: arch_timer_register failed %d\n", __func__, err);
}
#endif /* CONFIG_SOC_OMAP5 */
/**
* omap_timer_init - build and register timer device with an
* associated timer hwmod
* @oh: timer hwmod pointer to be used to build timer device
* @user: parameter that can be passed from calling hwmod API
*
* Called by omap_hwmod_for_each_by_class to register each of the timer
* devices present in the system. The number of timer devices is known
* by parsing through the hwmod database for a given class name. At the
* end of function call memory is allocated for timer device and it is
* registered to the framework ready to be proved by the driver.
*/
static int __init omap_timer_init(struct omap_hwmod *oh, void *unused)
{
int id;
int ret = 0;
char *name = "omap_timer";
struct dmtimer_platform_data *pdata;
struct platform_device *pdev;
struct omap_timer_capability_dev_attr *timer_dev_attr;
pr_debug("%s: %s\n", __func__, oh->name);
/* on secure device, do not register secure timer */
timer_dev_attr = oh->dev_attr;
if (omap_type() != OMAP2_DEVICE_TYPE_GP && timer_dev_attr)
if (timer_dev_attr->timer_capability == OMAP_TIMER_SECURE)
return ret;
pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
pr_err("%s: No memory for [%s]\n", __func__, oh->name);
return -ENOMEM;
}
/*
* Extract the IDs from name field in hwmod database
* and use the same for constructing ids' for the
* timer devices. In a way, we are avoiding usage of
* static variable witin the function to do the same.
* CAUTION: We have to be careful and make sure the
* name in hwmod database does not change in which case
* we might either make corresponding change here or
* switch back static variable mechanism.
*/
sscanf(oh->name, "timer%2d", &id);
if (timer_dev_attr)
pdata->timer_capability = timer_dev_attr->timer_capability;
pdata->timer_errata = omap_dm_timer_get_errata();
pdata->get_context_loss_count = omap_pm_get_dev_context_loss_count;
pdev = omap_device_build(name, id, oh, pdata, sizeof(*pdata));
if (IS_ERR(pdev)) {
pr_err("%s: Can't build omap_device for %s: %s.\n",
__func__, name, oh->name);
ret = -EINVAL;
}
kfree(pdata);
return ret;
}
/**
* omap2_dm_timer_init - top level regular device initialization
*
* Uses dedicated hwmod api to parse through hwmod database for
* given class name and then build and register the timer device.
*/
static int __init omap2_dm_timer_init(void)
{
int ret;
/* If dtb is there, the devices will be created dynamically */
if (of_have_populated_dt())
return -ENODEV;
ret = omap_hwmod_for_each_by_class("timer", omap_timer_init, NULL);
if (unlikely(ret)) {
pr_err("%s: device registration failed.\n", __func__);
return -EINVAL;
}
return 0;
}
omap_arch_initcall(omap2_dm_timer_init);
/**
* omap2_override_clocksource - clocksource override with user configuration
*
* Allows user to override default clocksource, using kernel parameter
* clocksource="gp_timer" (For all OMAP2PLUS architectures)
*
* Note that, here we are using same standard kernel parameter "clocksource=",
* and not introducing any OMAP specific interface.
*/
static int __init omap2_override_clocksource(char *str)
{
if (!str)
return 0;
/*
* For OMAP architecture, we only have two options
* - sync_32k (default)
* - gp_timer (sys_clk based)
*/
if (!strcmp(str, "gp_timer"))
use_gptimer_clksrc = true;
return 0;
}
early_param("clocksource", omap2_override_clocksource);