linux/lib/zstd/compress/zstd_compress_internal.h
Nick Terrell e0c1b49f5b lib: zstd: Upgrade to latest upstream zstd version 1.4.10
Upgrade to the latest upstream zstd version 1.4.10.

This patch is 100% generated from upstream zstd commit 20821a46f412 [0].

This patch is very large because it is transitioning from the custom
kernel zstd to using upstream directly. The new zstd follows upstreams
file structure which is different. Future update patches will be much
smaller because they will only contain the changes from one upstream
zstd release.

As an aid for review I've created a commit [1] that shows the diff
between upstream zstd as-is (which doesn't compile), and the zstd
code imported in this patch. The verion of zstd in this patch is
generated from upstream with changes applied by automation to replace
upstreams libc dependencies, remove unnecessary portability macros,
replace `/**` comments with `/*` comments, and use the kernel's xxhash
instead of bundling it.

The benefits of this patch are as follows:
1. Using upstream directly with automated script to generate kernel
   code. This allows us to update the kernel every upstream release, so
   the kernel gets the latest bug fixes and performance improvements,
   and doesn't get 3 years out of date again. The automation and the
   translated code are tested every upstream commit to ensure it
   continues to work.
2. Upgrades from a custom zstd based on 1.3.1 to 1.4.10, getting 3 years
   of performance improvements and bug fixes. On x86_64 I've measured
   15% faster BtrFS and SquashFS decompression+read speeds, 35% faster
   kernel decompression, and 30% faster ZRAM decompression+read speeds.
3. Zstd-1.4.10 supports negative compression levels, which allow zstd to
   match or subsume lzo's performance.
4. Maintains the same kernel-specific wrapper API, so no callers have to
   be modified with zstd version updates.

One concern that was brought up was stack usage. Upstream zstd had
already removed most of its heavy stack usage functions, but I just
removed the last functions that allocate arrays on the stack. I've
measured the high water mark for both compression and decompression
before and after this patch. Decompression is approximately neutral,
using about 1.2KB of stack space. Compression levels up to 3 regressed
from 1.4KB -> 1.6KB, and higher compression levels regressed from 1.5KB
-> 2KB. We've added unit tests upstream to prevent further regression.
I believe that this is a reasonable increase, and if it does end up
causing problems, this commit can be cleanly reverted, because it only
touches zstd.

I chose the bulk update instead of replaying upstream commits because
there have been ~3500 upstream commits since the 1.3.1 release, zstd
wasn't ready to be used in the kernel as-is before a month ago, and not
all upstream zstd commits build. The bulk update preserves bisectablity
because bugs can be bisected to the zstd version update. At that point
the update can be reverted, and we can work with upstream to find and
fix the bug.

Note that upstream zstd release 1.4.10 doesn't exist yet. I have cut a
staging branch at 20821a46f412 [0] and will apply any changes requested
to the staging branch. Once we're ready to merge this update I will cut
a zstd release at the commit we merge, so we have a known zstd release
in the kernel.

The implementation of the kernel API is contained in
zstd_compress_module.c and zstd_decompress_module.c.

[0] 20821a46f4
[1] e0fa481d0e

Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2021-11-08 16:55:32 -08:00

1189 lines
48 KiB
C

/*
* Copyright (c) Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* This header contains definitions
* that shall **only** be used by modules within lib/compress.
*/
#ifndef ZSTD_COMPRESS_H
#define ZSTD_COMPRESS_H
/*-*************************************
* Dependencies
***************************************/
#include "../common/zstd_internal.h"
#include "zstd_cwksp.h"
/*-*************************************
* Constants
***************************************/
#define kSearchStrength 8
#define HASH_READ_SIZE 8
#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted".
It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
It's not a big deal though : candidate will just be sorted again.
Additionally, candidate position 1 will be lost.
But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy.
This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
/*-*************************************
* Context memory management
***************************************/
typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
typedef struct ZSTD_prefixDict_s {
const void* dict;
size_t dictSize;
ZSTD_dictContentType_e dictContentType;
} ZSTD_prefixDict;
typedef struct {
void* dictBuffer;
void const* dict;
size_t dictSize;
ZSTD_dictContentType_e dictContentType;
ZSTD_CDict* cdict;
} ZSTD_localDict;
typedef struct {
HUF_CElt CTable[HUF_CTABLE_SIZE_U32(255)];
HUF_repeat repeatMode;
} ZSTD_hufCTables_t;
typedef struct {
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
FSE_repeat offcode_repeatMode;
FSE_repeat matchlength_repeatMode;
FSE_repeat litlength_repeatMode;
} ZSTD_fseCTables_t;
typedef struct {
ZSTD_hufCTables_t huf;
ZSTD_fseCTables_t fse;
} ZSTD_entropyCTables_t;
typedef struct {
U32 off; /* Offset code (offset + ZSTD_REP_MOVE) for the match */
U32 len; /* Raw length of match */
} ZSTD_match_t;
typedef struct {
U32 offset; /* Offset of sequence */
U32 litLength; /* Length of literals prior to match */
U32 matchLength; /* Raw length of match */
} rawSeq;
typedef struct {
rawSeq* seq; /* The start of the sequences */
size_t pos; /* The index in seq where reading stopped. pos <= size. */
size_t posInSequence; /* The position within the sequence at seq[pos] where reading
stopped. posInSequence <= seq[pos].litLength + seq[pos].matchLength */
size_t size; /* The number of sequences. <= capacity. */
size_t capacity; /* The capacity starting from `seq` pointer */
} rawSeqStore_t;
UNUSED_ATTR static const rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0};
typedef struct {
int price;
U32 off;
U32 mlen;
U32 litlen;
U32 rep[ZSTD_REP_NUM];
} ZSTD_optimal_t;
typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
typedef struct {
/* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
unsigned* litFreq; /* table of literals statistics, of size 256 */
unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */
unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */
unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */
ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */
ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
U32 litSum; /* nb of literals */
U32 litLengthSum; /* nb of litLength codes */
U32 matchLengthSum; /* nb of matchLength codes */
U32 offCodeSum; /* nb of offset codes */
U32 litSumBasePrice; /* to compare to log2(litfreq) */
U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */
U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */
U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
ZSTD_literalCompressionMode_e literalCompressionMode;
} optState_t;
typedef struct {
ZSTD_entropyCTables_t entropy;
U32 rep[ZSTD_REP_NUM];
} ZSTD_compressedBlockState_t;
typedef struct {
BYTE const* nextSrc; /* next block here to continue on current prefix */
BYTE const* base; /* All regular indexes relative to this position */
BYTE const* dictBase; /* extDict indexes relative to this position */
U32 dictLimit; /* below that point, need extDict */
U32 lowLimit; /* below that point, no more valid data */
} ZSTD_window_t;
typedef struct ZSTD_matchState_t ZSTD_matchState_t;
struct ZSTD_matchState_t {
ZSTD_window_t window; /* State for window round buffer management */
U32 loadedDictEnd; /* index of end of dictionary, within context's referential.
* When loadedDictEnd != 0, a dictionary is in use, and still valid.
* This relies on a mechanism to set loadedDictEnd=0 when dictionary is no longer within distance.
* Such mechanism is provided within ZSTD_window_enforceMaxDist() and ZSTD_checkDictValidity().
* When dict referential is copied into active context (i.e. not attached),
* loadedDictEnd == dictSize, since referential starts from zero.
*/
U32 nextToUpdate; /* index from which to continue table update */
U32 hashLog3; /* dispatch table for matches of len==3 : larger == faster, more memory */
U32* hashTable;
U32* hashTable3;
U32* chainTable;
int dedicatedDictSearch; /* Indicates whether this matchState is using the
* dedicated dictionary search structure.
*/
optState_t opt; /* optimal parser state */
const ZSTD_matchState_t* dictMatchState;
ZSTD_compressionParameters cParams;
const rawSeqStore_t* ldmSeqStore;
};
typedef struct {
ZSTD_compressedBlockState_t* prevCBlock;
ZSTD_compressedBlockState_t* nextCBlock;
ZSTD_matchState_t matchState;
} ZSTD_blockState_t;
typedef struct {
U32 offset;
U32 checksum;
} ldmEntry_t;
typedef struct {
BYTE const* split;
U32 hash;
U32 checksum;
ldmEntry_t* bucket;
} ldmMatchCandidate_t;
#define LDM_BATCH_SIZE 64
typedef struct {
ZSTD_window_t window; /* State for the window round buffer management */
ldmEntry_t* hashTable;
U32 loadedDictEnd;
BYTE* bucketOffsets; /* Next position in bucket to insert entry */
size_t splitIndices[LDM_BATCH_SIZE];
ldmMatchCandidate_t matchCandidates[LDM_BATCH_SIZE];
} ldmState_t;
typedef struct {
U32 enableLdm; /* 1 if enable long distance matching */
U32 hashLog; /* Log size of hashTable */
U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
U32 minMatchLength; /* Minimum match length */
U32 hashRateLog; /* Log number of entries to skip */
U32 windowLog; /* Window log for the LDM */
} ldmParams_t;
typedef struct {
int collectSequences;
ZSTD_Sequence* seqStart;
size_t seqIndex;
size_t maxSequences;
} SeqCollector;
struct ZSTD_CCtx_params_s {
ZSTD_format_e format;
ZSTD_compressionParameters cParams;
ZSTD_frameParameters fParams;
int compressionLevel;
int forceWindow; /* force back-references to respect limit of
* 1<<wLog, even for dictionary */
size_t targetCBlockSize; /* Tries to fit compressed block size to be around targetCBlockSize.
* No target when targetCBlockSize == 0.
* There is no guarantee on compressed block size */
int srcSizeHint; /* User's best guess of source size.
* Hint is not valid when srcSizeHint == 0.
* There is no guarantee that hint is close to actual source size */
ZSTD_dictAttachPref_e attachDictPref;
ZSTD_literalCompressionMode_e literalCompressionMode;
/* Multithreading: used to pass parameters to mtctx */
int nbWorkers;
size_t jobSize;
int overlapLog;
int rsyncable;
/* Long distance matching parameters */
ldmParams_t ldmParams;
/* Dedicated dict search algorithm trigger */
int enableDedicatedDictSearch;
/* Input/output buffer modes */
ZSTD_bufferMode_e inBufferMode;
ZSTD_bufferMode_e outBufferMode;
/* Sequence compression API */
ZSTD_sequenceFormat_e blockDelimiters;
int validateSequences;
/* Internal use, for createCCtxParams() and freeCCtxParams() only */
ZSTD_customMem customMem;
}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
#define COMPRESS_SEQUENCES_WORKSPACE_SIZE (sizeof(unsigned) * (MaxSeq + 2))
#define ENTROPY_WORKSPACE_SIZE (HUF_WORKSPACE_SIZE + COMPRESS_SEQUENCES_WORKSPACE_SIZE)
/*
* Indicates whether this compression proceeds directly from user-provided
* source buffer to user-provided destination buffer (ZSTDb_not_buffered), or
* whether the context needs to buffer the input/output (ZSTDb_buffered).
*/
typedef enum {
ZSTDb_not_buffered,
ZSTDb_buffered
} ZSTD_buffered_policy_e;
struct ZSTD_CCtx_s {
ZSTD_compressionStage_e stage;
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
ZSTD_CCtx_params requestedParams;
ZSTD_CCtx_params appliedParams;
U32 dictID;
size_t dictContentSize;
ZSTD_cwksp workspace; /* manages buffer for dynamic allocations */
size_t blockSize;
unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
unsigned long long consumedSrcSize;
unsigned long long producedCSize;
struct xxh64_state xxhState;
ZSTD_customMem customMem;
ZSTD_threadPool* pool;
size_t staticSize;
SeqCollector seqCollector;
int isFirstBlock;
int initialized;
seqStore_t seqStore; /* sequences storage ptrs */
ldmState_t ldmState; /* long distance matching state */
rawSeq* ldmSequences; /* Storage for the ldm output sequences */
size_t maxNbLdmSequences;
rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
ZSTD_blockState_t blockState;
U32* entropyWorkspace; /* entropy workspace of ENTROPY_WORKSPACE_SIZE bytes */
/* Wether we are streaming or not */
ZSTD_buffered_policy_e bufferedPolicy;
/* streaming */
char* inBuff;
size_t inBuffSize;
size_t inToCompress;
size_t inBuffPos;
size_t inBuffTarget;
char* outBuff;
size_t outBuffSize;
size_t outBuffContentSize;
size_t outBuffFlushedSize;
ZSTD_cStreamStage streamStage;
U32 frameEnded;
/* Stable in/out buffer verification */
ZSTD_inBuffer expectedInBuffer;
size_t expectedOutBufferSize;
/* Dictionary */
ZSTD_localDict localDict;
const ZSTD_CDict* cdict;
ZSTD_prefixDict prefixDict; /* single-usage dictionary */
/* Multi-threading */
/* Tracing */
};
typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
typedef enum {
ZSTD_noDict = 0,
ZSTD_extDict = 1,
ZSTD_dictMatchState = 2,
ZSTD_dedicatedDictSearch = 3
} ZSTD_dictMode_e;
typedef enum {
ZSTD_cpm_noAttachDict = 0, /* Compression with ZSTD_noDict or ZSTD_extDict.
* In this mode we use both the srcSize and the dictSize
* when selecting and adjusting parameters.
*/
ZSTD_cpm_attachDict = 1, /* Compression with ZSTD_dictMatchState or ZSTD_dedicatedDictSearch.
* In this mode we only take the srcSize into account when selecting
* and adjusting parameters.
*/
ZSTD_cpm_createCDict = 2, /* Creating a CDict.
* In this mode we take both the source size and the dictionary size
* into account when selecting and adjusting the parameters.
*/
ZSTD_cpm_unknown = 3, /* ZSTD_getCParams, ZSTD_getParams, ZSTD_adjustParams.
* We don't know what these parameters are for. We default to the legacy
* behavior of taking both the source size and the dict size into account
* when selecting and adjusting parameters.
*/
} ZSTD_cParamMode_e;
typedef size_t (*ZSTD_blockCompressor) (
ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode);
MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
{
static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 16, 17, 17, 18, 18, 19, 19,
20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22,
23, 23, 23, 23, 23, 23, 23, 23,
24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24 };
static const U32 LL_deltaCode = 19;
return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
}
/* ZSTD_MLcode() :
* note : mlBase = matchLength - MINMATCH;
* because it's the format it's stored in seqStore->sequences */
MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
{
static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
static const U32 ML_deltaCode = 36;
return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
}
typedef struct repcodes_s {
U32 rep[3];
} repcodes_t;
MEM_STATIC repcodes_t ZSTD_updateRep(U32 const rep[3], U32 const offset, U32 const ll0)
{
repcodes_t newReps;
if (offset >= ZSTD_REP_NUM) { /* full offset */
newReps.rep[2] = rep[1];
newReps.rep[1] = rep[0];
newReps.rep[0] = offset - ZSTD_REP_MOVE;
} else { /* repcode */
U32 const repCode = offset + ll0;
if (repCode > 0) { /* note : if repCode==0, no change */
U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
newReps.rep[2] = (repCode >= 2) ? rep[1] : rep[2];
newReps.rep[1] = rep[0];
newReps.rep[0] = currentOffset;
} else { /* repCode == 0 */
ZSTD_memcpy(&newReps, rep, sizeof(newReps));
}
}
return newReps;
}
/* ZSTD_cParam_withinBounds:
* @return 1 if value is within cParam bounds,
* 0 otherwise */
MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value)
{
ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
if (ZSTD_isError(bounds.error)) return 0;
if (value < bounds.lowerBound) return 0;
if (value > bounds.upperBound) return 0;
return 1;
}
/* ZSTD_noCompressBlock() :
* Writes uncompressed block to dst buffer from given src.
* Returns the size of the block */
MEM_STATIC size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock)
{
U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3);
RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity,
dstSize_tooSmall, "dst buf too small for uncompressed block");
MEM_writeLE24(dst, cBlockHeader24);
ZSTD_memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
return ZSTD_blockHeaderSize + srcSize;
}
MEM_STATIC size_t ZSTD_rleCompressBlock (void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock)
{
BYTE* const op = (BYTE*)dst;
U32 const cBlockHeader = lastBlock + (((U32)bt_rle)<<1) + (U32)(srcSize << 3);
RETURN_ERROR_IF(dstCapacity < 4, dstSize_tooSmall, "");
MEM_writeLE24(op, cBlockHeader);
op[3] = src;
return 4;
}
/* ZSTD_minGain() :
* minimum compression required
* to generate a compress block or a compressed literals section.
* note : use same formula for both situations */
MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat)
{
U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6;
ZSTD_STATIC_ASSERT(ZSTD_btultra == 8);
assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
return (srcSize >> minlog) + 2;
}
MEM_STATIC int ZSTD_disableLiteralsCompression(const ZSTD_CCtx_params* cctxParams)
{
switch (cctxParams->literalCompressionMode) {
case ZSTD_lcm_huffman:
return 0;
case ZSTD_lcm_uncompressed:
return 1;
default:
assert(0 /* impossible: pre-validated */);
ZSTD_FALLTHROUGH;
case ZSTD_lcm_auto:
return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0);
}
}
/*! ZSTD_safecopyLiterals() :
* memcpy() function that won't read beyond more than WILDCOPY_OVERLENGTH bytes past ilimit_w.
* Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single
* large copies.
*/
static void ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w) {
assert(iend > ilimit_w);
if (ip <= ilimit_w) {
ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap);
op += ilimit_w - ip;
ip = ilimit_w;
}
while (ip < iend) *op++ = *ip++;
}
/*! ZSTD_storeSeq() :
* Store a sequence (litlen, litPtr, offCode and mlBase) into seqStore_t.
* `offCode` : distance to match + ZSTD_REP_MOVE (values <= ZSTD_REP_MOVE are repCodes).
* `mlBase` : matchLength - MINMATCH
* Allowed to overread literals up to litLimit.
*/
HINT_INLINE UNUSED_ATTR
void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const BYTE* literals, const BYTE* litLimit, U32 offCode, size_t mlBase)
{
BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH;
BYTE const* const litEnd = literals + litLength;
#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
static const BYTE* g_start = NULL;
if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
{ U32 const pos = (U32)((const BYTE*)literals - g_start);
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offCode);
}
#endif
assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
/* copy Literals */
assert(seqStorePtr->maxNbLit <= 128 KB);
assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
assert(literals + litLength <= litLimit);
if (litEnd <= litLimit_w) {
/* Common case we can use wildcopy.
* First copy 16 bytes, because literals are likely short.
*/
assert(WILDCOPY_OVERLENGTH >= 16);
ZSTD_copy16(seqStorePtr->lit, literals);
if (litLength > 16) {
ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap);
}
} else {
ZSTD_safecopyLiterals(seqStorePtr->lit, literals, litEnd, litLimit_w);
}
seqStorePtr->lit += litLength;
/* literal Length */
if (litLength>0xFFFF) {
assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
seqStorePtr->longLengthID = 1;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
}
seqStorePtr->sequences[0].litLength = (U16)litLength;
/* match offset */
seqStorePtr->sequences[0].offset = offCode + 1;
/* match Length */
if (mlBase>0xFFFF) {
assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
seqStorePtr->longLengthID = 2;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
}
seqStorePtr->sequences[0].matchLength = (U16)mlBase;
seqStorePtr->sequences++;
}
/*-*************************************
* Match length counter
***************************************/
static unsigned ZSTD_NbCommonBytes (size_t val)
{
if (MEM_isLittleEndian()) {
if (MEM_64bits()) {
# if (__GNUC__ >= 4)
return (__builtin_ctzll((U64)val) >> 3);
# else
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
0, 3, 1, 3, 1, 4, 2, 7,
0, 2, 3, 6, 1, 5, 3, 5,
1, 3, 4, 4, 2, 5, 6, 7,
7, 0, 1, 2, 3, 3, 4, 6,
2, 6, 5, 5, 3, 4, 5, 6,
7, 1, 2, 4, 6, 4, 4, 5,
7, 2, 6, 5, 7, 6, 7, 7 };
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
# endif
} else { /* 32 bits */
# if (__GNUC__ >= 3)
return (__builtin_ctz((U32)val) >> 3);
# else
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
3, 2, 2, 1, 3, 2, 0, 1,
3, 3, 1, 2, 2, 2, 2, 0,
3, 1, 2, 0, 1, 0, 1, 1 };
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
# endif
}
} else { /* Big Endian CPU */
if (MEM_64bits()) {
# if (__GNUC__ >= 4)
return (__builtin_clzll(val) >> 3);
# else
unsigned r;
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
r += (!val);
return r;
# endif
} else { /* 32 bits */
# if (__GNUC__ >= 3)
return (__builtin_clz((U32)val) >> 3);
# else
unsigned r;
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
r += (!val);
return r;
# endif
} }
}
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
{
const BYTE* const pStart = pIn;
const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
if (pIn < pInLoopLimit) {
{ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (diff) return ZSTD_NbCommonBytes(diff); }
pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
while (pIn < pInLoopLimit) {
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
pIn += ZSTD_NbCommonBytes(diff);
return (size_t)(pIn - pStart);
} }
if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
return (size_t)(pIn - pStart);
}
/* ZSTD_count_2segments() :
* can count match length with `ip` & `match` in 2 different segments.
* convention : on reaching mEnd, match count continue starting from iStart
*/
MEM_STATIC size_t
ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
{
const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
size_t const matchLength = ZSTD_count(ip, match, vEnd);
if (match + matchLength != mEnd) return matchLength;
DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
}
/*-*************************************
* Hashes
***************************************/
static const U32 prime3bytes = 506832829U;
static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
static const U32 prime4bytes = 2654435761U;
static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
static const U64 prime5bytes = 889523592379ULL;
static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
static const U64 prime6bytes = 227718039650203ULL;
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
static const U64 prime7bytes = 58295818150454627ULL;
static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
MEM_STATIC FORCE_INLINE_ATTR
size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
{
switch(mls)
{
default:
case 4: return ZSTD_hash4Ptr(p, hBits);
case 5: return ZSTD_hash5Ptr(p, hBits);
case 6: return ZSTD_hash6Ptr(p, hBits);
case 7: return ZSTD_hash7Ptr(p, hBits);
case 8: return ZSTD_hash8Ptr(p, hBits);
}
}
/* ZSTD_ipow() :
* Return base^exponent.
*/
static U64 ZSTD_ipow(U64 base, U64 exponent)
{
U64 power = 1;
while (exponent) {
if (exponent & 1) power *= base;
exponent >>= 1;
base *= base;
}
return power;
}
#define ZSTD_ROLL_HASH_CHAR_OFFSET 10
/* ZSTD_rollingHash_append() :
* Add the buffer to the hash value.
*/
static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size)
{
BYTE const* istart = (BYTE const*)buf;
size_t pos;
for (pos = 0; pos < size; ++pos) {
hash *= prime8bytes;
hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET;
}
return hash;
}
/* ZSTD_rollingHash_compute() :
* Compute the rolling hash value of the buffer.
*/
MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size)
{
return ZSTD_rollingHash_append(0, buf, size);
}
/* ZSTD_rollingHash_primePower() :
* Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash
* over a window of length bytes.
*/
MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length)
{
return ZSTD_ipow(prime8bytes, length - 1);
}
/* ZSTD_rollingHash_rotate() :
* Rotate the rolling hash by one byte.
*/
MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower)
{
hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower;
hash *= prime8bytes;
hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET;
return hash;
}
/*-*************************************
* Round buffer management
***************************************/
#if (ZSTD_WINDOWLOG_MAX_64 > 31)
# error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX"
#endif
/* Max current allowed */
#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
/* Maximum chunk size before overflow correction needs to be called again */
#define ZSTD_CHUNKSIZE_MAX \
( ((U32)-1) /* Maximum ending current index */ \
- ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */
/*
* ZSTD_window_clear():
* Clears the window containing the history by simply setting it to empty.
*/
MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
{
size_t const endT = (size_t)(window->nextSrc - window->base);
U32 const end = (U32)endT;
window->lowLimit = end;
window->dictLimit = end;
}
/*
* ZSTD_window_hasExtDict():
* Returns non-zero if the window has a non-empty extDict.
*/
MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
{
return window.lowLimit < window.dictLimit;
}
/*
* ZSTD_matchState_dictMode():
* Inspects the provided matchState and figures out what dictMode should be
* passed to the compressor.
*/
MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
{
return ZSTD_window_hasExtDict(ms->window) ?
ZSTD_extDict :
ms->dictMatchState != NULL ?
(ms->dictMatchState->dedicatedDictSearch ? ZSTD_dedicatedDictSearch : ZSTD_dictMatchState) :
ZSTD_noDict;
}
/*
* ZSTD_window_needOverflowCorrection():
* Returns non-zero if the indices are getting too large and need overflow
* protection.
*/
MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
void const* srcEnd)
{
U32 const curr = (U32)((BYTE const*)srcEnd - window.base);
return curr > ZSTD_CURRENT_MAX;
}
/*
* ZSTD_window_correctOverflow():
* Reduces the indices to protect from index overflow.
* Returns the correction made to the indices, which must be applied to every
* stored index.
*
* The least significant cycleLog bits of the indices must remain the same,
* which may be 0. Every index up to maxDist in the past must be valid.
* NOTE: (maxDist & cycleMask) must be zero.
*/
MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
U32 maxDist, void const* src)
{
/* preemptive overflow correction:
* 1. correction is large enough:
* lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
* 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
*
* current - newCurrent
* > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
* > (3<<29) - (1<<chainLog)
* > (3<<29) - (1<<30) (NOTE: chainLog <= 30)
* > 1<<29
*
* 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
* After correction, current is less than (1<<chainLog + 1<<windowLog).
* In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
* In 32-bit mode we are safe, because (chainLog <= 29), so
* ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
* 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
* windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
*/
U32 const cycleMask = (1U << cycleLog) - 1;
U32 const curr = (U32)((BYTE const*)src - window->base);
U32 const currentCycle0 = curr & cycleMask;
/* Exclude zero so that newCurrent - maxDist >= 1. */
U32 const currentCycle1 = currentCycle0 == 0 ? (1U << cycleLog) : currentCycle0;
U32 const newCurrent = currentCycle1 + maxDist;
U32 const correction = curr - newCurrent;
assert((maxDist & cycleMask) == 0);
assert(curr > newCurrent);
/* Loose bound, should be around 1<<29 (see above) */
assert(correction > 1<<28);
window->base += correction;
window->dictBase += correction;
if (window->lowLimit <= correction) window->lowLimit = 1;
else window->lowLimit -= correction;
if (window->dictLimit <= correction) window->dictLimit = 1;
else window->dictLimit -= correction;
/* Ensure we can still reference the full window. */
assert(newCurrent >= maxDist);
assert(newCurrent - maxDist >= 1);
/* Ensure that lowLimit and dictLimit didn't underflow. */
assert(window->lowLimit <= newCurrent);
assert(window->dictLimit <= newCurrent);
DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
window->lowLimit);
return correction;
}
/*
* ZSTD_window_enforceMaxDist():
* Updates lowLimit so that:
* (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
*
* It ensures index is valid as long as index >= lowLimit.
* This must be called before a block compression call.
*
* loadedDictEnd is only defined if a dictionary is in use for current compression.
* As the name implies, loadedDictEnd represents the index at end of dictionary.
* The value lies within context's referential, it can be directly compared to blockEndIdx.
*
* If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0.
* If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit.
* This is because dictionaries are allowed to be referenced fully
* as long as the last byte of the dictionary is in the window.
* Once input has progressed beyond window size, dictionary cannot be referenced anymore.
*
* In normal dict mode, the dictionary lies between lowLimit and dictLimit.
* In dictMatchState mode, lowLimit and dictLimit are the same,
* and the dictionary is below them.
* forceWindow and dictMatchState are therefore incompatible.
*/
MEM_STATIC void
ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
const void* blockEnd,
U32 maxDist,
U32* loadedDictEndPtr,
const ZSTD_matchState_t** dictMatchStatePtr)
{
U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
/* - When there is no dictionary : loadedDictEnd == 0.
In which case, the test (blockEndIdx > maxDist) is merely to avoid
overflowing next operation `newLowLimit = blockEndIdx - maxDist`.
- When there is a standard dictionary :
Index referential is copied from the dictionary,
which means it starts from 0.
In which case, loadedDictEnd == dictSize,
and it makes sense to compare `blockEndIdx > maxDist + dictSize`
since `blockEndIdx` also starts from zero.
- When there is an attached dictionary :
loadedDictEnd is expressed within the referential of the context,
so it can be directly compared against blockEndIdx.
*/
if (blockEndIdx > maxDist + loadedDictEnd) {
U32 const newLowLimit = blockEndIdx - maxDist;
if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
if (window->dictLimit < window->lowLimit) {
DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
(unsigned)window->dictLimit, (unsigned)window->lowLimit);
window->dictLimit = window->lowLimit;
}
/* On reaching window size, dictionaries are invalidated */
if (loadedDictEndPtr) *loadedDictEndPtr = 0;
if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
}
}
/* Similar to ZSTD_window_enforceMaxDist(),
* but only invalidates dictionary
* when input progresses beyond window size.
* assumption : loadedDictEndPtr and dictMatchStatePtr are valid (non NULL)
* loadedDictEnd uses same referential as window->base
* maxDist is the window size */
MEM_STATIC void
ZSTD_checkDictValidity(const ZSTD_window_t* window,
const void* blockEnd,
U32 maxDist,
U32* loadedDictEndPtr,
const ZSTD_matchState_t** dictMatchStatePtr)
{
assert(loadedDictEndPtr != NULL);
assert(dictMatchStatePtr != NULL);
{ U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
U32 const loadedDictEnd = *loadedDictEndPtr;
DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
assert(blockEndIdx >= loadedDictEnd);
if (blockEndIdx > loadedDictEnd + maxDist) {
/* On reaching window size, dictionaries are invalidated.
* For simplification, if window size is reached anywhere within next block,
* the dictionary is invalidated for the full block.
*/
DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)");
*loadedDictEndPtr = 0;
*dictMatchStatePtr = NULL;
} else {
if (*loadedDictEndPtr != 0) {
DEBUGLOG(6, "dictionary considered valid for current block");
} } }
}
MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) {
ZSTD_memset(window, 0, sizeof(*window));
window->base = (BYTE const*)"";
window->dictBase = (BYTE const*)"";
window->dictLimit = 1; /* start from 1, so that 1st position is valid */
window->lowLimit = 1; /* it ensures first and later CCtx usages compress the same */
window->nextSrc = window->base + 1; /* see issue #1241 */
}
/*
* ZSTD_window_update():
* Updates the window by appending [src, src + srcSize) to the window.
* If it is not contiguous, the current prefix becomes the extDict, and we
* forget about the extDict. Handles overlap of the prefix and extDict.
* Returns non-zero if the segment is contiguous.
*/
MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
void const* src, size_t srcSize)
{
BYTE const* const ip = (BYTE const*)src;
U32 contiguous = 1;
DEBUGLOG(5, "ZSTD_window_update");
if (srcSize == 0)
return contiguous;
assert(window->base != NULL);
assert(window->dictBase != NULL);
/* Check if blocks follow each other */
if (src != window->nextSrc) {
/* not contiguous */
size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
window->lowLimit = window->dictLimit;
assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
window->dictLimit = (U32)distanceFromBase;
window->dictBase = window->base;
window->base = ip - distanceFromBase;
/* ms->nextToUpdate = window->dictLimit; */
if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */
contiguous = 0;
}
window->nextSrc = ip + srcSize;
/* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
if ( (ip+srcSize > window->dictBase + window->lowLimit)
& (ip < window->dictBase + window->dictLimit)) {
ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
window->lowLimit = lowLimitMax;
DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
}
return contiguous;
}
/*
* Returns the lowest allowed match index. It may either be in the ext-dict or the prefix.
*/
MEM_STATIC U32 ZSTD_getLowestMatchIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
{
U32 const maxDistance = 1U << windowLog;
U32 const lowestValid = ms->window.lowLimit;
U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
U32 const isDictionary = (ms->loadedDictEnd != 0);
/* When using a dictionary the entire dictionary is valid if a single byte of the dictionary
* is within the window. We invalidate the dictionary (and set loadedDictEnd to 0) when it isn't
* valid for the entire block. So this check is sufficient to find the lowest valid match index.
*/
U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
return matchLowest;
}
/*
* Returns the lowest allowed match index in the prefix.
*/
MEM_STATIC U32 ZSTD_getLowestPrefixIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
{
U32 const maxDistance = 1U << windowLog;
U32 const lowestValid = ms->window.dictLimit;
U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
U32 const isDictionary = (ms->loadedDictEnd != 0);
/* When computing the lowest prefix index we need to take the dictionary into account to handle
* the edge case where the dictionary and the source are contiguous in memory.
*/
U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
return matchLowest;
}
/* debug functions */
#if (DEBUGLEVEL>=2)
MEM_STATIC double ZSTD_fWeight(U32 rawStat)
{
U32 const fp_accuracy = 8;
U32 const fp_multiplier = (1 << fp_accuracy);
U32 const newStat = rawStat + 1;
U32 const hb = ZSTD_highbit32(newStat);
U32 const BWeight = hb * fp_multiplier;
U32 const FWeight = (newStat << fp_accuracy) >> hb;
U32 const weight = BWeight + FWeight;
assert(hb + fp_accuracy < 31);
return (double)weight / fp_multiplier;
}
/* display a table content,
* listing each element, its frequency, and its predicted bit cost */
MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
{
unsigned u, sum;
for (u=0, sum=0; u<=max; u++) sum += table[u];
DEBUGLOG(2, "total nb elts: %u", sum);
for (u=0; u<=max; u++) {
DEBUGLOG(2, "%2u: %5u (%.2f)",
u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
}
}
#endif
/* ===============================================================
* Shared internal declarations
* These prototypes may be called from sources not in lib/compress
* =============================================================== */
/* ZSTD_loadCEntropy() :
* dict : must point at beginning of a valid zstd dictionary.
* return : size of dictionary header (size of magic number + dict ID + entropy tables)
* assumptions : magic number supposed already checked
* and dictSize >= 8 */
size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace,
const void* const dict, size_t dictSize);
void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs);
/* ==============================================================
* Private declarations
* These prototypes shall only be called from within lib/compress
* ============================================================== */
/* ZSTD_getCParamsFromCCtxParams() :
* cParams are built depending on compressionLevel, src size hints,
* LDM and manually set compression parameters.
* Note: srcSizeHint == 0 means 0!
*/
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
/*! ZSTD_initCStream_internal() :
* Private use only. Init streaming operation.
* expects params to be valid.
* must receive dict, or cdict, or none, but not both.
* @return : 0, or an error code */
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize);
void ZSTD_resetSeqStore(seqStore_t* ssPtr);
/*! ZSTD_getCParamsFromCDict() :
* as the name implies */
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
/* ZSTD_compressBegin_advanced_internal() :
* Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
const ZSTD_CDict* cdict,
const ZSTD_CCtx_params* params,
unsigned long long pledgedSrcSize);
/* ZSTD_compress_advanced_internal() :
* Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
const ZSTD_CCtx_params* params);
/* ZSTD_writeLastEmptyBlock() :
* output an empty Block with end-of-frame mark to complete a frame
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
* or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
*/
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
/* ZSTD_referenceExternalSequences() :
* Must be called before starting a compression operation.
* seqs must parse a prefix of the source.
* This cannot be used when long range matching is enabled.
* Zstd will use these sequences, and pass the literals to a secondary block
* compressor.
* @return : An error code on failure.
* NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
* access and data corruption.
*/
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
/* ZSTD_cycleLog() :
* condition for correct operation : hashLog > 1 */
U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat);
/* ZSTD_CCtx_trace() :
* Trace the end of a compression call.
*/
void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize);
#endif /* ZSTD_COMPRESS_H */