forked from Minki/linux
75067ddecf
An OEM may request increased I_boost beyond the recommended values by specifying an I_boost value to be applied to all swing entries for a port. These override values are specified in VBT. v2: rebase and remove unused iboost_bit variable Issue: VIZ-5676 Signed-off-by: Antti Koskipaa <antti.koskipaa@linux.intel.com> Reviewed-by: David Weinehall <david.weinehall@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
3262 lines
89 KiB
C
3262 lines
89 KiB
C
/*
|
|
* Copyright © 2012 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eugeni Dodonov <eugeni.dodonov@intel.com>
|
|
*
|
|
*/
|
|
|
|
#include "i915_drv.h"
|
|
#include "intel_drv.h"
|
|
|
|
struct ddi_buf_trans {
|
|
u32 trans1; /* balance leg enable, de-emph level */
|
|
u32 trans2; /* vref sel, vswing */
|
|
u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
|
|
};
|
|
|
|
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
|
|
* them for both DP and FDI transports, allowing those ports to
|
|
* automatically adapt to HDMI connections as well
|
|
*/
|
|
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
|
|
{ 0x00FFFFFF, 0x0006000E, 0x0 },
|
|
{ 0x00D75FFF, 0x0005000A, 0x0 },
|
|
{ 0x00C30FFF, 0x00040006, 0x0 },
|
|
{ 0x80AAAFFF, 0x000B0000, 0x0 },
|
|
{ 0x00FFFFFF, 0x0005000A, 0x0 },
|
|
{ 0x00D75FFF, 0x000C0004, 0x0 },
|
|
{ 0x80C30FFF, 0x000B0000, 0x0 },
|
|
{ 0x00FFFFFF, 0x00040006, 0x0 },
|
|
{ 0x80D75FFF, 0x000B0000, 0x0 },
|
|
};
|
|
|
|
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
|
|
{ 0x00FFFFFF, 0x0007000E, 0x0 },
|
|
{ 0x00D75FFF, 0x000F000A, 0x0 },
|
|
{ 0x00C30FFF, 0x00060006, 0x0 },
|
|
{ 0x00AAAFFF, 0x001E0000, 0x0 },
|
|
{ 0x00FFFFFF, 0x000F000A, 0x0 },
|
|
{ 0x00D75FFF, 0x00160004, 0x0 },
|
|
{ 0x00C30FFF, 0x001E0000, 0x0 },
|
|
{ 0x00FFFFFF, 0x00060006, 0x0 },
|
|
{ 0x00D75FFF, 0x001E0000, 0x0 },
|
|
};
|
|
|
|
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
|
|
/* Idx NT mV d T mV d db */
|
|
{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
|
|
{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
|
|
{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
|
|
{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
|
|
{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
|
|
{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
|
|
{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
|
|
{ 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
|
|
{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
|
|
{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
|
|
{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
|
|
{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
|
|
};
|
|
|
|
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
|
|
{ 0x00FFFFFF, 0x00000012, 0x0 },
|
|
{ 0x00EBAFFF, 0x00020011, 0x0 },
|
|
{ 0x00C71FFF, 0x0006000F, 0x0 },
|
|
{ 0x00AAAFFF, 0x000E000A, 0x0 },
|
|
{ 0x00FFFFFF, 0x00020011, 0x0 },
|
|
{ 0x00DB6FFF, 0x0005000F, 0x0 },
|
|
{ 0x00BEEFFF, 0x000A000C, 0x0 },
|
|
{ 0x00FFFFFF, 0x0005000F, 0x0 },
|
|
{ 0x00DB6FFF, 0x000A000C, 0x0 },
|
|
};
|
|
|
|
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
|
|
{ 0x00FFFFFF, 0x0007000E, 0x0 },
|
|
{ 0x00D75FFF, 0x000E000A, 0x0 },
|
|
{ 0x00BEFFFF, 0x00140006, 0x0 },
|
|
{ 0x80B2CFFF, 0x001B0002, 0x0 },
|
|
{ 0x00FFFFFF, 0x000E000A, 0x0 },
|
|
{ 0x00DB6FFF, 0x00160005, 0x0 },
|
|
{ 0x80C71FFF, 0x001A0002, 0x0 },
|
|
{ 0x00F7DFFF, 0x00180004, 0x0 },
|
|
{ 0x80D75FFF, 0x001B0002, 0x0 },
|
|
};
|
|
|
|
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
|
|
{ 0x00FFFFFF, 0x0001000E, 0x0 },
|
|
{ 0x00D75FFF, 0x0004000A, 0x0 },
|
|
{ 0x00C30FFF, 0x00070006, 0x0 },
|
|
{ 0x00AAAFFF, 0x000C0000, 0x0 },
|
|
{ 0x00FFFFFF, 0x0004000A, 0x0 },
|
|
{ 0x00D75FFF, 0x00090004, 0x0 },
|
|
{ 0x00C30FFF, 0x000C0000, 0x0 },
|
|
{ 0x00FFFFFF, 0x00070006, 0x0 },
|
|
{ 0x00D75FFF, 0x000C0000, 0x0 },
|
|
};
|
|
|
|
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
|
|
/* Idx NT mV d T mV df db */
|
|
{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
|
|
{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
|
|
{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
|
|
{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
|
|
{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
|
|
{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
|
|
{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
|
|
{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
|
|
{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
|
|
{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
|
|
};
|
|
|
|
/* Skylake H, S, and Skylake Y with 0.95V VccIO */
|
|
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
|
|
{ 0x00002016, 0x000000A0, 0x0 },
|
|
{ 0x00005012, 0x0000009B, 0x0 },
|
|
{ 0x00007011, 0x00000088, 0x0 },
|
|
{ 0x00009010, 0x000000C7, 0x0 },
|
|
{ 0x00002016, 0x0000009B, 0x0 },
|
|
{ 0x00005012, 0x00000088, 0x0 },
|
|
{ 0x00007011, 0x000000C7, 0x0 },
|
|
{ 0x00002016, 0x000000DF, 0x0 },
|
|
{ 0x00005012, 0x000000C7, 0x0 },
|
|
};
|
|
|
|
/* Skylake U */
|
|
static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
|
|
{ 0x00002016, 0x000000A2, 0x0 },
|
|
{ 0x00005012, 0x00000088, 0x0 },
|
|
{ 0x00007011, 0x00000087, 0x0 },
|
|
{ 0x80009010, 0x000000C7, 0x1 }, /* Uses I_boost */
|
|
{ 0x00002016, 0x0000009D, 0x0 },
|
|
{ 0x00005012, 0x000000C7, 0x0 },
|
|
{ 0x00007011, 0x000000C7, 0x0 },
|
|
{ 0x00002016, 0x00000088, 0x0 },
|
|
{ 0x00005012, 0x000000C7, 0x0 },
|
|
};
|
|
|
|
/* Skylake Y with 0.85V VccIO */
|
|
static const struct ddi_buf_trans skl_y_085v_ddi_translations_dp[] = {
|
|
{ 0x00000018, 0x000000A2, 0x0 },
|
|
{ 0x00005012, 0x00000088, 0x0 },
|
|
{ 0x00007011, 0x00000087, 0x0 },
|
|
{ 0x80009010, 0x000000C7, 0x1 }, /* Uses I_boost */
|
|
{ 0x00000018, 0x0000009D, 0x0 },
|
|
{ 0x00005012, 0x000000C7, 0x0 },
|
|
{ 0x00007011, 0x000000C7, 0x0 },
|
|
{ 0x00000018, 0x00000088, 0x0 },
|
|
{ 0x00005012, 0x000000C7, 0x0 },
|
|
};
|
|
|
|
/*
|
|
* Skylake H and S, and Skylake Y with 0.95V VccIO
|
|
* eDP 1.4 low vswing translation parameters
|
|
*/
|
|
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
|
|
{ 0x00000018, 0x000000A8, 0x0 },
|
|
{ 0x00004013, 0x000000A9, 0x0 },
|
|
{ 0x00007011, 0x000000A2, 0x0 },
|
|
{ 0x00009010, 0x0000009C, 0x0 },
|
|
{ 0x00000018, 0x000000A9, 0x0 },
|
|
{ 0x00006013, 0x000000A2, 0x0 },
|
|
{ 0x00007011, 0x000000A6, 0x0 },
|
|
{ 0x00000018, 0x000000AB, 0x0 },
|
|
{ 0x00007013, 0x0000009F, 0x0 },
|
|
{ 0x00000018, 0x000000DF, 0x0 },
|
|
};
|
|
|
|
/*
|
|
* Skylake U
|
|
* eDP 1.4 low vswing translation parameters
|
|
*/
|
|
static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
|
|
{ 0x00000018, 0x000000A8, 0x0 },
|
|
{ 0x00004013, 0x000000A9, 0x0 },
|
|
{ 0x00007011, 0x000000A2, 0x0 },
|
|
{ 0x00009010, 0x0000009C, 0x0 },
|
|
{ 0x00000018, 0x000000A9, 0x0 },
|
|
{ 0x00006013, 0x000000A2, 0x0 },
|
|
{ 0x00007011, 0x000000A6, 0x0 },
|
|
{ 0x00002016, 0x000000AB, 0x0 },
|
|
{ 0x00005013, 0x0000009F, 0x0 },
|
|
{ 0x00000018, 0x000000DF, 0x0 },
|
|
};
|
|
|
|
/*
|
|
* Skylake Y with 0.95V VccIO
|
|
* eDP 1.4 low vswing translation parameters
|
|
*/
|
|
static const struct ddi_buf_trans skl_y_085v_ddi_translations_edp[] = {
|
|
{ 0x00000018, 0x000000A8, 0x0 },
|
|
{ 0x00004013, 0x000000AB, 0x0 },
|
|
{ 0x00007011, 0x000000A4, 0x0 },
|
|
{ 0x00009010, 0x000000DF, 0x0 },
|
|
{ 0x00000018, 0x000000AA, 0x0 },
|
|
{ 0x00006013, 0x000000A4, 0x0 },
|
|
{ 0x00007011, 0x0000009D, 0x0 },
|
|
{ 0x00000018, 0x000000A0, 0x0 },
|
|
{ 0x00006012, 0x000000DF, 0x0 },
|
|
{ 0x00000018, 0x0000008A, 0x0 },
|
|
};
|
|
|
|
/* Skylake H, S and U, and Skylake Y with 0.95V VccIO */
|
|
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
|
|
{ 0x00000018, 0x000000AC, 0x0 },
|
|
{ 0x00005012, 0x0000009D, 0x0 },
|
|
{ 0x00007011, 0x00000088, 0x0 },
|
|
{ 0x00000018, 0x000000A1, 0x0 },
|
|
{ 0x00000018, 0x00000098, 0x0 },
|
|
{ 0x00004013, 0x00000088, 0x0 },
|
|
{ 0x00006012, 0x00000087, 0x0 },
|
|
{ 0x00000018, 0x000000DF, 0x0 },
|
|
{ 0x00003015, 0x00000087, 0x0 }, /* Default */
|
|
{ 0x00003015, 0x000000C7, 0x0 },
|
|
{ 0x00000018, 0x000000C7, 0x0 },
|
|
};
|
|
|
|
/* Skylake Y with 0.85V VccIO */
|
|
static const struct ddi_buf_trans skl_y_085v_ddi_translations_hdmi[] = {
|
|
{ 0x00000018, 0x000000A1, 0x0 },
|
|
{ 0x00005012, 0x000000DF, 0x0 },
|
|
{ 0x00007011, 0x00000084, 0x0 },
|
|
{ 0x00000018, 0x000000A4, 0x0 },
|
|
{ 0x00000018, 0x0000009D, 0x0 },
|
|
{ 0x00004013, 0x00000080, 0x0 },
|
|
{ 0x00006013, 0x000000C7, 0x0 },
|
|
{ 0x00000018, 0x0000008A, 0x0 },
|
|
{ 0x00003015, 0x000000C7, 0x0 }, /* Default */
|
|
{ 0x80003015, 0x000000C7, 0x7 }, /* Uses I_boost */
|
|
{ 0x00000018, 0x000000C7, 0x0 },
|
|
};
|
|
|
|
struct bxt_ddi_buf_trans {
|
|
u32 margin; /* swing value */
|
|
u32 scale; /* scale value */
|
|
u32 enable; /* scale enable */
|
|
u32 deemphasis;
|
|
bool default_index; /* true if the entry represents default value */
|
|
};
|
|
|
|
/* BSpec does not define separate vswing/pre-emphasis values for eDP.
|
|
* Using DP values for eDP as well.
|
|
*/
|
|
static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
|
|
/* Idx NT mV diff db */
|
|
{ 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
|
|
{ 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
|
|
{ 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
|
|
{ 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
|
|
{ 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
|
|
{ 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
|
|
{ 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
|
|
{ 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
|
|
{ 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
|
|
{ 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
|
|
};
|
|
|
|
/* BSpec has 2 recommended values - entries 0 and 8.
|
|
* Using the entry with higher vswing.
|
|
*/
|
|
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
|
|
/* Idx NT mV diff db */
|
|
{ 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
|
|
{ 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
|
|
{ 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
|
|
{ 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
|
|
{ 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
|
|
{ 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
|
|
{ 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
|
|
{ 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
|
|
{ 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
|
|
{ 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
|
|
};
|
|
|
|
static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
|
|
enum port port, int type);
|
|
|
|
static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
|
|
struct intel_digital_port **dig_port,
|
|
enum port *port)
|
|
{
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
int type = intel_encoder->type;
|
|
|
|
if (type == INTEL_OUTPUT_DP_MST) {
|
|
*dig_port = enc_to_mst(encoder)->primary;
|
|
*port = (*dig_port)->port;
|
|
} else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
|
|
type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
|
|
*dig_port = enc_to_dig_port(encoder);
|
|
*port = (*dig_port)->port;
|
|
} else if (type == INTEL_OUTPUT_ANALOG) {
|
|
*dig_port = NULL;
|
|
*port = PORT_E;
|
|
} else {
|
|
DRM_ERROR("Invalid DDI encoder type %d\n", type);
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct intel_digital_port *dig_port;
|
|
enum port port;
|
|
|
|
ddi_get_encoder_port(intel_encoder, &dig_port, &port);
|
|
|
|
return port;
|
|
}
|
|
|
|
static bool
|
|
intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
|
|
{
|
|
return intel_dig_port->hdmi.hdmi_reg;
|
|
}
|
|
|
|
static const struct ddi_buf_trans *skl_get_buf_trans_dp(struct drm_device *dev,
|
|
int *n_entries)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
const struct ddi_buf_trans *ddi_translations;
|
|
static int is_095v = -1;
|
|
|
|
if (is_095v == -1) {
|
|
u32 spr1 = I915_READ(UAIMI_SPR1);
|
|
|
|
is_095v = spr1 & SKL_VCCIO_MASK;
|
|
}
|
|
|
|
if (IS_SKL_ULX(dev) && !is_095v) {
|
|
ddi_translations = skl_y_085v_ddi_translations_dp;
|
|
*n_entries = ARRAY_SIZE(skl_y_085v_ddi_translations_dp);
|
|
} else if (IS_SKL_ULT(dev)) {
|
|
ddi_translations = skl_u_ddi_translations_dp;
|
|
*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
|
|
} else {
|
|
ddi_translations = skl_ddi_translations_dp;
|
|
*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
|
|
}
|
|
|
|
return ddi_translations;
|
|
}
|
|
|
|
static const struct ddi_buf_trans *skl_get_buf_trans_edp(struct drm_device *dev,
|
|
int *n_entries)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
const struct ddi_buf_trans *ddi_translations;
|
|
static int is_095v = -1;
|
|
|
|
if (is_095v == -1) {
|
|
u32 spr1 = I915_READ(UAIMI_SPR1);
|
|
|
|
is_095v = spr1 & SKL_VCCIO_MASK;
|
|
}
|
|
|
|
if (IS_SKL_ULX(dev) && !is_095v) {
|
|
if (dev_priv->edp_low_vswing) {
|
|
ddi_translations = skl_y_085v_ddi_translations_edp;
|
|
*n_entries =
|
|
ARRAY_SIZE(skl_y_085v_ddi_translations_edp);
|
|
} else {
|
|
ddi_translations = skl_y_085v_ddi_translations_dp;
|
|
*n_entries =
|
|
ARRAY_SIZE(skl_y_085v_ddi_translations_dp);
|
|
}
|
|
} else if (IS_SKL_ULT(dev)) {
|
|
if (dev_priv->edp_low_vswing) {
|
|
ddi_translations = skl_u_ddi_translations_edp;
|
|
*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
|
|
} else {
|
|
ddi_translations = skl_u_ddi_translations_dp;
|
|
*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
|
|
}
|
|
} else {
|
|
if (dev_priv->edp_low_vswing) {
|
|
ddi_translations = skl_ddi_translations_edp;
|
|
*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
|
|
} else {
|
|
ddi_translations = skl_ddi_translations_dp;
|
|
*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
|
|
}
|
|
}
|
|
|
|
return ddi_translations;
|
|
}
|
|
|
|
static const struct ddi_buf_trans *
|
|
skl_get_buf_trans_hdmi(struct drm_device *dev,
|
|
int *n_entries)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
const struct ddi_buf_trans *ddi_translations;
|
|
static int is_095v = -1;
|
|
|
|
if (is_095v == -1) {
|
|
u32 spr1 = I915_READ(UAIMI_SPR1);
|
|
|
|
is_095v = spr1 & SKL_VCCIO_MASK;
|
|
}
|
|
|
|
if (IS_SKL_ULX(dev) && !is_095v) {
|
|
ddi_translations = skl_y_085v_ddi_translations_hdmi;
|
|
*n_entries = ARRAY_SIZE(skl_y_085v_ddi_translations_hdmi);
|
|
} else {
|
|
ddi_translations = skl_ddi_translations_hdmi;
|
|
*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
|
|
}
|
|
|
|
return ddi_translations;
|
|
}
|
|
|
|
/*
|
|
* Starting with Haswell, DDI port buffers must be programmed with correct
|
|
* values in advance. The buffer values are different for FDI and DP modes,
|
|
* but the HDMI/DVI fields are shared among those. So we program the DDI
|
|
* in either FDI or DP modes only, as HDMI connections will work with both
|
|
* of those
|
|
*/
|
|
static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
|
|
bool supports_hdmi)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 reg;
|
|
u32 iboost_bit = 0;
|
|
int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
|
|
size;
|
|
int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
|
|
const struct ddi_buf_trans *ddi_translations_fdi;
|
|
const struct ddi_buf_trans *ddi_translations_dp;
|
|
const struct ddi_buf_trans *ddi_translations_edp;
|
|
const struct ddi_buf_trans *ddi_translations_hdmi;
|
|
const struct ddi_buf_trans *ddi_translations;
|
|
|
|
if (IS_BROXTON(dev)) {
|
|
if (!supports_hdmi)
|
|
return;
|
|
|
|
/* Vswing programming for HDMI */
|
|
bxt_ddi_vswing_sequence(dev, hdmi_level, port,
|
|
INTEL_OUTPUT_HDMI);
|
|
return;
|
|
} else if (IS_SKYLAKE(dev)) {
|
|
ddi_translations_fdi = NULL;
|
|
ddi_translations_dp =
|
|
skl_get_buf_trans_dp(dev, &n_dp_entries);
|
|
ddi_translations_edp =
|
|
skl_get_buf_trans_edp(dev, &n_edp_entries);
|
|
ddi_translations_hdmi =
|
|
skl_get_buf_trans_hdmi(dev, &n_hdmi_entries);
|
|
hdmi_default_entry = 8;
|
|
/* If we're boosting the current, set bit 31 of trans1 */
|
|
if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
|
|
dev_priv->vbt.ddi_port_info[port].dp_boost_level)
|
|
iboost_bit = 1<<31;
|
|
} else if (IS_BROADWELL(dev)) {
|
|
ddi_translations_fdi = bdw_ddi_translations_fdi;
|
|
ddi_translations_dp = bdw_ddi_translations_dp;
|
|
ddi_translations_edp = bdw_ddi_translations_edp;
|
|
ddi_translations_hdmi = bdw_ddi_translations_hdmi;
|
|
n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
|
|
n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
|
|
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
|
|
hdmi_default_entry = 7;
|
|
} else if (IS_HASWELL(dev)) {
|
|
ddi_translations_fdi = hsw_ddi_translations_fdi;
|
|
ddi_translations_dp = hsw_ddi_translations_dp;
|
|
ddi_translations_edp = hsw_ddi_translations_dp;
|
|
ddi_translations_hdmi = hsw_ddi_translations_hdmi;
|
|
n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
|
|
n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
|
|
hdmi_default_entry = 6;
|
|
} else {
|
|
WARN(1, "ddi translation table missing\n");
|
|
ddi_translations_edp = bdw_ddi_translations_dp;
|
|
ddi_translations_fdi = bdw_ddi_translations_fdi;
|
|
ddi_translations_dp = bdw_ddi_translations_dp;
|
|
ddi_translations_hdmi = bdw_ddi_translations_hdmi;
|
|
n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
|
|
n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
|
|
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
|
|
hdmi_default_entry = 7;
|
|
}
|
|
|
|
switch (port) {
|
|
case PORT_A:
|
|
ddi_translations = ddi_translations_edp;
|
|
size = n_edp_entries;
|
|
break;
|
|
case PORT_B:
|
|
case PORT_C:
|
|
ddi_translations = ddi_translations_dp;
|
|
size = n_dp_entries;
|
|
break;
|
|
case PORT_D:
|
|
if (intel_dp_is_edp(dev, PORT_D)) {
|
|
ddi_translations = ddi_translations_edp;
|
|
size = n_edp_entries;
|
|
} else {
|
|
ddi_translations = ddi_translations_dp;
|
|
size = n_dp_entries;
|
|
}
|
|
break;
|
|
case PORT_E:
|
|
if (ddi_translations_fdi)
|
|
ddi_translations = ddi_translations_fdi;
|
|
else
|
|
ddi_translations = ddi_translations_dp;
|
|
size = n_dp_entries;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
|
|
I915_WRITE(reg, ddi_translations[i].trans1 | iboost_bit);
|
|
reg += 4;
|
|
I915_WRITE(reg, ddi_translations[i].trans2);
|
|
reg += 4;
|
|
}
|
|
|
|
if (!supports_hdmi)
|
|
return;
|
|
|
|
/* Choose a good default if VBT is badly populated */
|
|
if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
|
|
hdmi_level >= n_hdmi_entries)
|
|
hdmi_level = hdmi_default_entry;
|
|
|
|
/* Entry 9 is for HDMI: */
|
|
I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
|
|
reg += 4;
|
|
I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
|
|
reg += 4;
|
|
}
|
|
|
|
/* Program DDI buffers translations for DP. By default, program ports A-D in DP
|
|
* mode and port E for FDI.
|
|
*/
|
|
void intel_prepare_ddi(struct drm_device *dev)
|
|
{
|
|
struct intel_encoder *intel_encoder;
|
|
bool visited[I915_MAX_PORTS] = { 0, };
|
|
|
|
if (!HAS_DDI(dev))
|
|
return;
|
|
|
|
for_each_intel_encoder(dev, intel_encoder) {
|
|
struct intel_digital_port *intel_dig_port;
|
|
enum port port;
|
|
bool supports_hdmi;
|
|
|
|
ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
|
|
|
|
if (visited[port])
|
|
continue;
|
|
|
|
supports_hdmi = intel_dig_port &&
|
|
intel_dig_port_supports_hdmi(intel_dig_port);
|
|
|
|
intel_prepare_ddi_buffers(dev, port, supports_hdmi);
|
|
visited[port] = true;
|
|
}
|
|
}
|
|
|
|
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
|
|
enum port port)
|
|
{
|
|
uint32_t reg = DDI_BUF_CTL(port);
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
udelay(1);
|
|
if (I915_READ(reg) & DDI_BUF_IS_IDLE)
|
|
return;
|
|
}
|
|
DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
|
|
}
|
|
|
|
/* Starting with Haswell, different DDI ports can work in FDI mode for
|
|
* connection to the PCH-located connectors. For this, it is necessary to train
|
|
* both the DDI port and PCH receiver for the desired DDI buffer settings.
|
|
*
|
|
* The recommended port to work in FDI mode is DDI E, which we use here. Also,
|
|
* please note that when FDI mode is active on DDI E, it shares 2 lines with
|
|
* DDI A (which is used for eDP)
|
|
*/
|
|
|
|
void hsw_fdi_link_train(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
u32 temp, i, rx_ctl_val;
|
|
|
|
/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
|
|
* mode set "sequence for CRT port" document:
|
|
* - TP1 to TP2 time with the default value
|
|
* - FDI delay to 90h
|
|
*
|
|
* WaFDIAutoLinkSetTimingOverrride:hsw
|
|
*/
|
|
I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
|
|
FDI_RX_PWRDN_LANE0_VAL(2) |
|
|
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
|
|
|
|
/* Enable the PCH Receiver FDI PLL */
|
|
rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
|
|
FDI_RX_PLL_ENABLE |
|
|
FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
|
|
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
|
|
POSTING_READ(_FDI_RXA_CTL);
|
|
udelay(220);
|
|
|
|
/* Switch from Rawclk to PCDclk */
|
|
rx_ctl_val |= FDI_PCDCLK;
|
|
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
|
|
|
|
/* Configure Port Clock Select */
|
|
I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
|
|
WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
|
|
|
|
/* Start the training iterating through available voltages and emphasis,
|
|
* testing each value twice. */
|
|
for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
|
|
/* Configure DP_TP_CTL with auto-training */
|
|
I915_WRITE(DP_TP_CTL(PORT_E),
|
|
DP_TP_CTL_FDI_AUTOTRAIN |
|
|
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
|
|
DP_TP_CTL_LINK_TRAIN_PAT1 |
|
|
DP_TP_CTL_ENABLE);
|
|
|
|
/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
|
|
* DDI E does not support port reversal, the functionality is
|
|
* achieved on the PCH side in FDI_RX_CTL, so no need to set the
|
|
* port reversal bit */
|
|
I915_WRITE(DDI_BUF_CTL(PORT_E),
|
|
DDI_BUF_CTL_ENABLE |
|
|
((intel_crtc->config->fdi_lanes - 1) << 1) |
|
|
DDI_BUF_TRANS_SELECT(i / 2));
|
|
POSTING_READ(DDI_BUF_CTL(PORT_E));
|
|
|
|
udelay(600);
|
|
|
|
/* Program PCH FDI Receiver TU */
|
|
I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
|
|
|
|
/* Enable PCH FDI Receiver with auto-training */
|
|
rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
|
|
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
|
|
POSTING_READ(_FDI_RXA_CTL);
|
|
|
|
/* Wait for FDI receiver lane calibration */
|
|
udelay(30);
|
|
|
|
/* Unset FDI_RX_MISC pwrdn lanes */
|
|
temp = I915_READ(_FDI_RXA_MISC);
|
|
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
|
|
I915_WRITE(_FDI_RXA_MISC, temp);
|
|
POSTING_READ(_FDI_RXA_MISC);
|
|
|
|
/* Wait for FDI auto training time */
|
|
udelay(5);
|
|
|
|
temp = I915_READ(DP_TP_STATUS(PORT_E));
|
|
if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
|
|
DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
|
|
|
|
/* Enable normal pixel sending for FDI */
|
|
I915_WRITE(DP_TP_CTL(PORT_E),
|
|
DP_TP_CTL_FDI_AUTOTRAIN |
|
|
DP_TP_CTL_LINK_TRAIN_NORMAL |
|
|
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
|
|
DP_TP_CTL_ENABLE);
|
|
|
|
return;
|
|
}
|
|
|
|
temp = I915_READ(DDI_BUF_CTL(PORT_E));
|
|
temp &= ~DDI_BUF_CTL_ENABLE;
|
|
I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
|
|
POSTING_READ(DDI_BUF_CTL(PORT_E));
|
|
|
|
/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
|
|
temp = I915_READ(DP_TP_CTL(PORT_E));
|
|
temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
|
|
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
|
|
I915_WRITE(DP_TP_CTL(PORT_E), temp);
|
|
POSTING_READ(DP_TP_CTL(PORT_E));
|
|
|
|
intel_wait_ddi_buf_idle(dev_priv, PORT_E);
|
|
|
|
rx_ctl_val &= ~FDI_RX_ENABLE;
|
|
I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
|
|
POSTING_READ(_FDI_RXA_CTL);
|
|
|
|
/* Reset FDI_RX_MISC pwrdn lanes */
|
|
temp = I915_READ(_FDI_RXA_MISC);
|
|
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
|
|
temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
|
|
I915_WRITE(_FDI_RXA_MISC, temp);
|
|
POSTING_READ(_FDI_RXA_MISC);
|
|
}
|
|
|
|
DRM_ERROR("FDI link training failed!\n");
|
|
}
|
|
|
|
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct intel_digital_port *intel_dig_port =
|
|
enc_to_dig_port(&encoder->base);
|
|
|
|
intel_dp->DP = intel_dig_port->saved_port_bits |
|
|
DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
|
|
intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
|
|
|
|
}
|
|
|
|
static struct intel_encoder *
|
|
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *intel_encoder, *ret = NULL;
|
|
int num_encoders = 0;
|
|
|
|
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
|
|
ret = intel_encoder;
|
|
num_encoders++;
|
|
}
|
|
|
|
if (num_encoders != 1)
|
|
WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
|
|
pipe_name(intel_crtc->pipe));
|
|
|
|
BUG_ON(ret == NULL);
|
|
return ret;
|
|
}
|
|
|
|
struct intel_encoder *
|
|
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct intel_encoder *ret = NULL;
|
|
struct drm_atomic_state *state;
|
|
struct drm_connector *connector;
|
|
struct drm_connector_state *connector_state;
|
|
int num_encoders = 0;
|
|
int i;
|
|
|
|
state = crtc_state->base.state;
|
|
|
|
for_each_connector_in_state(state, connector, connector_state, i) {
|
|
if (connector_state->crtc != crtc_state->base.crtc)
|
|
continue;
|
|
|
|
ret = to_intel_encoder(connector_state->best_encoder);
|
|
num_encoders++;
|
|
}
|
|
|
|
WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
|
|
pipe_name(crtc->pipe));
|
|
|
|
BUG_ON(ret == NULL);
|
|
return ret;
|
|
}
|
|
|
|
#define LC_FREQ 2700
|
|
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
|
|
|
|
#define P_MIN 2
|
|
#define P_MAX 64
|
|
#define P_INC 2
|
|
|
|
/* Constraints for PLL good behavior */
|
|
#define REF_MIN 48
|
|
#define REF_MAX 400
|
|
#define VCO_MIN 2400
|
|
#define VCO_MAX 4800
|
|
|
|
#define abs_diff(a, b) ({ \
|
|
typeof(a) __a = (a); \
|
|
typeof(b) __b = (b); \
|
|
(void) (&__a == &__b); \
|
|
__a > __b ? (__a - __b) : (__b - __a); })
|
|
|
|
struct hsw_wrpll_rnp {
|
|
unsigned p, n2, r2;
|
|
};
|
|
|
|
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
|
|
{
|
|
unsigned budget;
|
|
|
|
switch (clock) {
|
|
case 25175000:
|
|
case 25200000:
|
|
case 27000000:
|
|
case 27027000:
|
|
case 37762500:
|
|
case 37800000:
|
|
case 40500000:
|
|
case 40541000:
|
|
case 54000000:
|
|
case 54054000:
|
|
case 59341000:
|
|
case 59400000:
|
|
case 72000000:
|
|
case 74176000:
|
|
case 74250000:
|
|
case 81000000:
|
|
case 81081000:
|
|
case 89012000:
|
|
case 89100000:
|
|
case 108000000:
|
|
case 108108000:
|
|
case 111264000:
|
|
case 111375000:
|
|
case 148352000:
|
|
case 148500000:
|
|
case 162000000:
|
|
case 162162000:
|
|
case 222525000:
|
|
case 222750000:
|
|
case 296703000:
|
|
case 297000000:
|
|
budget = 0;
|
|
break;
|
|
case 233500000:
|
|
case 245250000:
|
|
case 247750000:
|
|
case 253250000:
|
|
case 298000000:
|
|
budget = 1500;
|
|
break;
|
|
case 169128000:
|
|
case 169500000:
|
|
case 179500000:
|
|
case 202000000:
|
|
budget = 2000;
|
|
break;
|
|
case 256250000:
|
|
case 262500000:
|
|
case 270000000:
|
|
case 272500000:
|
|
case 273750000:
|
|
case 280750000:
|
|
case 281250000:
|
|
case 286000000:
|
|
case 291750000:
|
|
budget = 4000;
|
|
break;
|
|
case 267250000:
|
|
case 268500000:
|
|
budget = 5000;
|
|
break;
|
|
default:
|
|
budget = 1000;
|
|
break;
|
|
}
|
|
|
|
return budget;
|
|
}
|
|
|
|
static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
|
|
unsigned r2, unsigned n2, unsigned p,
|
|
struct hsw_wrpll_rnp *best)
|
|
{
|
|
uint64_t a, b, c, d, diff, diff_best;
|
|
|
|
/* No best (r,n,p) yet */
|
|
if (best->p == 0) {
|
|
best->p = p;
|
|
best->n2 = n2;
|
|
best->r2 = r2;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
|
|
* freq2k.
|
|
*
|
|
* delta = 1e6 *
|
|
* abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
|
|
* freq2k;
|
|
*
|
|
* and we would like delta <= budget.
|
|
*
|
|
* If the discrepancy is above the PPM-based budget, always prefer to
|
|
* improve upon the previous solution. However, if you're within the
|
|
* budget, try to maximize Ref * VCO, that is N / (P * R^2).
|
|
*/
|
|
a = freq2k * budget * p * r2;
|
|
b = freq2k * budget * best->p * best->r2;
|
|
diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
|
|
diff_best = abs_diff(freq2k * best->p * best->r2,
|
|
LC_FREQ_2K * best->n2);
|
|
c = 1000000 * diff;
|
|
d = 1000000 * diff_best;
|
|
|
|
if (a < c && b < d) {
|
|
/* If both are above the budget, pick the closer */
|
|
if (best->p * best->r2 * diff < p * r2 * diff_best) {
|
|
best->p = p;
|
|
best->n2 = n2;
|
|
best->r2 = r2;
|
|
}
|
|
} else if (a >= c && b < d) {
|
|
/* If A is below the threshold but B is above it? Update. */
|
|
best->p = p;
|
|
best->n2 = n2;
|
|
best->r2 = r2;
|
|
} else if (a >= c && b >= d) {
|
|
/* Both are below the limit, so pick the higher n2/(r2*r2) */
|
|
if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
|
|
best->p = p;
|
|
best->n2 = n2;
|
|
best->r2 = r2;
|
|
}
|
|
}
|
|
/* Otherwise a < c && b >= d, do nothing */
|
|
}
|
|
|
|
static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv, int reg)
|
|
{
|
|
int refclk = LC_FREQ;
|
|
int n, p, r;
|
|
u32 wrpll;
|
|
|
|
wrpll = I915_READ(reg);
|
|
switch (wrpll & WRPLL_PLL_REF_MASK) {
|
|
case WRPLL_PLL_SSC:
|
|
case WRPLL_PLL_NON_SSC:
|
|
/*
|
|
* We could calculate spread here, but our checking
|
|
* code only cares about 5% accuracy, and spread is a max of
|
|
* 0.5% downspread.
|
|
*/
|
|
refclk = 135;
|
|
break;
|
|
case WRPLL_PLL_LCPLL:
|
|
refclk = LC_FREQ;
|
|
break;
|
|
default:
|
|
WARN(1, "bad wrpll refclk\n");
|
|
return 0;
|
|
}
|
|
|
|
r = wrpll & WRPLL_DIVIDER_REF_MASK;
|
|
p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
|
|
n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
|
|
|
|
/* Convert to KHz, p & r have a fixed point portion */
|
|
return (refclk * n * 100) / (p * r);
|
|
}
|
|
|
|
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
|
|
uint32_t dpll)
|
|
{
|
|
uint32_t cfgcr1_reg, cfgcr2_reg;
|
|
uint32_t cfgcr1_val, cfgcr2_val;
|
|
uint32_t p0, p1, p2, dco_freq;
|
|
|
|
cfgcr1_reg = GET_CFG_CR1_REG(dpll);
|
|
cfgcr2_reg = GET_CFG_CR2_REG(dpll);
|
|
|
|
cfgcr1_val = I915_READ(cfgcr1_reg);
|
|
cfgcr2_val = I915_READ(cfgcr2_reg);
|
|
|
|
p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
|
|
p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
|
|
|
|
if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
|
|
p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
|
|
else
|
|
p1 = 1;
|
|
|
|
|
|
switch (p0) {
|
|
case DPLL_CFGCR2_PDIV_1:
|
|
p0 = 1;
|
|
break;
|
|
case DPLL_CFGCR2_PDIV_2:
|
|
p0 = 2;
|
|
break;
|
|
case DPLL_CFGCR2_PDIV_3:
|
|
p0 = 3;
|
|
break;
|
|
case DPLL_CFGCR2_PDIV_7:
|
|
p0 = 7;
|
|
break;
|
|
}
|
|
|
|
switch (p2) {
|
|
case DPLL_CFGCR2_KDIV_5:
|
|
p2 = 5;
|
|
break;
|
|
case DPLL_CFGCR2_KDIV_2:
|
|
p2 = 2;
|
|
break;
|
|
case DPLL_CFGCR2_KDIV_3:
|
|
p2 = 3;
|
|
break;
|
|
case DPLL_CFGCR2_KDIV_1:
|
|
p2 = 1;
|
|
break;
|
|
}
|
|
|
|
dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
|
|
|
|
dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
|
|
1000) / 0x8000;
|
|
|
|
return dco_freq / (p0 * p1 * p2 * 5);
|
|
}
|
|
|
|
static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
|
|
{
|
|
int dotclock;
|
|
|
|
if (pipe_config->has_pch_encoder)
|
|
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
|
|
&pipe_config->fdi_m_n);
|
|
else if (pipe_config->has_dp_encoder)
|
|
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
|
|
&pipe_config->dp_m_n);
|
|
else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
|
|
dotclock = pipe_config->port_clock * 2 / 3;
|
|
else
|
|
dotclock = pipe_config->port_clock;
|
|
|
|
if (pipe_config->pixel_multiplier)
|
|
dotclock /= pipe_config->pixel_multiplier;
|
|
|
|
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
|
|
}
|
|
|
|
static void skl_ddi_clock_get(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
|
|
int link_clock = 0;
|
|
uint32_t dpll_ctl1, dpll;
|
|
|
|
dpll = pipe_config->ddi_pll_sel;
|
|
|
|
dpll_ctl1 = I915_READ(DPLL_CTRL1);
|
|
|
|
if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
|
|
link_clock = skl_calc_wrpll_link(dev_priv, dpll);
|
|
} else {
|
|
link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
|
|
link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
|
|
|
|
switch (link_clock) {
|
|
case DPLL_CTRL1_LINK_RATE_810:
|
|
link_clock = 81000;
|
|
break;
|
|
case DPLL_CTRL1_LINK_RATE_1080:
|
|
link_clock = 108000;
|
|
break;
|
|
case DPLL_CTRL1_LINK_RATE_1350:
|
|
link_clock = 135000;
|
|
break;
|
|
case DPLL_CTRL1_LINK_RATE_1620:
|
|
link_clock = 162000;
|
|
break;
|
|
case DPLL_CTRL1_LINK_RATE_2160:
|
|
link_clock = 216000;
|
|
break;
|
|
case DPLL_CTRL1_LINK_RATE_2700:
|
|
link_clock = 270000;
|
|
break;
|
|
default:
|
|
WARN(1, "Unsupported link rate\n");
|
|
break;
|
|
}
|
|
link_clock *= 2;
|
|
}
|
|
|
|
pipe_config->port_clock = link_clock;
|
|
|
|
ddi_dotclock_get(pipe_config);
|
|
}
|
|
|
|
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
|
|
int link_clock = 0;
|
|
u32 val, pll;
|
|
|
|
val = pipe_config->ddi_pll_sel;
|
|
switch (val & PORT_CLK_SEL_MASK) {
|
|
case PORT_CLK_SEL_LCPLL_810:
|
|
link_clock = 81000;
|
|
break;
|
|
case PORT_CLK_SEL_LCPLL_1350:
|
|
link_clock = 135000;
|
|
break;
|
|
case PORT_CLK_SEL_LCPLL_2700:
|
|
link_clock = 270000;
|
|
break;
|
|
case PORT_CLK_SEL_WRPLL1:
|
|
link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
|
|
break;
|
|
case PORT_CLK_SEL_WRPLL2:
|
|
link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
|
|
break;
|
|
case PORT_CLK_SEL_SPLL:
|
|
pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
|
|
if (pll == SPLL_PLL_FREQ_810MHz)
|
|
link_clock = 81000;
|
|
else if (pll == SPLL_PLL_FREQ_1350MHz)
|
|
link_clock = 135000;
|
|
else if (pll == SPLL_PLL_FREQ_2700MHz)
|
|
link_clock = 270000;
|
|
else {
|
|
WARN(1, "bad spll freq\n");
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
WARN(1, "bad port clock sel\n");
|
|
return;
|
|
}
|
|
|
|
pipe_config->port_clock = link_clock * 2;
|
|
|
|
ddi_dotclock_get(pipe_config);
|
|
}
|
|
|
|
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
|
|
enum intel_dpll_id dpll)
|
|
{
|
|
struct intel_shared_dpll *pll;
|
|
struct intel_dpll_hw_state *state;
|
|
intel_clock_t clock;
|
|
|
|
/* For DDI ports we always use a shared PLL. */
|
|
if (WARN_ON(dpll == DPLL_ID_PRIVATE))
|
|
return 0;
|
|
|
|
pll = &dev_priv->shared_dplls[dpll];
|
|
state = &pll->config.hw_state;
|
|
|
|
clock.m1 = 2;
|
|
clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
|
|
if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
|
|
clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
|
|
clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
|
|
clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
|
|
clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
|
|
|
|
return chv_calc_dpll_params(100000, &clock);
|
|
}
|
|
|
|
static void bxt_ddi_clock_get(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
|
|
enum port port = intel_ddi_get_encoder_port(encoder);
|
|
uint32_t dpll = port;
|
|
|
|
pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
|
|
|
|
ddi_dotclock_get(pipe_config);
|
|
}
|
|
|
|
void intel_ddi_clock_get(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
|
|
if (INTEL_INFO(dev)->gen <= 8)
|
|
hsw_ddi_clock_get(encoder, pipe_config);
|
|
else if (IS_SKYLAKE(dev))
|
|
skl_ddi_clock_get(encoder, pipe_config);
|
|
else if (IS_BROXTON(dev))
|
|
bxt_ddi_clock_get(encoder, pipe_config);
|
|
}
|
|
|
|
static void
|
|
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
|
|
unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
|
|
{
|
|
uint64_t freq2k;
|
|
unsigned p, n2, r2;
|
|
struct hsw_wrpll_rnp best = { 0, 0, 0 };
|
|
unsigned budget;
|
|
|
|
freq2k = clock / 100;
|
|
|
|
budget = hsw_wrpll_get_budget_for_freq(clock);
|
|
|
|
/* Special case handling for 540 pixel clock: bypass WR PLL entirely
|
|
* and directly pass the LC PLL to it. */
|
|
if (freq2k == 5400000) {
|
|
*n2_out = 2;
|
|
*p_out = 1;
|
|
*r2_out = 2;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Ref = LC_FREQ / R, where Ref is the actual reference input seen by
|
|
* the WR PLL.
|
|
*
|
|
* We want R so that REF_MIN <= Ref <= REF_MAX.
|
|
* Injecting R2 = 2 * R gives:
|
|
* REF_MAX * r2 > LC_FREQ * 2 and
|
|
* REF_MIN * r2 < LC_FREQ * 2
|
|
*
|
|
* Which means the desired boundaries for r2 are:
|
|
* LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
|
|
*
|
|
*/
|
|
for (r2 = LC_FREQ * 2 / REF_MAX + 1;
|
|
r2 <= LC_FREQ * 2 / REF_MIN;
|
|
r2++) {
|
|
|
|
/*
|
|
* VCO = N * Ref, that is: VCO = N * LC_FREQ / R
|
|
*
|
|
* Once again we want VCO_MIN <= VCO <= VCO_MAX.
|
|
* Injecting R2 = 2 * R and N2 = 2 * N, we get:
|
|
* VCO_MAX * r2 > n2 * LC_FREQ and
|
|
* VCO_MIN * r2 < n2 * LC_FREQ)
|
|
*
|
|
* Which means the desired boundaries for n2 are:
|
|
* VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
|
|
*/
|
|
for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
|
|
n2 <= VCO_MAX * r2 / LC_FREQ;
|
|
n2++) {
|
|
|
|
for (p = P_MIN; p <= P_MAX; p += P_INC)
|
|
hsw_wrpll_update_rnp(freq2k, budget,
|
|
r2, n2, p, &best);
|
|
}
|
|
}
|
|
|
|
*n2_out = best.n2;
|
|
*p_out = best.p;
|
|
*r2_out = best.r2;
|
|
}
|
|
|
|
static bool
|
|
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *intel_encoder,
|
|
int clock)
|
|
{
|
|
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
|
|
struct intel_shared_dpll *pll;
|
|
uint32_t val;
|
|
unsigned p, n2, r2;
|
|
|
|
hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
|
|
|
|
val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
|
|
WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
|
|
WRPLL_DIVIDER_POST(p);
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
crtc_state->dpll_hw_state.wrpll = val;
|
|
|
|
pll = intel_get_shared_dpll(intel_crtc, crtc_state);
|
|
if (pll == NULL) {
|
|
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
|
|
pipe_name(intel_crtc->pipe));
|
|
return false;
|
|
}
|
|
|
|
crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
struct skl_wrpll_context {
|
|
uint64_t min_deviation; /* current minimal deviation */
|
|
uint64_t central_freq; /* chosen central freq */
|
|
uint64_t dco_freq; /* chosen dco freq */
|
|
unsigned int p; /* chosen divider */
|
|
};
|
|
|
|
static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
|
|
{
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
|
|
ctx->min_deviation = U64_MAX;
|
|
}
|
|
|
|
/* DCO freq must be within +1%/-6% of the DCO central freq */
|
|
#define SKL_DCO_MAX_PDEVIATION 100
|
|
#define SKL_DCO_MAX_NDEVIATION 600
|
|
|
|
static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
|
|
uint64_t central_freq,
|
|
uint64_t dco_freq,
|
|
unsigned int divider)
|
|
{
|
|
uint64_t deviation;
|
|
|
|
deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
|
|
central_freq);
|
|
|
|
/* positive deviation */
|
|
if (dco_freq >= central_freq) {
|
|
if (deviation < SKL_DCO_MAX_PDEVIATION &&
|
|
deviation < ctx->min_deviation) {
|
|
ctx->min_deviation = deviation;
|
|
ctx->central_freq = central_freq;
|
|
ctx->dco_freq = dco_freq;
|
|
ctx->p = divider;
|
|
}
|
|
/* negative deviation */
|
|
} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
|
|
deviation < ctx->min_deviation) {
|
|
ctx->min_deviation = deviation;
|
|
ctx->central_freq = central_freq;
|
|
ctx->dco_freq = dco_freq;
|
|
ctx->p = divider;
|
|
}
|
|
}
|
|
|
|
static void skl_wrpll_get_multipliers(unsigned int p,
|
|
unsigned int *p0 /* out */,
|
|
unsigned int *p1 /* out */,
|
|
unsigned int *p2 /* out */)
|
|
{
|
|
/* even dividers */
|
|
if (p % 2 == 0) {
|
|
unsigned int half = p / 2;
|
|
|
|
if (half == 1 || half == 2 || half == 3 || half == 5) {
|
|
*p0 = 2;
|
|
*p1 = 1;
|
|
*p2 = half;
|
|
} else if (half % 2 == 0) {
|
|
*p0 = 2;
|
|
*p1 = half / 2;
|
|
*p2 = 2;
|
|
} else if (half % 3 == 0) {
|
|
*p0 = 3;
|
|
*p1 = half / 3;
|
|
*p2 = 2;
|
|
} else if (half % 7 == 0) {
|
|
*p0 = 7;
|
|
*p1 = half / 7;
|
|
*p2 = 2;
|
|
}
|
|
} else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
|
|
*p0 = 3;
|
|
*p1 = 1;
|
|
*p2 = p / 3;
|
|
} else if (p == 5 || p == 7) {
|
|
*p0 = p;
|
|
*p1 = 1;
|
|
*p2 = 1;
|
|
} else if (p == 15) {
|
|
*p0 = 3;
|
|
*p1 = 1;
|
|
*p2 = 5;
|
|
} else if (p == 21) {
|
|
*p0 = 7;
|
|
*p1 = 1;
|
|
*p2 = 3;
|
|
} else if (p == 35) {
|
|
*p0 = 7;
|
|
*p1 = 1;
|
|
*p2 = 5;
|
|
}
|
|
}
|
|
|
|
struct skl_wrpll_params {
|
|
uint32_t dco_fraction;
|
|
uint32_t dco_integer;
|
|
uint32_t qdiv_ratio;
|
|
uint32_t qdiv_mode;
|
|
uint32_t kdiv;
|
|
uint32_t pdiv;
|
|
uint32_t central_freq;
|
|
};
|
|
|
|
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
|
|
uint64_t afe_clock,
|
|
uint64_t central_freq,
|
|
uint32_t p0, uint32_t p1, uint32_t p2)
|
|
{
|
|
uint64_t dco_freq;
|
|
|
|
switch (central_freq) {
|
|
case 9600000000ULL:
|
|
params->central_freq = 0;
|
|
break;
|
|
case 9000000000ULL:
|
|
params->central_freq = 1;
|
|
break;
|
|
case 8400000000ULL:
|
|
params->central_freq = 3;
|
|
}
|
|
|
|
switch (p0) {
|
|
case 1:
|
|
params->pdiv = 0;
|
|
break;
|
|
case 2:
|
|
params->pdiv = 1;
|
|
break;
|
|
case 3:
|
|
params->pdiv = 2;
|
|
break;
|
|
case 7:
|
|
params->pdiv = 4;
|
|
break;
|
|
default:
|
|
WARN(1, "Incorrect PDiv\n");
|
|
}
|
|
|
|
switch (p2) {
|
|
case 5:
|
|
params->kdiv = 0;
|
|
break;
|
|
case 2:
|
|
params->kdiv = 1;
|
|
break;
|
|
case 3:
|
|
params->kdiv = 2;
|
|
break;
|
|
case 1:
|
|
params->kdiv = 3;
|
|
break;
|
|
default:
|
|
WARN(1, "Incorrect KDiv\n");
|
|
}
|
|
|
|
params->qdiv_ratio = p1;
|
|
params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
|
|
|
|
dco_freq = p0 * p1 * p2 * afe_clock;
|
|
|
|
/*
|
|
* Intermediate values are in Hz.
|
|
* Divide by MHz to match bsepc
|
|
*/
|
|
params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
|
|
params->dco_fraction =
|
|
div_u64((div_u64(dco_freq, 24) -
|
|
params->dco_integer * MHz(1)) * 0x8000, MHz(1));
|
|
}
|
|
|
|
static bool
|
|
skl_ddi_calculate_wrpll(int clock /* in Hz */,
|
|
struct skl_wrpll_params *wrpll_params)
|
|
{
|
|
uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
|
|
uint64_t dco_central_freq[3] = {8400000000ULL,
|
|
9000000000ULL,
|
|
9600000000ULL};
|
|
static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
|
|
24, 28, 30, 32, 36, 40, 42, 44,
|
|
48, 52, 54, 56, 60, 64, 66, 68,
|
|
70, 72, 76, 78, 80, 84, 88, 90,
|
|
92, 96, 98 };
|
|
static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
|
|
static const struct {
|
|
const int *list;
|
|
int n_dividers;
|
|
} dividers[] = {
|
|
{ even_dividers, ARRAY_SIZE(even_dividers) },
|
|
{ odd_dividers, ARRAY_SIZE(odd_dividers) },
|
|
};
|
|
struct skl_wrpll_context ctx;
|
|
unsigned int dco, d, i;
|
|
unsigned int p0, p1, p2;
|
|
|
|
skl_wrpll_context_init(&ctx);
|
|
|
|
for (d = 0; d < ARRAY_SIZE(dividers); d++) {
|
|
for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
|
|
for (i = 0; i < dividers[d].n_dividers; i++) {
|
|
unsigned int p = dividers[d].list[i];
|
|
uint64_t dco_freq = p * afe_clock;
|
|
|
|
skl_wrpll_try_divider(&ctx,
|
|
dco_central_freq[dco],
|
|
dco_freq,
|
|
p);
|
|
/*
|
|
* Skip the remaining dividers if we're sure to
|
|
* have found the definitive divider, we can't
|
|
* improve a 0 deviation.
|
|
*/
|
|
if (ctx.min_deviation == 0)
|
|
goto skip_remaining_dividers;
|
|
}
|
|
}
|
|
|
|
skip_remaining_dividers:
|
|
/*
|
|
* If a solution is found with an even divider, prefer
|
|
* this one.
|
|
*/
|
|
if (d == 0 && ctx.p)
|
|
break;
|
|
}
|
|
|
|
if (!ctx.p) {
|
|
DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* gcc incorrectly analyses that these can be used without being
|
|
* initialized. To be fair, it's hard to guess.
|
|
*/
|
|
p0 = p1 = p2 = 0;
|
|
skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
|
|
skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
|
|
p0, p1, p2);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *intel_encoder,
|
|
int clock)
|
|
{
|
|
struct intel_shared_dpll *pll;
|
|
uint32_t ctrl1, cfgcr1, cfgcr2;
|
|
|
|
/*
|
|
* See comment in intel_dpll_hw_state to understand why we always use 0
|
|
* as the DPLL id in this function.
|
|
*/
|
|
|
|
ctrl1 = DPLL_CTRL1_OVERRIDE(0);
|
|
|
|
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
|
|
struct skl_wrpll_params wrpll_params = { 0, };
|
|
|
|
ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
|
|
|
|
if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
|
|
return false;
|
|
|
|
cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
|
|
DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
|
|
wrpll_params.dco_integer;
|
|
|
|
cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
|
|
DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
|
|
DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
|
|
DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
|
|
wrpll_params.central_freq;
|
|
} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
|
|
switch (intel_dp->link_bw) {
|
|
case DP_LINK_BW_1_62:
|
|
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
|
|
break;
|
|
case DP_LINK_BW_2_7:
|
|
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
|
|
break;
|
|
case DP_LINK_BW_5_4:
|
|
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
|
|
break;
|
|
}
|
|
|
|
cfgcr1 = cfgcr2 = 0;
|
|
} else /* eDP */
|
|
return true;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
crtc_state->dpll_hw_state.ctrl1 = ctrl1;
|
|
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
|
|
crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
|
|
|
|
pll = intel_get_shared_dpll(intel_crtc, crtc_state);
|
|
if (pll == NULL) {
|
|
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
|
|
pipe_name(intel_crtc->pipe));
|
|
return false;
|
|
}
|
|
|
|
/* shared DPLL id 0 is DPLL 1 */
|
|
crtc_state->ddi_pll_sel = pll->id + 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* bxt clock parameters */
|
|
struct bxt_clk_div {
|
|
int clock;
|
|
uint32_t p1;
|
|
uint32_t p2;
|
|
uint32_t m2_int;
|
|
uint32_t m2_frac;
|
|
bool m2_frac_en;
|
|
uint32_t n;
|
|
};
|
|
|
|
/* pre-calculated values for DP linkrates */
|
|
static const struct bxt_clk_div bxt_dp_clk_val[] = {
|
|
{162000, 4, 2, 32, 1677722, 1, 1},
|
|
{270000, 4, 1, 27, 0, 0, 1},
|
|
{540000, 2, 1, 27, 0, 0, 1},
|
|
{216000, 3, 2, 32, 1677722, 1, 1},
|
|
{243000, 4, 1, 24, 1258291, 1, 1},
|
|
{324000, 4, 1, 32, 1677722, 1, 1},
|
|
{432000, 3, 1, 32, 1677722, 1, 1}
|
|
};
|
|
|
|
static bool
|
|
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
|
|
struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *intel_encoder,
|
|
int clock)
|
|
{
|
|
struct intel_shared_dpll *pll;
|
|
struct bxt_clk_div clk_div = {0};
|
|
int vco = 0;
|
|
uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
|
|
uint32_t lanestagger;
|
|
|
|
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
|
|
intel_clock_t best_clock;
|
|
|
|
/* Calculate HDMI div */
|
|
/*
|
|
* FIXME: tie the following calculation into
|
|
* i9xx_crtc_compute_clock
|
|
*/
|
|
if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
|
|
DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
|
|
clock, pipe_name(intel_crtc->pipe));
|
|
return false;
|
|
}
|
|
|
|
clk_div.p1 = best_clock.p1;
|
|
clk_div.p2 = best_clock.p2;
|
|
WARN_ON(best_clock.m1 != 2);
|
|
clk_div.n = best_clock.n;
|
|
clk_div.m2_int = best_clock.m2 >> 22;
|
|
clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
|
|
clk_div.m2_frac_en = clk_div.m2_frac != 0;
|
|
|
|
vco = best_clock.vco;
|
|
} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
|
|
intel_encoder->type == INTEL_OUTPUT_EDP) {
|
|
int i;
|
|
|
|
clk_div = bxt_dp_clk_val[0];
|
|
for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
|
|
if (bxt_dp_clk_val[i].clock == clock) {
|
|
clk_div = bxt_dp_clk_val[i];
|
|
break;
|
|
}
|
|
}
|
|
vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
|
|
}
|
|
|
|
if (vco >= 6200000 && vco <= 6700000) {
|
|
prop_coef = 4;
|
|
int_coef = 9;
|
|
gain_ctl = 3;
|
|
targ_cnt = 8;
|
|
} else if ((vco > 5400000 && vco < 6200000) ||
|
|
(vco >= 4800000 && vco < 5400000)) {
|
|
prop_coef = 5;
|
|
int_coef = 11;
|
|
gain_ctl = 3;
|
|
targ_cnt = 9;
|
|
} else if (vco == 5400000) {
|
|
prop_coef = 3;
|
|
int_coef = 8;
|
|
gain_ctl = 1;
|
|
targ_cnt = 9;
|
|
} else {
|
|
DRM_ERROR("Invalid VCO\n");
|
|
return false;
|
|
}
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
if (clock > 270000)
|
|
lanestagger = 0x18;
|
|
else if (clock > 135000)
|
|
lanestagger = 0x0d;
|
|
else if (clock > 67000)
|
|
lanestagger = 0x07;
|
|
else if (clock > 33000)
|
|
lanestagger = 0x04;
|
|
else
|
|
lanestagger = 0x02;
|
|
|
|
crtc_state->dpll_hw_state.ebb0 =
|
|
PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
|
|
crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
|
|
crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
|
|
crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
|
|
|
|
if (clk_div.m2_frac_en)
|
|
crtc_state->dpll_hw_state.pll3 =
|
|
PORT_PLL_M2_FRAC_ENABLE;
|
|
|
|
crtc_state->dpll_hw_state.pll6 =
|
|
prop_coef | PORT_PLL_INT_COEFF(int_coef);
|
|
crtc_state->dpll_hw_state.pll6 |=
|
|
PORT_PLL_GAIN_CTL(gain_ctl);
|
|
|
|
crtc_state->dpll_hw_state.pll8 = targ_cnt;
|
|
|
|
crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
|
|
|
|
crtc_state->dpll_hw_state.pll10 =
|
|
PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
|
|
| PORT_PLL_DCO_AMP_OVR_EN_H;
|
|
|
|
crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
|
|
|
|
crtc_state->dpll_hw_state.pcsdw12 =
|
|
LANESTAGGER_STRAP_OVRD | lanestagger;
|
|
|
|
pll = intel_get_shared_dpll(intel_crtc, crtc_state);
|
|
if (pll == NULL) {
|
|
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
|
|
pipe_name(intel_crtc->pipe));
|
|
return false;
|
|
}
|
|
|
|
/* shared DPLL id 0 is DPLL A */
|
|
crtc_state->ddi_pll_sel = pll->id;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Tries to find a *shared* PLL for the CRTC and store it in
|
|
* intel_crtc->ddi_pll_sel.
|
|
*
|
|
* For private DPLLs, compute_config() should do the selection for us. This
|
|
* function should be folded into compute_config() eventually.
|
|
*/
|
|
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_device *dev = intel_crtc->base.dev;
|
|
struct intel_encoder *intel_encoder =
|
|
intel_ddi_get_crtc_new_encoder(crtc_state);
|
|
int clock = crtc_state->port_clock;
|
|
|
|
if (IS_SKYLAKE(dev))
|
|
return skl_ddi_pll_select(intel_crtc, crtc_state,
|
|
intel_encoder, clock);
|
|
else if (IS_BROXTON(dev))
|
|
return bxt_ddi_pll_select(intel_crtc, crtc_state,
|
|
intel_encoder, clock);
|
|
else
|
|
return hsw_ddi_pll_select(intel_crtc, crtc_state,
|
|
intel_encoder, clock);
|
|
}
|
|
|
|
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
int type = intel_encoder->type;
|
|
uint32_t temp;
|
|
|
|
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
|
|
temp = TRANS_MSA_SYNC_CLK;
|
|
switch (intel_crtc->config->pipe_bpp) {
|
|
case 18:
|
|
temp |= TRANS_MSA_6_BPC;
|
|
break;
|
|
case 24:
|
|
temp |= TRANS_MSA_8_BPC;
|
|
break;
|
|
case 30:
|
|
temp |= TRANS_MSA_10_BPC;
|
|
break;
|
|
case 36:
|
|
temp |= TRANS_MSA_12_BPC;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
|
|
}
|
|
}
|
|
|
|
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
uint32_t temp;
|
|
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
|
|
if (state == true)
|
|
temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
|
|
else
|
|
temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
|
|
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
|
|
}
|
|
|
|
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
enum port port = intel_ddi_get_encoder_port(intel_encoder);
|
|
int type = intel_encoder->type;
|
|
uint32_t temp;
|
|
|
|
/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
|
|
temp = TRANS_DDI_FUNC_ENABLE;
|
|
temp |= TRANS_DDI_SELECT_PORT(port);
|
|
|
|
switch (intel_crtc->config->pipe_bpp) {
|
|
case 18:
|
|
temp |= TRANS_DDI_BPC_6;
|
|
break;
|
|
case 24:
|
|
temp |= TRANS_DDI_BPC_8;
|
|
break;
|
|
case 30:
|
|
temp |= TRANS_DDI_BPC_10;
|
|
break;
|
|
case 36:
|
|
temp |= TRANS_DDI_BPC_12;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
|
|
temp |= TRANS_DDI_PVSYNC;
|
|
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
|
|
temp |= TRANS_DDI_PHSYNC;
|
|
|
|
if (cpu_transcoder == TRANSCODER_EDP) {
|
|
switch (pipe) {
|
|
case PIPE_A:
|
|
/* On Haswell, can only use the always-on power well for
|
|
* eDP when not using the panel fitter, and when not
|
|
* using motion blur mitigation (which we don't
|
|
* support). */
|
|
if (IS_HASWELL(dev) &&
|
|
(intel_crtc->config->pch_pfit.enabled ||
|
|
intel_crtc->config->pch_pfit.force_thru))
|
|
temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
|
|
else
|
|
temp |= TRANS_DDI_EDP_INPUT_A_ON;
|
|
break;
|
|
case PIPE_B:
|
|
temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
|
|
break;
|
|
case PIPE_C:
|
|
temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (type == INTEL_OUTPUT_HDMI) {
|
|
if (intel_crtc->config->has_hdmi_sink)
|
|
temp |= TRANS_DDI_MODE_SELECT_HDMI;
|
|
else
|
|
temp |= TRANS_DDI_MODE_SELECT_DVI;
|
|
|
|
} else if (type == INTEL_OUTPUT_ANALOG) {
|
|
temp |= TRANS_DDI_MODE_SELECT_FDI;
|
|
temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
|
|
|
|
} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
|
|
type == INTEL_OUTPUT_EDP) {
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
|
|
if (intel_dp->is_mst) {
|
|
temp |= TRANS_DDI_MODE_SELECT_DP_MST;
|
|
} else
|
|
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
|
|
|
|
temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
|
|
} else if (type == INTEL_OUTPUT_DP_MST) {
|
|
struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
|
|
|
|
if (intel_dp->is_mst) {
|
|
temp |= TRANS_DDI_MODE_SELECT_DP_MST;
|
|
} else
|
|
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
|
|
|
|
temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
|
|
} else {
|
|
WARN(1, "Invalid encoder type %d for pipe %c\n",
|
|
intel_encoder->type, pipe_name(pipe));
|
|
}
|
|
|
|
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
|
|
}
|
|
|
|
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
|
|
enum transcoder cpu_transcoder)
|
|
{
|
|
uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
|
|
uint32_t val = I915_READ(reg);
|
|
|
|
val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
|
|
val |= TRANS_DDI_PORT_NONE;
|
|
I915_WRITE(reg, val);
|
|
}
|
|
|
|
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
|
|
{
|
|
struct drm_device *dev = intel_connector->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_encoder *intel_encoder = intel_connector->encoder;
|
|
int type = intel_connector->base.connector_type;
|
|
enum port port = intel_ddi_get_encoder_port(intel_encoder);
|
|
enum pipe pipe = 0;
|
|
enum transcoder cpu_transcoder;
|
|
enum intel_display_power_domain power_domain;
|
|
uint32_t tmp;
|
|
|
|
power_domain = intel_display_port_power_domain(intel_encoder);
|
|
if (!intel_display_power_is_enabled(dev_priv, power_domain))
|
|
return false;
|
|
|
|
if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
|
|
return false;
|
|
|
|
if (port == PORT_A)
|
|
cpu_transcoder = TRANSCODER_EDP;
|
|
else
|
|
cpu_transcoder = (enum transcoder) pipe;
|
|
|
|
tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
|
|
|
|
switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
|
|
case TRANS_DDI_MODE_SELECT_HDMI:
|
|
case TRANS_DDI_MODE_SELECT_DVI:
|
|
return (type == DRM_MODE_CONNECTOR_HDMIA);
|
|
|
|
case TRANS_DDI_MODE_SELECT_DP_SST:
|
|
if (type == DRM_MODE_CONNECTOR_eDP)
|
|
return true;
|
|
return (type == DRM_MODE_CONNECTOR_DisplayPort);
|
|
case TRANS_DDI_MODE_SELECT_DP_MST:
|
|
/* if the transcoder is in MST state then
|
|
* connector isn't connected */
|
|
return false;
|
|
|
|
case TRANS_DDI_MODE_SELECT_FDI:
|
|
return (type == DRM_MODE_CONNECTOR_VGA);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
|
|
enum pipe *pipe)
|
|
{
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum port port = intel_ddi_get_encoder_port(encoder);
|
|
enum intel_display_power_domain power_domain;
|
|
u32 tmp;
|
|
int i;
|
|
|
|
power_domain = intel_display_port_power_domain(encoder);
|
|
if (!intel_display_power_is_enabled(dev_priv, power_domain))
|
|
return false;
|
|
|
|
tmp = I915_READ(DDI_BUF_CTL(port));
|
|
|
|
if (!(tmp & DDI_BUF_CTL_ENABLE))
|
|
return false;
|
|
|
|
if (port == PORT_A) {
|
|
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
|
|
|
|
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
|
|
case TRANS_DDI_EDP_INPUT_A_ON:
|
|
case TRANS_DDI_EDP_INPUT_A_ONOFF:
|
|
*pipe = PIPE_A;
|
|
break;
|
|
case TRANS_DDI_EDP_INPUT_B_ONOFF:
|
|
*pipe = PIPE_B;
|
|
break;
|
|
case TRANS_DDI_EDP_INPUT_C_ONOFF:
|
|
*pipe = PIPE_C;
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
} else {
|
|
for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
|
|
tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
|
|
|
|
if ((tmp & TRANS_DDI_PORT_MASK)
|
|
== TRANS_DDI_SELECT_PORT(port)) {
|
|
if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
|
|
return false;
|
|
|
|
*pipe = i;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
|
|
|
|
return false;
|
|
}
|
|
|
|
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_crtc *crtc = &intel_crtc->base;
|
|
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
|
|
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
|
|
enum port port = intel_ddi_get_encoder_port(intel_encoder);
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
|
|
if (cpu_transcoder != TRANSCODER_EDP)
|
|
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
|
|
TRANS_CLK_SEL_PORT(port));
|
|
}
|
|
|
|
void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
|
|
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
|
|
|
|
if (cpu_transcoder != TRANSCODER_EDP)
|
|
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
|
|
TRANS_CLK_SEL_DISABLED);
|
|
}
|
|
|
|
static void skl_ddi_set_iboost(struct drm_device *dev, u32 level,
|
|
enum port port, int type)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
const struct ddi_buf_trans *ddi_translations;
|
|
uint8_t iboost;
|
|
uint8_t dp_iboost, hdmi_iboost;
|
|
int n_entries;
|
|
u32 reg;
|
|
|
|
/* VBT may override standard boost values */
|
|
dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
|
|
hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
|
|
|
|
if (type == INTEL_OUTPUT_DISPLAYPORT) {
|
|
if (dp_iboost) {
|
|
iboost = dp_iboost;
|
|
} else {
|
|
ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
|
|
iboost = ddi_translations[port].i_boost;
|
|
}
|
|
} else if (type == INTEL_OUTPUT_EDP) {
|
|
if (dp_iboost) {
|
|
iboost = dp_iboost;
|
|
} else {
|
|
ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
|
|
iboost = ddi_translations[port].i_boost;
|
|
}
|
|
} else if (type == INTEL_OUTPUT_HDMI) {
|
|
if (hdmi_iboost) {
|
|
iboost = hdmi_iboost;
|
|
} else {
|
|
ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
|
|
iboost = ddi_translations[port].i_boost;
|
|
}
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
/* Make sure that the requested I_boost is valid */
|
|
if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
|
|
DRM_ERROR("Invalid I_boost value %u\n", iboost);
|
|
return;
|
|
}
|
|
|
|
reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
|
|
reg &= ~BALANCE_LEG_MASK(port);
|
|
reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));
|
|
|
|
if (iboost)
|
|
reg |= iboost << BALANCE_LEG_SHIFT(port);
|
|
else
|
|
reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);
|
|
|
|
I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
|
|
}
|
|
|
|
static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
|
|
enum port port, int type)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
const struct bxt_ddi_buf_trans *ddi_translations;
|
|
u32 n_entries, i;
|
|
uint32_t val;
|
|
|
|
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
|
|
n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
|
|
ddi_translations = bxt_ddi_translations_dp;
|
|
} else if (type == INTEL_OUTPUT_HDMI) {
|
|
n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
|
|
ddi_translations = bxt_ddi_translations_hdmi;
|
|
} else {
|
|
DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
|
|
type);
|
|
return;
|
|
}
|
|
|
|
/* Check if default value has to be used */
|
|
if (level >= n_entries ||
|
|
(type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
|
|
for (i = 0; i < n_entries; i++) {
|
|
if (ddi_translations[i].default_index) {
|
|
level = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* While we write to the group register to program all lanes at once we
|
|
* can read only lane registers and we pick lanes 0/1 for that.
|
|
*/
|
|
val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
|
|
val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
|
|
I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
|
|
|
|
val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
|
|
val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
|
|
val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
|
|
ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
|
|
I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
|
|
|
|
val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
|
|
val &= ~UNIQE_TRANGE_EN_METHOD;
|
|
if (ddi_translations[level].enable)
|
|
val |= UNIQE_TRANGE_EN_METHOD;
|
|
I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
|
|
|
|
val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
|
|
val &= ~DE_EMPHASIS;
|
|
val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
|
|
I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
|
|
|
|
val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
|
|
val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
|
|
I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
|
|
}
|
|
|
|
static uint32_t translate_signal_level(int signal_levels)
|
|
{
|
|
uint32_t level;
|
|
|
|
switch (signal_levels) {
|
|
default:
|
|
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
|
|
signal_levels);
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
level = 0;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
level = 1;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
level = 2;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
|
|
level = 3;
|
|
break;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
level = 4;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
level = 5;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
level = 6;
|
|
break;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
level = 7;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
level = 8;
|
|
break;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
level = 9;
|
|
break;
|
|
}
|
|
|
|
return level;
|
|
}
|
|
|
|
uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = dport->base.base.dev;
|
|
struct intel_encoder *encoder = &dport->base;
|
|
uint8_t train_set = intel_dp->train_set[0];
|
|
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
|
|
DP_TRAIN_PRE_EMPHASIS_MASK);
|
|
enum port port = dport->port;
|
|
uint32_t level;
|
|
|
|
level = translate_signal_level(signal_levels);
|
|
|
|
if (IS_SKYLAKE(dev))
|
|
skl_ddi_set_iboost(dev, level, port, encoder->type);
|
|
else if (IS_BROXTON(dev))
|
|
bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
|
|
|
|
return DDI_BUF_TRANS_SELECT(level);
|
|
}
|
|
|
|
static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
|
|
enum port port = intel_ddi_get_encoder_port(intel_encoder);
|
|
int type = intel_encoder->type;
|
|
int hdmi_level;
|
|
|
|
if (type == INTEL_OUTPUT_EDP) {
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
intel_edp_panel_on(intel_dp);
|
|
}
|
|
|
|
if (IS_SKYLAKE(dev)) {
|
|
uint32_t dpll = crtc->config->ddi_pll_sel;
|
|
uint32_t val;
|
|
|
|
/*
|
|
* DPLL0 is used for eDP and is the only "private" DPLL (as
|
|
* opposed to shared) on SKL
|
|
*/
|
|
if (type == INTEL_OUTPUT_EDP) {
|
|
WARN_ON(dpll != SKL_DPLL0);
|
|
|
|
val = I915_READ(DPLL_CTRL1);
|
|
|
|
val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
|
|
DPLL_CTRL1_SSC(dpll) |
|
|
DPLL_CTRL1_LINK_RATE_MASK(dpll));
|
|
val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
|
|
|
|
I915_WRITE(DPLL_CTRL1, val);
|
|
POSTING_READ(DPLL_CTRL1);
|
|
}
|
|
|
|
/* DDI -> PLL mapping */
|
|
val = I915_READ(DPLL_CTRL2);
|
|
|
|
val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
|
|
DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
|
|
val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
|
|
DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
|
|
|
|
I915_WRITE(DPLL_CTRL2, val);
|
|
|
|
} else if (INTEL_INFO(dev)->gen < 9) {
|
|
WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
|
|
I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
|
|
}
|
|
|
|
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
|
|
intel_ddi_init_dp_buf_reg(intel_encoder);
|
|
|
|
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
|
|
intel_dp_start_link_train(intel_dp);
|
|
intel_dp_complete_link_train(intel_dp);
|
|
if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
|
|
intel_dp_stop_link_train(intel_dp);
|
|
} else if (type == INTEL_OUTPUT_HDMI) {
|
|
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
|
|
|
|
if (IS_BROXTON(dev)) {
|
|
hdmi_level = dev_priv->vbt.
|
|
ddi_port_info[port].hdmi_level_shift;
|
|
bxt_ddi_vswing_sequence(dev, hdmi_level, port,
|
|
INTEL_OUTPUT_HDMI);
|
|
}
|
|
intel_hdmi->set_infoframes(encoder,
|
|
crtc->config->has_hdmi_sink,
|
|
&crtc->config->base.adjusted_mode);
|
|
}
|
|
}
|
|
|
|
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum port port = intel_ddi_get_encoder_port(intel_encoder);
|
|
int type = intel_encoder->type;
|
|
uint32_t val;
|
|
bool wait = false;
|
|
|
|
val = I915_READ(DDI_BUF_CTL(port));
|
|
if (val & DDI_BUF_CTL_ENABLE) {
|
|
val &= ~DDI_BUF_CTL_ENABLE;
|
|
I915_WRITE(DDI_BUF_CTL(port), val);
|
|
wait = true;
|
|
}
|
|
|
|
val = I915_READ(DP_TP_CTL(port));
|
|
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
|
|
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
|
|
I915_WRITE(DP_TP_CTL(port), val);
|
|
|
|
if (wait)
|
|
intel_wait_ddi_buf_idle(dev_priv, port);
|
|
|
|
if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
|
|
intel_edp_panel_vdd_on(intel_dp);
|
|
intel_edp_panel_off(intel_dp);
|
|
}
|
|
|
|
if (IS_SKYLAKE(dev))
|
|
I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
|
|
DPLL_CTRL2_DDI_CLK_OFF(port)));
|
|
else if (INTEL_INFO(dev)->gen < 9)
|
|
I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
|
|
}
|
|
|
|
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct drm_crtc *crtc = encoder->crtc;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
enum port port = intel_ddi_get_encoder_port(intel_encoder);
|
|
int type = intel_encoder->type;
|
|
|
|
if (type == INTEL_OUTPUT_HDMI) {
|
|
struct intel_digital_port *intel_dig_port =
|
|
enc_to_dig_port(encoder);
|
|
|
|
/* In HDMI/DVI mode, the port width, and swing/emphasis values
|
|
* are ignored so nothing special needs to be done besides
|
|
* enabling the port.
|
|
*/
|
|
I915_WRITE(DDI_BUF_CTL(port),
|
|
intel_dig_port->saved_port_bits |
|
|
DDI_BUF_CTL_ENABLE);
|
|
} else if (type == INTEL_OUTPUT_EDP) {
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
|
|
if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
|
|
intel_dp_stop_link_train(intel_dp);
|
|
|
|
intel_edp_backlight_on(intel_dp);
|
|
intel_psr_enable(intel_dp);
|
|
intel_edp_drrs_enable(intel_dp);
|
|
}
|
|
|
|
if (intel_crtc->config->has_audio) {
|
|
intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
|
|
intel_audio_codec_enable(intel_encoder);
|
|
}
|
|
}
|
|
|
|
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct drm_encoder *encoder = &intel_encoder->base;
|
|
struct drm_crtc *crtc = encoder->crtc;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int type = intel_encoder->type;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (intel_crtc->config->has_audio) {
|
|
intel_audio_codec_disable(intel_encoder);
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
|
|
}
|
|
|
|
if (type == INTEL_OUTPUT_EDP) {
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
|
|
intel_edp_drrs_disable(intel_dp);
|
|
intel_psr_disable(intel_dp);
|
|
intel_edp_backlight_off(intel_dp);
|
|
}
|
|
}
|
|
|
|
static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
|
|
POSTING_READ(WRPLL_CTL(pll->id));
|
|
udelay(20);
|
|
}
|
|
|
|
static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
uint32_t val;
|
|
|
|
val = I915_READ(WRPLL_CTL(pll->id));
|
|
I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
|
|
POSTING_READ(WRPLL_CTL(pll->id));
|
|
}
|
|
|
|
static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
uint32_t val;
|
|
|
|
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
|
|
return false;
|
|
|
|
val = I915_READ(WRPLL_CTL(pll->id));
|
|
hw_state->wrpll = val;
|
|
|
|
return val & WRPLL_PLL_ENABLE;
|
|
}
|
|
|
|
static const char * const hsw_ddi_pll_names[] = {
|
|
"WRPLL 1",
|
|
"WRPLL 2",
|
|
};
|
|
|
|
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
int i;
|
|
|
|
dev_priv->num_shared_dpll = 2;
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
dev_priv->shared_dplls[i].id = i;
|
|
dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
|
|
dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
|
|
dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
|
|
dev_priv->shared_dplls[i].get_hw_state =
|
|
hsw_ddi_pll_get_hw_state;
|
|
}
|
|
}
|
|
|
|
static const char * const skl_ddi_pll_names[] = {
|
|
"DPLL 1",
|
|
"DPLL 2",
|
|
"DPLL 3",
|
|
};
|
|
|
|
struct skl_dpll_regs {
|
|
u32 ctl, cfgcr1, cfgcr2;
|
|
};
|
|
|
|
/* this array is indexed by the *shared* pll id */
|
|
static const struct skl_dpll_regs skl_dpll_regs[3] = {
|
|
{
|
|
/* DPLL 1 */
|
|
.ctl = LCPLL2_CTL,
|
|
.cfgcr1 = DPLL1_CFGCR1,
|
|
.cfgcr2 = DPLL1_CFGCR2,
|
|
},
|
|
{
|
|
/* DPLL 2 */
|
|
.ctl = WRPLL_CTL1,
|
|
.cfgcr1 = DPLL2_CFGCR1,
|
|
.cfgcr2 = DPLL2_CFGCR2,
|
|
},
|
|
{
|
|
/* DPLL 3 */
|
|
.ctl = WRPLL_CTL2,
|
|
.cfgcr1 = DPLL3_CFGCR1,
|
|
.cfgcr2 = DPLL3_CFGCR2,
|
|
},
|
|
};
|
|
|
|
static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
uint32_t val;
|
|
unsigned int dpll;
|
|
const struct skl_dpll_regs *regs = skl_dpll_regs;
|
|
|
|
/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
|
|
dpll = pll->id + 1;
|
|
|
|
val = I915_READ(DPLL_CTRL1);
|
|
|
|
val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
|
|
DPLL_CTRL1_LINK_RATE_MASK(dpll));
|
|
val |= pll->config.hw_state.ctrl1 << (dpll * 6);
|
|
|
|
I915_WRITE(DPLL_CTRL1, val);
|
|
POSTING_READ(DPLL_CTRL1);
|
|
|
|
I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
|
|
I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
|
|
POSTING_READ(regs[pll->id].cfgcr1);
|
|
POSTING_READ(regs[pll->id].cfgcr2);
|
|
|
|
/* the enable bit is always bit 31 */
|
|
I915_WRITE(regs[pll->id].ctl,
|
|
I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
|
|
|
|
if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
|
|
DRM_ERROR("DPLL %d not locked\n", dpll);
|
|
}
|
|
|
|
static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
const struct skl_dpll_regs *regs = skl_dpll_regs;
|
|
|
|
/* the enable bit is always bit 31 */
|
|
I915_WRITE(regs[pll->id].ctl,
|
|
I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
|
|
POSTING_READ(regs[pll->id].ctl);
|
|
}
|
|
|
|
static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
uint32_t val;
|
|
unsigned int dpll;
|
|
const struct skl_dpll_regs *regs = skl_dpll_regs;
|
|
|
|
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
|
|
return false;
|
|
|
|
/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
|
|
dpll = pll->id + 1;
|
|
|
|
val = I915_READ(regs[pll->id].ctl);
|
|
if (!(val & LCPLL_PLL_ENABLE))
|
|
return false;
|
|
|
|
val = I915_READ(DPLL_CTRL1);
|
|
hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
|
|
|
|
/* avoid reading back stale values if HDMI mode is not enabled */
|
|
if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
|
|
hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
|
|
hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
int i;
|
|
|
|
dev_priv->num_shared_dpll = 3;
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
dev_priv->shared_dplls[i].id = i;
|
|
dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
|
|
dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
|
|
dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
|
|
dev_priv->shared_dplls[i].get_hw_state =
|
|
skl_ddi_pll_get_hw_state;
|
|
}
|
|
}
|
|
|
|
static void broxton_phy_init(struct drm_i915_private *dev_priv,
|
|
enum dpio_phy phy)
|
|
{
|
|
enum port port;
|
|
uint32_t val;
|
|
|
|
val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
|
|
val |= GT_DISPLAY_POWER_ON(phy);
|
|
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
|
|
|
|
/* Considering 10ms timeout until BSpec is updated */
|
|
if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
|
|
DRM_ERROR("timeout during PHY%d power on\n", phy);
|
|
|
|
for (port = (phy == DPIO_PHY0 ? PORT_B : PORT_A);
|
|
port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
|
|
int lane;
|
|
|
|
for (lane = 0; lane < 4; lane++) {
|
|
val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
|
|
/*
|
|
* Note that on CHV this flag is called UPAR, but has
|
|
* the same function.
|
|
*/
|
|
val &= ~LATENCY_OPTIM;
|
|
if (lane != 1)
|
|
val |= LATENCY_OPTIM;
|
|
|
|
I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
|
|
}
|
|
}
|
|
|
|
/* Program PLL Rcomp code offset */
|
|
val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
|
|
val &= ~IREF0RC_OFFSET_MASK;
|
|
val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
|
|
I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
|
|
|
|
val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
|
|
val &= ~IREF1RC_OFFSET_MASK;
|
|
val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
|
|
I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
|
|
|
|
/* Program power gating */
|
|
val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
|
|
val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
|
|
SUS_CLK_CONFIG;
|
|
I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
|
|
|
|
if (phy == DPIO_PHY0) {
|
|
val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
|
|
val |= DW6_OLDO_DYN_PWR_DOWN_EN;
|
|
I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
|
|
}
|
|
|
|
val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
|
|
val &= ~OCL2_LDOFUSE_PWR_DIS;
|
|
/*
|
|
* On PHY1 disable power on the second channel, since no port is
|
|
* connected there. On PHY0 both channels have a port, so leave it
|
|
* enabled.
|
|
* TODO: port C is only connected on BXT-P, so on BXT0/1 we should
|
|
* power down the second channel on PHY0 as well.
|
|
*/
|
|
if (phy == DPIO_PHY1)
|
|
val |= OCL2_LDOFUSE_PWR_DIS;
|
|
I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
|
|
|
|
if (phy == DPIO_PHY0) {
|
|
uint32_t grc_code;
|
|
/*
|
|
* PHY0 isn't connected to an RCOMP resistor so copy over
|
|
* the corresponding calibrated value from PHY1, and disable
|
|
* the automatic calibration on PHY0.
|
|
*/
|
|
if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
|
|
10))
|
|
DRM_ERROR("timeout waiting for PHY1 GRC\n");
|
|
|
|
val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
|
|
val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
|
|
grc_code = val << GRC_CODE_FAST_SHIFT |
|
|
val << GRC_CODE_SLOW_SHIFT |
|
|
val;
|
|
I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
|
|
|
|
val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
|
|
val |= GRC_DIS | GRC_RDY_OVRD;
|
|
I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
|
|
}
|
|
|
|
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
|
|
val |= COMMON_RESET_DIS;
|
|
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
|
|
}
|
|
|
|
void broxton_ddi_phy_init(struct drm_device *dev)
|
|
{
|
|
/* Enable PHY1 first since it provides Rcomp for PHY0 */
|
|
broxton_phy_init(dev->dev_private, DPIO_PHY1);
|
|
broxton_phy_init(dev->dev_private, DPIO_PHY0);
|
|
}
|
|
|
|
static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
|
|
enum dpio_phy phy)
|
|
{
|
|
uint32_t val;
|
|
|
|
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
|
|
val &= ~COMMON_RESET_DIS;
|
|
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
|
|
}
|
|
|
|
void broxton_ddi_phy_uninit(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
broxton_phy_uninit(dev_priv, DPIO_PHY1);
|
|
broxton_phy_uninit(dev_priv, DPIO_PHY0);
|
|
|
|
/* FIXME: do this in broxton_phy_uninit per phy */
|
|
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
|
|
}
|
|
|
|
static const char * const bxt_ddi_pll_names[] = {
|
|
"PORT PLL A",
|
|
"PORT PLL B",
|
|
"PORT PLL C",
|
|
};
|
|
|
|
static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
uint32_t temp;
|
|
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
|
|
|
|
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
|
|
temp &= ~PORT_PLL_REF_SEL;
|
|
/* Non-SSC reference */
|
|
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
|
|
|
|
/* Disable 10 bit clock */
|
|
temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
|
|
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
|
|
I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
|
|
|
|
/* Write P1 & P2 */
|
|
temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
|
|
temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
|
|
temp |= pll->config.hw_state.ebb0;
|
|
I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
|
|
|
|
/* Write M2 integer */
|
|
temp = I915_READ(BXT_PORT_PLL(port, 0));
|
|
temp &= ~PORT_PLL_M2_MASK;
|
|
temp |= pll->config.hw_state.pll0;
|
|
I915_WRITE(BXT_PORT_PLL(port, 0), temp);
|
|
|
|
/* Write N */
|
|
temp = I915_READ(BXT_PORT_PLL(port, 1));
|
|
temp &= ~PORT_PLL_N_MASK;
|
|
temp |= pll->config.hw_state.pll1;
|
|
I915_WRITE(BXT_PORT_PLL(port, 1), temp);
|
|
|
|
/* Write M2 fraction */
|
|
temp = I915_READ(BXT_PORT_PLL(port, 2));
|
|
temp &= ~PORT_PLL_M2_FRAC_MASK;
|
|
temp |= pll->config.hw_state.pll2;
|
|
I915_WRITE(BXT_PORT_PLL(port, 2), temp);
|
|
|
|
/* Write M2 fraction enable */
|
|
temp = I915_READ(BXT_PORT_PLL(port, 3));
|
|
temp &= ~PORT_PLL_M2_FRAC_ENABLE;
|
|
temp |= pll->config.hw_state.pll3;
|
|
I915_WRITE(BXT_PORT_PLL(port, 3), temp);
|
|
|
|
/* Write coeff */
|
|
temp = I915_READ(BXT_PORT_PLL(port, 6));
|
|
temp &= ~PORT_PLL_PROP_COEFF_MASK;
|
|
temp &= ~PORT_PLL_INT_COEFF_MASK;
|
|
temp &= ~PORT_PLL_GAIN_CTL_MASK;
|
|
temp |= pll->config.hw_state.pll6;
|
|
I915_WRITE(BXT_PORT_PLL(port, 6), temp);
|
|
|
|
/* Write calibration val */
|
|
temp = I915_READ(BXT_PORT_PLL(port, 8));
|
|
temp &= ~PORT_PLL_TARGET_CNT_MASK;
|
|
temp |= pll->config.hw_state.pll8;
|
|
I915_WRITE(BXT_PORT_PLL(port, 8), temp);
|
|
|
|
temp = I915_READ(BXT_PORT_PLL(port, 9));
|
|
temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
|
|
temp |= pll->config.hw_state.pll9;
|
|
I915_WRITE(BXT_PORT_PLL(port, 9), temp);
|
|
|
|
temp = I915_READ(BXT_PORT_PLL(port, 10));
|
|
temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
|
|
temp &= ~PORT_PLL_DCO_AMP_MASK;
|
|
temp |= pll->config.hw_state.pll10;
|
|
I915_WRITE(BXT_PORT_PLL(port, 10), temp);
|
|
|
|
/* Recalibrate with new settings */
|
|
temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
|
|
temp |= PORT_PLL_RECALIBRATE;
|
|
I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
|
|
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
|
|
temp |= pll->config.hw_state.ebb4;
|
|
I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
|
|
|
|
/* Enable PLL */
|
|
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
|
|
temp |= PORT_PLL_ENABLE;
|
|
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
|
|
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
|
|
|
|
if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
|
|
PORT_PLL_LOCK), 200))
|
|
DRM_ERROR("PLL %d not locked\n", port);
|
|
|
|
/*
|
|
* While we write to the group register to program all lanes at once we
|
|
* can read only lane registers and we pick lanes 0/1 for that.
|
|
*/
|
|
temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
|
|
temp &= ~LANE_STAGGER_MASK;
|
|
temp &= ~LANESTAGGER_STRAP_OVRD;
|
|
temp |= pll->config.hw_state.pcsdw12;
|
|
I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
|
|
}
|
|
|
|
static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
|
|
uint32_t temp;
|
|
|
|
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
|
|
temp &= ~PORT_PLL_ENABLE;
|
|
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
|
|
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
|
|
}
|
|
|
|
static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
|
|
uint32_t val;
|
|
|
|
if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
|
|
return false;
|
|
|
|
val = I915_READ(BXT_PORT_PLL_ENABLE(port));
|
|
if (!(val & PORT_PLL_ENABLE))
|
|
return false;
|
|
|
|
hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
|
|
hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
|
|
|
|
hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
|
|
hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
|
|
|
|
hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
|
|
hw_state->pll0 &= PORT_PLL_M2_MASK;
|
|
|
|
hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
|
|
hw_state->pll1 &= PORT_PLL_N_MASK;
|
|
|
|
hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
|
|
hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
|
|
|
|
hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
|
|
hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
|
|
|
|
hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
|
|
hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
|
|
PORT_PLL_INT_COEFF_MASK |
|
|
PORT_PLL_GAIN_CTL_MASK;
|
|
|
|
hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
|
|
hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
|
|
|
|
hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
|
|
hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
|
|
|
|
hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
|
|
hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
|
|
PORT_PLL_DCO_AMP_MASK;
|
|
|
|
/*
|
|
* While we write to the group register to program all lanes at once we
|
|
* can read only lane registers. We configure all lanes the same way, so
|
|
* here just read out lanes 0/1 and output a note if lanes 2/3 differ.
|
|
*/
|
|
hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
|
|
if (I915_READ(BXT_PORT_PCS_DW12_LN23(port) != hw_state->pcsdw12))
|
|
DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
|
|
hw_state->pcsdw12,
|
|
I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
|
|
hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
int i;
|
|
|
|
dev_priv->num_shared_dpll = 3;
|
|
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
dev_priv->shared_dplls[i].id = i;
|
|
dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
|
|
dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
|
|
dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
|
|
dev_priv->shared_dplls[i].get_hw_state =
|
|
bxt_ddi_pll_get_hw_state;
|
|
}
|
|
}
|
|
|
|
void intel_ddi_pll_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t val = I915_READ(LCPLL_CTL);
|
|
|
|
if (IS_SKYLAKE(dev))
|
|
skl_shared_dplls_init(dev_priv);
|
|
else if (IS_BROXTON(dev))
|
|
bxt_shared_dplls_init(dev_priv);
|
|
else
|
|
hsw_shared_dplls_init(dev_priv);
|
|
|
|
if (IS_SKYLAKE(dev)) {
|
|
int cdclk_freq;
|
|
|
|
cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
|
|
dev_priv->skl_boot_cdclk = cdclk_freq;
|
|
if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
|
|
DRM_ERROR("LCPLL1 is disabled\n");
|
|
else
|
|
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
|
|
} else if (IS_BROXTON(dev)) {
|
|
broxton_init_cdclk(dev);
|
|
broxton_ddi_phy_init(dev);
|
|
} else {
|
|
/*
|
|
* The LCPLL register should be turned on by the BIOS. For now
|
|
* let's just check its state and print errors in case
|
|
* something is wrong. Don't even try to turn it on.
|
|
*/
|
|
|
|
if (val & LCPLL_CD_SOURCE_FCLK)
|
|
DRM_ERROR("CDCLK source is not LCPLL\n");
|
|
|
|
if (val & LCPLL_PLL_DISABLE)
|
|
DRM_ERROR("LCPLL is disabled\n");
|
|
}
|
|
}
|
|
|
|
void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
|
|
struct intel_dp *intel_dp = &intel_dig_port->dp;
|
|
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
|
|
enum port port = intel_dig_port->port;
|
|
uint32_t val;
|
|
bool wait = false;
|
|
|
|
if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
|
|
val = I915_READ(DDI_BUF_CTL(port));
|
|
if (val & DDI_BUF_CTL_ENABLE) {
|
|
val &= ~DDI_BUF_CTL_ENABLE;
|
|
I915_WRITE(DDI_BUF_CTL(port), val);
|
|
wait = true;
|
|
}
|
|
|
|
val = I915_READ(DP_TP_CTL(port));
|
|
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
|
|
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
|
|
I915_WRITE(DP_TP_CTL(port), val);
|
|
POSTING_READ(DP_TP_CTL(port));
|
|
|
|
if (wait)
|
|
intel_wait_ddi_buf_idle(dev_priv, port);
|
|
}
|
|
|
|
val = DP_TP_CTL_ENABLE |
|
|
DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
|
|
if (intel_dp->is_mst)
|
|
val |= DP_TP_CTL_MODE_MST;
|
|
else {
|
|
val |= DP_TP_CTL_MODE_SST;
|
|
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
|
|
val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
|
|
}
|
|
I915_WRITE(DP_TP_CTL(port), val);
|
|
POSTING_READ(DP_TP_CTL(port));
|
|
|
|
intel_dp->DP |= DDI_BUF_CTL_ENABLE;
|
|
I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
|
|
POSTING_READ(DDI_BUF_CTL(port));
|
|
|
|
udelay(600);
|
|
}
|
|
|
|
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
|
|
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
|
|
uint32_t val;
|
|
|
|
intel_ddi_post_disable(intel_encoder);
|
|
|
|
val = I915_READ(_FDI_RXA_CTL);
|
|
val &= ~FDI_RX_ENABLE;
|
|
I915_WRITE(_FDI_RXA_CTL, val);
|
|
|
|
val = I915_READ(_FDI_RXA_MISC);
|
|
val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
|
|
val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
|
|
I915_WRITE(_FDI_RXA_MISC, val);
|
|
|
|
val = I915_READ(_FDI_RXA_CTL);
|
|
val &= ~FDI_PCDCLK;
|
|
I915_WRITE(_FDI_RXA_CTL, val);
|
|
|
|
val = I915_READ(_FDI_RXA_CTL);
|
|
val &= ~FDI_RX_PLL_ENABLE;
|
|
I915_WRITE(_FDI_RXA_CTL, val);
|
|
}
|
|
|
|
void intel_ddi_get_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
|
|
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
|
|
struct intel_hdmi *intel_hdmi;
|
|
u32 temp, flags = 0;
|
|
|
|
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
|
|
if (temp & TRANS_DDI_PHSYNC)
|
|
flags |= DRM_MODE_FLAG_PHSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NHSYNC;
|
|
if (temp & TRANS_DDI_PVSYNC)
|
|
flags |= DRM_MODE_FLAG_PVSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NVSYNC;
|
|
|
|
pipe_config->base.adjusted_mode.flags |= flags;
|
|
|
|
switch (temp & TRANS_DDI_BPC_MASK) {
|
|
case TRANS_DDI_BPC_6:
|
|
pipe_config->pipe_bpp = 18;
|
|
break;
|
|
case TRANS_DDI_BPC_8:
|
|
pipe_config->pipe_bpp = 24;
|
|
break;
|
|
case TRANS_DDI_BPC_10:
|
|
pipe_config->pipe_bpp = 30;
|
|
break;
|
|
case TRANS_DDI_BPC_12:
|
|
pipe_config->pipe_bpp = 36;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
|
|
case TRANS_DDI_MODE_SELECT_HDMI:
|
|
pipe_config->has_hdmi_sink = true;
|
|
intel_hdmi = enc_to_intel_hdmi(&encoder->base);
|
|
|
|
if (intel_hdmi->infoframe_enabled(&encoder->base))
|
|
pipe_config->has_infoframe = true;
|
|
break;
|
|
case TRANS_DDI_MODE_SELECT_DVI:
|
|
case TRANS_DDI_MODE_SELECT_FDI:
|
|
break;
|
|
case TRANS_DDI_MODE_SELECT_DP_SST:
|
|
case TRANS_DDI_MODE_SELECT_DP_MST:
|
|
pipe_config->has_dp_encoder = true;
|
|
intel_dp_get_m_n(intel_crtc, pipe_config);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
|
|
temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
|
|
if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
|
|
pipe_config->has_audio = true;
|
|
}
|
|
|
|
if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
|
|
pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
|
|
/*
|
|
* This is a big fat ugly hack.
|
|
*
|
|
* Some machines in UEFI boot mode provide us a VBT that has 18
|
|
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
|
|
* unknown we fail to light up. Yet the same BIOS boots up with
|
|
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
|
|
* max, not what it tells us to use.
|
|
*
|
|
* Note: This will still be broken if the eDP panel is not lit
|
|
* up by the BIOS, and thus we can't get the mode at module
|
|
* load.
|
|
*/
|
|
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
|
|
pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
|
|
dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
|
|
}
|
|
|
|
intel_ddi_clock_get(encoder, pipe_config);
|
|
}
|
|
|
|
static void intel_ddi_destroy(struct drm_encoder *encoder)
|
|
{
|
|
/* HDMI has nothing special to destroy, so we can go with this. */
|
|
intel_dp_encoder_destroy(encoder);
|
|
}
|
|
|
|
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
int type = encoder->type;
|
|
int port = intel_ddi_get_encoder_port(encoder);
|
|
|
|
WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
|
|
|
|
if (port == PORT_A)
|
|
pipe_config->cpu_transcoder = TRANSCODER_EDP;
|
|
|
|
if (type == INTEL_OUTPUT_HDMI)
|
|
return intel_hdmi_compute_config(encoder, pipe_config);
|
|
else
|
|
return intel_dp_compute_config(encoder, pipe_config);
|
|
}
|
|
|
|
static const struct drm_encoder_funcs intel_ddi_funcs = {
|
|
.destroy = intel_ddi_destroy,
|
|
};
|
|
|
|
static struct intel_connector *
|
|
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
|
|
{
|
|
struct intel_connector *connector;
|
|
enum port port = intel_dig_port->port;
|
|
|
|
connector = intel_connector_alloc();
|
|
if (!connector)
|
|
return NULL;
|
|
|
|
intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
|
|
if (!intel_dp_init_connector(intel_dig_port, connector)) {
|
|
kfree(connector);
|
|
return NULL;
|
|
}
|
|
|
|
return connector;
|
|
}
|
|
|
|
static struct intel_connector *
|
|
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
|
|
{
|
|
struct intel_connector *connector;
|
|
enum port port = intel_dig_port->port;
|
|
|
|
connector = intel_connector_alloc();
|
|
if (!connector)
|
|
return NULL;
|
|
|
|
intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
|
|
intel_hdmi_init_connector(intel_dig_port, connector);
|
|
|
|
return connector;
|
|
}
|
|
|
|
void intel_ddi_init(struct drm_device *dev, enum port port)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_digital_port *intel_dig_port;
|
|
struct intel_encoder *intel_encoder;
|
|
struct drm_encoder *encoder;
|
|
bool init_hdmi, init_dp;
|
|
|
|
init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
|
|
dev_priv->vbt.ddi_port_info[port].supports_hdmi);
|
|
init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
|
|
if (!init_dp && !init_hdmi) {
|
|
DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
|
|
port_name(port));
|
|
return;
|
|
}
|
|
|
|
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
|
|
if (!intel_dig_port)
|
|
return;
|
|
|
|
intel_encoder = &intel_dig_port->base;
|
|
encoder = &intel_encoder->base;
|
|
|
|
drm_encoder_init(dev, encoder, &intel_ddi_funcs,
|
|
DRM_MODE_ENCODER_TMDS);
|
|
|
|
intel_encoder->compute_config = intel_ddi_compute_config;
|
|
intel_encoder->enable = intel_enable_ddi;
|
|
intel_encoder->pre_enable = intel_ddi_pre_enable;
|
|
intel_encoder->disable = intel_disable_ddi;
|
|
intel_encoder->post_disable = intel_ddi_post_disable;
|
|
intel_encoder->get_hw_state = intel_ddi_get_hw_state;
|
|
intel_encoder->get_config = intel_ddi_get_config;
|
|
|
|
intel_dig_port->port = port;
|
|
intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
|
|
(DDI_BUF_PORT_REVERSAL |
|
|
DDI_A_4_LANES);
|
|
|
|
intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
|
|
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
|
|
intel_encoder->cloneable = 0;
|
|
|
|
if (init_dp) {
|
|
if (!intel_ddi_init_dp_connector(intel_dig_port))
|
|
goto err;
|
|
|
|
intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
|
|
dev_priv->hotplug.irq_port[port] = intel_dig_port;
|
|
}
|
|
|
|
/* In theory we don't need the encoder->type check, but leave it just in
|
|
* case we have some really bad VBTs... */
|
|
if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
|
|
if (!intel_ddi_init_hdmi_connector(intel_dig_port))
|
|
goto err;
|
|
}
|
|
|
|
return;
|
|
|
|
err:
|
|
drm_encoder_cleanup(encoder);
|
|
kfree(intel_dig_port);
|
|
}
|